1
|
Solar geoengineering may not prevent strong warming from direct effects of CO 2 on stratocumulus cloud cover. Proc Natl Acad Sci U S A 2020; 117:30179-30185. [PMID: 33199624 DOI: 10.1073/pnas.2003730117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Discussions of countering global warming with solar geoengineering assume that warming owing to rising greenhouse-gas concentrations can be compensated by artificially reducing the amount of sunlight Earth absorbs. However, solar geoengineering may not be fail-safe to prevent global warming because CO2 can directly affect cloud cover: It reduces cloud cover by modulating the longwave radiative cooling within the atmosphere. This effect is not mitigated by solar geoengineering. Here, we use idealized high-resolution simulations of clouds to show that, even under a sustained solar geoengineering scenario with initially only modest warming, subtropical stratocumulus clouds gradually thin and may eventually break up into scattered cumulus clouds, at concentrations exceeding 1,700 parts per million (ppm). Because stratocumulus clouds cover large swaths of subtropical oceans and cool Earth by reflecting incident sunlight, their loss would trigger strong (about 5 K) global warming. Thus, the results highlight that, at least in this extreme and idealized scenario, solar geoengineering may not suffice to counter greenhouse-gas-driven global warming.
Collapse
|
2
|
Allan RP, Barlow M, Byrne MP, Cherchi A, Douville H, Fowler HJ, Gan TY, Pendergrass AG, Rosenfeld D, Swann ALS, Wilcox LJ, Zolina O. Advances in understanding large-scale responses of the water cycle to climate change. Ann N Y Acad Sci 2020; 1472:49-75. [PMID: 32246848 DOI: 10.1111/nyas.14337] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 11/30/2022]
Abstract
Globally, thermodynamics explains an increase in atmospheric water vapor with warming of around 7%/°C near to the surface. In contrast, global precipitation and evaporation are constrained by the Earth's energy balance to increase at ∼2-3%/°C. However, this rate of increase is suppressed by rapid atmospheric adjustments in response to greenhouse gases and absorbing aerosols that directly alter the atmospheric energy budget. Rapid adjustments to forcings, cooling effects from scattering aerosol, and observational uncertainty can explain why observed global precipitation responses are currently difficult to detect but are expected to emerge and accelerate as warming increases and aerosol forcing diminishes. Precipitation increases with warming are expected to be smaller over land than ocean due to limitations on moisture convergence, exacerbated by feedbacks and affected by rapid adjustments. Thermodynamic increases in atmospheric moisture fluxes amplify wet and dry events, driving an intensification of precipitation extremes. The rate of intensification can deviate from a simple thermodynamic response due to in-storm and larger-scale feedback processes, while changes in large-scale dynamics and catchment characteristics further modulate the frequency of flooding in response to precipitation increases. Changes in atmospheric circulation in response to radiative forcing and evolving surface temperature patterns are capable of dominating water cycle changes in some regions. Moreover, the direct impact of human activities on the water cycle through water abstraction, irrigation, and land use change is already a significant component of regional water cycle change and is expected to further increase in importance as water demand grows with global population.
Collapse
Affiliation(s)
- Richard P Allan
- Department of Meteorology and National Centre for Earth Observation, University of Reading, Reading, United Kingdom
| | - Mathew Barlow
- Department of Environmental Earth and Atmospheric Sciences, University of Massachusetts Lowell, Lowell, Massachusetts
| | - Michael P Byrne
- School of Earth and Environmental Science, University of St Andrews, St Andrews, United Kingdom.,Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Annalisa Cherchi
- Istituto Nazionale di Geofisica e Vulcanologia Sezione di Bologna, INGV, Bologna, Italy
| | - Hervé Douville
- Centre National de Recherches Météorologiques, Météo-France/CNRS, Toulouse, France
| | - Hayley J Fowler
- University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Thian Y Gan
- University of Alberta, Edmonton, Alberta, Canada
| | | | - Daniel Rosenfeld
- Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,School of Atmospheric Sciences, Nanjing University, Nanjing, China
| | | | - Laura J Wilcox
- National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, United Kingdom
| | - Olga Zolina
- L'Institut des Géosciences de l'Environnement/Centre National de la Recherche Scientifique, L'Université Grenoble Alpes, Grenoble, France.,P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Byrne MP, Pendergrass AG, Rapp AD, Wodzicki KR. Response of the Intertropical Convergence Zone to Climate Change: Location, Width, and Strength. CURRENT CLIMATE CHANGE REPORTS 2018; 4:355-370. [PMID: 30931244 PMCID: PMC6411165 DOI: 10.1007/s40641-018-0110-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
PURPOSE OF REVIEW The intertropical convergence zone (ITCZ) is a planetary-scale band of heavy precipitation close to the equator. Here, we consider the response of the ITCZ structure to climate change using observations, simulations, and theory. We focus on the substantial yet underappreciated projected changes in ITCZ width and strength, and highlight an emerging conceptual framework for understanding these changes. RECENT FINDINGS Satellite observations and reanalysis data show a narrowing and strengthening of precipitation in the ITCZ over recent decades in both the Atlantic and Pacific basins, but little change in ITCZ location. Consistent with observations, coupled climate models predict no robust change in the zonal-mean ITCZ location over the twenty-first century. However, the majority of models project a narrowing of the ITCZ and weakening mean ascent. Interestingly, changes in ITCZ width and strength are strongly anti-correlated across models. SUMMARY The ITCZ has narrowed over recent decades yet its location has remained approximately constant. Climate models project further narrowing and a weakening of the average ascent within the ITCZ as the climate continues to warm. Following intense work over the last ten years, the physical mechanisms controlling the ITCZ location are now well understood. The development of complementary theories for ITCZ width and strength is a current research priority. Outstanding challenges include understanding the ITCZ response to past climate changes and over land versus ocean regions, and better constraining all aspects of the ITCZ structure in model projections. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (10.1007/s40641-018-0110-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael P. Byrne
- Space and Atmospheric Physics Group, Imperial College London, London, SW7 2AZ UK
| | | | | | | |
Collapse
|
4
|
Myhre G, Forster PM, Samset BH, Hodnebrog Ø, Sillmann J, Aalbergsjø SG, Andrews T, Boucher O, Faluvegi G, Fläschner D, Iversen T, Kasoar M, Kharin V, Lamarque JF, Olivié D, Richardson T, Shindell D, Shine KP, Stjern CW, Takemura T, Voulgarakis A, Zwiers F. PDRMIP: A Precipitation Driver and Response Model Intercomparison Project, Protocol and preliminary results. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY 2017; 98:1185-1198. [PMID: 32713957 PMCID: PMC7380094 DOI: 10.1175/bams-d-16-0019.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
As the global temperature increases with changing climate, precipitation rates and patterns are affected through a wide range of physical mechanisms. The globally averaged intensity of extreme precipitation also changes more rapidly than the globally averaged precipitation rate. While some aspects of the regional variation in precipitation predicted by climate models appear robust, there is still a large degree of inter-model differences unaccounted for. Individual drivers of climate change initially alter the energy budget of the atmosphere leading to distinct rapid adjustments involving changes in precipitation. Differences in how these rapid adjustment processes manifest themselves within models are likely to explain a large fraction of the present model spread and needs better quantifications to improve precipitation predictions. Here, we introduce the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), where a set of idealized experiments designed to understand the role of different climate forcing mechanisms were performed by a large set of climate models. PDRMIP focuses on understanding how precipitation changes relating to rapid adjustments and slower responses to climate forcings are represented across models. Initial results show that rapid adjustments account for large regional differences in hydrological sensitivity across multiple drivers. The PDRMIP results are expected to dramatically improve our understanding of the causes of the present diversity in future climate projections.
Collapse
Affiliation(s)
- G Myhre
- CICERO Center for International Climate and Environmental Research - Oslo, Norway
| | | | - B H Samset
- CICERO Center for International Climate and Environmental Research - Oslo, Norway
| | - Ø Hodnebrog
- CICERO Center for International Climate and Environmental Research - Oslo Norway
| | - J Sillmann
- CICERO Center for International Climate and Environmental Research - Oslo, Norway
| | - S G Aalbergsjø
- CICERO Center for International Climate and Environmental Research - Oslo, Norway
| | - T Andrews
- Met Office Hadley Centre, Exeter, UK
| | - O Boucher
- Laboratoire de Météorologie Dynamique, IPSL, Univ. P et M. Curie / CNRS, Paris, France
| | | | - D Fläschner
- Max-Planck-Institut fur Meteorologie, Hamburg Germany
| | - T Iversen
- Norwegian Meteorological Institute, Oslo, Norway
| | - M Kasoar
- Imperial College London, London, United Kingdom
| | - V Kharin
- Canadian Centre for Climate Modelling and Analysis, Victoria, BC, Canada A. Kirkevåg, Norwegian Meteorological Institute, Oslo, Norway
| | | | - D Olivié
- Norwegian Meteorological Institute, Oslo, Norway
| | | | | | - K P Shine
- University of Reading, Reading, United Kingdom
| | - Camilla W Stjern
- CICERO Center for International Climate and Environmental Research - Oslo, Norway
| | | | | | - F Zwiers
- Pacific Climate Impacts Consortium University of Victoria, Canada
| |
Collapse
|