1
|
Zhu M, Fang Z, Wu Y, Dong F, Wang Y, Zheng F, Ma X, Ma S, He J, Liu X, Yao X, Fu C. A KDELR-mediated ER-retrieval system modulates mitochondrial functions via the unfolded protein response in fission yeast. J Biol Chem 2024; 300:105754. [PMID: 38360270 PMCID: PMC10938167 DOI: 10.1016/j.jbc.2024.105754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024] Open
Abstract
KDELR (Erd2 [ER retention defective 2] in yeasts) is a receptor protein that retrieves endoplasmic reticulum (ER)-resident proteins from the Golgi apparatus. However, the role of the KDELR-mediated ER-retrieval system in regulating cellular homeostasis remains elusive. Here, we show that the absence of Erd2 triggers the unfolded protein response (UPR) and enhances mitochondrial respiration and reactive oxygen species in an UPR-dependent manner in the fission yeast Schizosaccharomyces pombe. Moreover, we perform transcriptomic analysis and find that the expression of genes related to mitochondrial respiration and the tricarboxylic acid cycle is upregulated in a UPR-dependent manner in cells lacking Erd2. The increased mitochondrial respiration and reactive oxygen species production is required for cell survival in the absence of Erd2. Therefore, our findings reveal a novel role of the KDELR-Erd2-mediated ER-retrieval system in modulating mitochondrial functions and highlight its importance for cellular homeostasis in the fission yeast.
Collapse
Affiliation(s)
- Mengdan Zhu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zheng Fang
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yifan Wu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Fenfen Dong
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yuzhou Wang
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Fan Zheng
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiaopeng Ma
- Division of Life Sciences and Medicine, Department of General Surgery, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Shisong Ma
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jiajia He
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China.
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
2
|
KDEL Receptors: Pathophysiological Functions, Therapeutic Options, and Biotechnological Opportunities. Biomedicines 2022; 10:biomedicines10061234. [PMID: 35740256 PMCID: PMC9220330 DOI: 10.3390/biomedicines10061234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023] Open
Abstract
KDEL receptors (KDELRs) are ubiquitous seven-transmembrane domain proteins encoded by three mammalian genes. They bind to and retro-transport endoplasmic reticulum (ER)-resident proteins with a C-terminal Lys-Asp-Glu-Leu (KDEL) sequence or variants thereof. In doing this, KDELR participates in the ER quality control of newly synthesized proteins and the unfolded protein response. The binding of KDEL proteins to KDELR initiates signaling cascades involving three alpha subunits of heterotrimeric G proteins, Src family kinases, protein kinases A (PKAs), and mitogen-activated protein kinases (MAPKs). These signaling pathways coordinate membrane trafficking flows between secretory compartments and control the degradation of the extracellular matrix (ECM), an important step in cancer progression. Considering the basic cellular functions performed by KDELRs, their association with various diseases is not surprising. KDELR mutants unable to bind the collagen-specific chaperon heat-shock protein 47 (HSP47) cause the osteogenesis imperfecta. Moreover, the overexpression of KDELRs appears to be linked to neurodegenerative diseases that share pathological ER-stress and activation of the unfolded protein response (UPR). Even immune function requires a functional KDELR1, as its mutants reduce the number of T lymphocytes and impair antiviral immunity. Several studies have also brought to light the exploitation of the shuttle activity of KDELR during the intoxication and maturation/exit of viral particles. Based on the above, KDELRs can be considered potential targets for the development of novel therapeutic strategies for a variety of diseases involving proteostasis disruption, cancer progression, and infectious disease. However, no drugs targeting KDELR functions are available to date; rather, KDELR has been leveraged to deliver drugs efficiently into cells or improve antigen presentation.
Collapse
|
3
|
The Function of KDEL Receptors as UPR Genes in Disease. Int J Mol Sci 2021; 22:ijms22115436. [PMID: 34063979 PMCID: PMC8196686 DOI: 10.3390/ijms22115436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
The KDEL receptor retrieval pathway is essential for maintaining resident proteins in the endoplasmic reticulum (ER) lumen. ER resident proteins serve a variety of functions, including protein folding and maturation. Perturbations to the lumenal ER microenvironment, such as calcium depletion, can cause protein misfolding and activation of the unfolded protein response (UPR). Additionally, ER resident proteins are secreted from the cell by overwhelming the KDEL receptor retrieval pathway. Recent data show that KDEL receptors are also activated during the UPR through the IRE1/XBP1 signaling pathway as an adaptive response to cellular stress set forth to reduce the loss of ER resident proteins. This review will discuss the emerging connection between UPR activation and KDEL receptors as it pertains to ER proteostasis and disease states.
Collapse
|
4
|
Bone RN, Oyebamiji O, Talware S, Selvaraj S, Krishnan P, Syed F, Wu H, Evans-Molina C. A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes. Diabetes 2020; 69:2364-2376. [PMID: 32820009 PMCID: PMC7576569 DOI: 10.2337/db20-0636] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We used an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray data sets generated using human islets from donors with diabetes and islets where type 1 (T1D) and type 2 (T2D) diabetes had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. In parallel, we generated an RNA-sequencing data set from human islets treated with brefeldin A (BFA), a known GA stress inducer. Overlapping the T1D and T2D groups with the BFA data set, we identified 120 and 204 differentially expressed genes, respectively. In both the T1D and T2D models, pathway analyses revealed that the top pathways were associated with GA integrity, organization, and trafficking. Quantitative RT-PCR was used to validate a common signature of GA stress that included ATF3, ARF4, CREB3, and COG6 Taken together, these data indicate that GA-associated genes are dysregulated in diabetes and identify putative markers of β-cell GA stress.
Collapse
Affiliation(s)
- Robert N Bone
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Olufunmilola Oyebamiji
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN
| | - Sayali Talware
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN
| | - Sharmila Selvaraj
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN
| | - Preethi Krishnan
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Farooq Syed
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Huanmei Wu
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
5
|
Abstract
Designer nucleases are versatile tools for genome modification and therapy development and have gained widespread accessibility with the advent of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) technology. Prokaryotic RNA-guided nucleases of CRISPR/Cas type, since first being adopted as editing tools in eukaryotic cells, have experienced rapid uptake and development. Diverse modes of delivery by viral and non-viral vectors and ongoing discovery and engineering of new CRISPR/Cas-type tools with alternative target site requirements, cleavage patterns and DNA- or RNA-specific action continue to expand the versatility of this family of nucleases. CRISPR/Cas-based molecules may also act without double-strand breaks as DNA base editors or even without single-stranded cleavage, be it as epigenetic regulators, transcription factors or RNA base editors, with further scope for discovery and development. For many potential therapeutic applications of CRISPR/Cas-type molecules and their derivatives, efficiencies still need to be improved and safety issues addressed, including those of preexisting immunity against Cas molecules, off-target activity and recombination and sequence alterations relating to double-strand-break events. This review gives a concise overview of current CRISPR/Cas tools, applications, concerns and trends.
Collapse
Affiliation(s)
- Petros Patsali
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, 1683, Nicosia, Cyprus
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, 1683, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Carsten W Lederer
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, 1683, Nicosia, Cyprus.
- Cyprus School of Molecular Medicine, Nicosia, Cyprus.
| |
Collapse
|
6
|
A Computational Method for Classifying Different Human Tissues with Quantitatively Tissue-Specific Expressed Genes. Genes (Basel) 2018; 9:genes9090449. [PMID: 30205473 PMCID: PMC6162521 DOI: 10.3390/genes9090449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 02/06/2023] Open
Abstract
Tissue-specific gene expression has long been recognized as a crucial key for understanding tissue development and function. Efforts have been made in the past decade to identify tissue-specific expression profiles, such as the Human Proteome Atlas and FANTOM5. However, these studies mainly focused on "qualitatively tissue-specific expressed genes" which are highly enriched in one or a group of tissues but paid less attention to "quantitatively tissue-specific expressed genes", which are expressed in all or most tissues but with differential expression levels. In this study, we applied machine learning algorithms to build a computational method for identifying "quantitatively tissue-specific expressed genes" capable of distinguishing 25 human tissues from their expression patterns. Our results uncovered the expression of 432 genes as optimal features for tissue classification, which were obtained with a Matthews Correlation Coefficient (MCC) of more than 0.99 yielded by a support vector machine (SVM). This constructed model was superior to the SVM model using tissue enriched genes and yielded MCC of 0.985 on an independent test dataset, indicating its good generalization ability. These 432 genes were proven to be widely expressed in multiple tissues and a literature review of the top 23 genes found that most of them support their discriminating powers. As a complement to previous studies, our discovery of these quantitatively tissue-specific genes provides insights into the detailed understanding of tissue development and function.
Collapse
|
7
|
Mei M, Zhai C, Li X, Zhou Y, Peng W, Ma L, Wang Q, Iverson BL, Zhang G, Yi L. Characterization of aromatic residue-controlled protein retention in the endoplasmic reticulum of Saccharomyces cerevisiae. J Biol Chem 2017; 292:20707-20719. [PMID: 29038295 DOI: 10.1074/jbc.m117.812107] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/11/2017] [Indexed: 01/05/2023] Open
Abstract
An endoplasmic reticulum (ER) retention sequence (ERS) is a characteristic short sequence that mediates protein retention in the ER of eukaryotic cells. However, little is known about the detailed molecular mechanism involved in ERS-mediated protein ER retention. Using a new surface display-based fluorescence technique that effectively quantifies ERS-promoted protein ER retention within Saccharomyces cerevisiae cells, we performed comprehensive ERS analyses. We found that the length, type of amino acid residue, and additional residues at positions -5 and -6 of the C-terminal HDEL motif all determined the retention of ERS in the yeast ER. Moreover, the biochemical results guided by structure simulation revealed that aromatic residues (Phe-54, Trp-56, and other aromatic residues facing the ER lumen) in both the ERS (at positions -6 and -4) and its receptor, Erd2, jointly determined their interaction with each other. Our studies also revealed that this aromatic residue interaction might lead to the discriminative recognition of HDEL or KDEL as ERS in yeast or human cells, respectively. Our findings expand the understanding of ERS-mediated residence of proteins in the ER and may guide future research into protein folding, modification, and translocation affected by ER retention.
Collapse
Affiliation(s)
- Meng Mei
- From the Hubei Collaborative Innovation Center for Green Transformation of Bioresources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, China
| | - Chao Zhai
- From the Hubei Collaborative Innovation Center for Green Transformation of Bioresources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, China
| | - Xinzhi Li
- From the Hubei Collaborative Innovation Center for Green Transformation of Bioresources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, China
| | - Yu Zhou
- From the Hubei Collaborative Innovation Center for Green Transformation of Bioresources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, China
| | - Wenfang Peng
- From the Hubei Collaborative Innovation Center for Green Transformation of Bioresources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, China
| | - Lixin Ma
- From the Hubei Collaborative Innovation Center for Green Transformation of Bioresources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, China
| | - Qinhong Wang
- the Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China, and
| | - Brent L Iverson
- the Department of Chemistry, University of Texas, Austin, Texas 78712
| | - Guimin Zhang
- From the Hubei Collaborative Innovation Center for Green Transformation of Bioresources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, China,
| | - Li Yi
- From the Hubei Collaborative Innovation Center for Green Transformation of Bioresources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, China,
| |
Collapse
|
8
|
Abstract
The recent advent of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR associated protein 9 (Cas9) system for precise genome editing has revolutionized methodologies in haematology and oncology studies. CRISPR-Cas9 technology can be used to remove and correct genes or mutations, and to introduce site-specific therapeutic genes in human cells. Inherited haematological disorders represent ideal targets for CRISPR-Cas9-mediated gene therapy. Correcting disease-causing mutations could alleviate disease-related symptoms in the near future. The CRISPR-Cas9 system is also a useful tool for delineating molecular mechanisms involving haematological malignancies. Prior to the use of CRISPR-Cas9-mediated gene correction in humans, appropriate delivery systems with higher efficiency and specificity must be identified, and ethical guidelines for applying the technology with controllable safety must be established. Here, the latest applications of CRISPR-Cas9 technology in haematological disorders, current challenges and future directions are reviewed and discussed.
Collapse
Affiliation(s)
- Han Zhang
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas-Health Science Centre at Houston, Houston, TX, USA
| | - Nami McCarty
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas-Health Science Centre at Houston, Houston, TX, USA.
| |
Collapse
|
9
|
Becker B, Shaebani MR, Rammo D, Bubel T, Santen L, Schmitt MJ. Cargo binding promotes KDEL receptor clustering at the mammalian cell surface. Sci Rep 2016; 6:28940. [PMID: 27353000 PMCID: PMC4926219 DOI: 10.1038/srep28940] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/24/2016] [Indexed: 01/06/2023] Open
Abstract
Transmembrane receptor clustering is a ubiquitous phenomenon in pro- and eukaryotic cells to physically sense receptor/ligand interactions and subsequently translate an exogenous signal into a cellular response. Despite that receptor cluster formation has been described for a wide variety of receptors, ranging from chemotactic receptors in bacteria to growth factor and neurotransmitter receptors in mammalian cells, a mechanistic understanding of the underlying molecular processes is still puzzling. In an attempt to fill this gap we followed a combined experimental and theoretical approach by dissecting and modulating cargo binding, internalization and cellular response mediated by KDEL receptors (KDELRs) at the mammalian cell surface after interaction with a model cargo/ligand. Using a fluorescent variant of ricin toxin A chain as KDELR-ligand (eGFP-RTAH/KDEL), we demonstrate that cargo binding induces dose-dependent receptor cluster formation at and subsequent internalization from the membrane which is associated and counteracted by anterograde and microtubule-assisted receptor transport to preferred docking sites at the plasma membrane. By means of analytical arguments and extensive numerical simulations we show that cargo-synchronized receptor transport from and to the membrane is causative for KDELR/cargo cluster formation at the mammalian cell surface.
Collapse
Affiliation(s)
- Björn Becker
- Molecular and Cell Biology, Department of Biosciences and Center of Human and Molecular Biology (ZHMB), Saarland University, D-66041 Saarbrücken, Germany
| | - M Reza Shaebani
- Department of Theoretical Physics, Saarland University, D-66041 Saarbrücken, Germany
| | - Domenik Rammo
- Molecular and Cell Biology, Department of Biosciences and Center of Human and Molecular Biology (ZHMB), Saarland University, D-66041 Saarbrücken, Germany
| | - Tobias Bubel
- Molecular and Cell Biology, Department of Biosciences and Center of Human and Molecular Biology (ZHMB), Saarland University, D-66041 Saarbrücken, Germany
| | - Ludger Santen
- Department of Theoretical Physics, Saarland University, D-66041 Saarbrücken, Germany
| | - Manfred J Schmitt
- Molecular and Cell Biology, Department of Biosciences and Center of Human and Molecular Biology (ZHMB), Saarland University, D-66041 Saarbrücken, Germany
| |
Collapse
|
10
|
Tschaharganeh DF, Lowe SW, Garippa RJ, Livshits G. Using CRISPR/Cas to study gene function and model disease in vivo. FEBS J 2016; 283:3194-203. [PMID: 27149548 DOI: 10.1111/febs.13750] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/14/2016] [Accepted: 05/03/2016] [Indexed: 12/23/2022]
Abstract
The recent discovery of the CRISPR/Cas system and repurposing of this technology to edit a variety of different genomes have revolutionized an array of scientific fields, from genetics and translational research, to agriculture and bioproduction. In particular, the prospect of rapid and precise genome editing in laboratory animals by CRISPR/Cas has generated an immense interest in the scientific community. Here we review current in vivo applications of CRISPR/Cas and how this technology can improve our knowledge of gene function and our understanding of biological processes in animal models.
Collapse
Affiliation(s)
- Darjus F Tschaharganeh
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Howard Hughes Medical Institute, New York, NY, USA
| | - Ralph J Garippa
- RNAi Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Geulah Livshits
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|