1
|
Ozma MA, Moaddab SR, Hosseini H, Khodadadi E, Ghotaslou R, Asgharzadeh M, Abbasi A, Kamounah FS, Aghebati Maleki L, Ganbarov K, Samadi Kafil H. A critical review of novel antibiotic resistance prevention approaches with a focus on postbiotics. Crit Rev Food Sci Nutr 2024; 64:9637-9655. [PMID: 37203933 DOI: 10.1080/10408398.2023.2214818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Antibiotic resistance is a significant public health issue, causing illnesses that were once easily treatable with antibiotics to develop into dangerous infections, leading to substantial disability and even death. To help fight this growing threat, scientists are developing new methods and techniques that play a crucial role in treating infections and preventing the inappropriate use of antibiotics. These effective therapeutic methods include phage therapies, quorum-sensing inhibitors, immunotherapeutics, predatory bacteria, antimicrobial adjuvants, haemofiltration, nanoantibiotics, microbiota transplantation, plant-derived antimicrobials, RNA therapy, vaccine development, and probiotics. As a result of the activity of probiotics in the intestine, compounds derived from the structure and metabolism of these bacteria are obtained, called postbiotics, which include multiple agents with various therapeutic applications, especially antimicrobial effects, by using different mechanisms. These compounds have been chosen in particular because they don't promote the spread of antibiotic resistance and don't include substances that can increase antibiotic resistance. This manuscript provides an overview of the novel approaches to preventing antibiotic resistance with emphasis on the various postbiotic metabolites derived from the gut beneficial microbes, their activities, recent related progressions in the food and medical fields, as well as concisely giving an insight into the new concept of postbiotics as "hyperpostbiotic".
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Reza Moaddab
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsaneh Khodadadi
- Material Science and Engineering, Department of Chemistry and Biochemistry, University of Arkansas-Fayetteville, Fayetteville, AR, USA
| | - Reza Ghotaslou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | | | - Khudaverdi Ganbarov
- Research Laboratory of Microbiology and Virology, Baku State University, Baku, Republic of Azerbaijan
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Mookherjee A, Mitra M, Sason G, Jose PA, Martinenko M, Pietrokovski S, Jurkevitch E. Flagellar stator genes control a trophic shift from obligate to facultative predation and biofilm formation in a bacterial predator. mBio 2024; 15:e0071524. [PMID: 39037271 PMCID: PMC11323537 DOI: 10.1128/mbio.00715-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/13/2024] [Indexed: 07/23/2024] Open
Abstract
The bacterial predator Bdellovibrio bacteriovorus is considered to be obligatorily prey (host)-dependent (H-D), and thus unable to form biofilms. However, spontaneous host-independent (H-I) variants grow axenically and can form robust biofilms. A screen of 350 H-I mutants revealed that single mutations in stator genes fliL or motA were sufficient to generate flagellar motility-defective H-I strains able to adhere to surfaces but unable to develop biofilms. The variants showed large transcriptional shifts in genes related to flagella, prey-invasion, and cyclic-di-GMP (CdG), as well as large changes in CdG cellular concentration relative to the H-D parent. The introduction of the parental fliL allele resulted in a full reversion to the H-D phenotype, but we propose that specific interactions between stator proteins prevented functional complementation by fliL paralogs. In contrast, specific mutations in a pilus-associated protein (Bd0108) mutant background were necessary for biofilm formation, including secretion of extracellular DNA (eDNA), proteins, and polysaccharides matrix components. Remarkably, fliL disruption strongly reduced biofilm development. All H-I variants grew similarly without prey, showed a strain-specific reduction in predatory ability in prey suspensions, but maintained similar high efficiency in prey biofilms. Population-wide allele sequencing suggested additional routes to host independence. Thus, stator and invasion pole-dependent signaling control the H-D and the H-I biofilm-forming phenotypes, with single mutations overriding prey requirements, and enabling shifts from obligate to facultative predation, with potential consequences on community dynamics. Our findings on the facility and variety of changes leading to facultative predation also challenge the concept of Bdellovibrio and like organisms being obligate predators. IMPORTANCE The ability of bacteria to form biofilms is a central research theme in biology, medicine, and the environment. We show that cultures of the obligate (host-dependent) "solitary" predatory bacterium Bdellovibrio bacteriovorus, which cannot replicate without prey, can use various genetic routes to spontaneously yield host-independent (H-I) variants that grow axenically (as a single species, in the absence of prey) and exhibit various surface attachment phenotypes, including biofilm formation. These routes include single mutations in flagellar stator genes that affect biofilm formation, provoke motor instability and large motility defects, and disrupt cyclic-di-GMP intracellular signaling. H-I strains also exhibit reduced predatory efficiency in suspension but high efficiency in prey biofilms. These changes override the requirements for prey, enabling a shift from obligate to facultative predation, with potential consequences on community dynamics.
Collapse
Affiliation(s)
- Abhirup Mookherjee
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mohor Mitra
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Gal Sason
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Polpass Arul Jose
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maria Martinenko
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
3
|
Alexakis K, Baliou S, Ioannou P. Predatory Bacteria in the Treatment of Infectious Diseases and Beyond. Infect Dis Rep 2024; 16:684-698. [PMID: 39195003 DOI: 10.3390/idr16040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Antimicrobial resistance (AMR) is an increasing problem worldwide, with significant associated morbidity and mortality. Given the slow production of new antimicrobials, non-antimicrobial methods for treating infections with significant AMR are required. This review examines the potential of predatory bacteria to combat infectious diseases, particularly those caused by pathogens with AMR. Predatory bacteria already have well-known applications beyond medicine, such as in the food industry, biocontrol, and wastewater treatment. Regarding their potential for use in treating infections, several in vitro studies have shown their potential in eliminating various pathogens, including those resistant to multiple antibiotics, and they also suggest minimal immune stimulation and cytotoxicity by predatory bacteria. In vivo animal studies have demonstrated safety and efficacy in reducing bacterial burden in various infection models. However, results can be inconsistent, suggesting dependence on factors like the animal model and the infecting bacteria. Until now, no clinical study in humans exists, but as experience with predatory bacteria grows, future studies including clinical studies in humans could be designed to evaluate their efficacy and safety in humans, thus leading to the potential for approval of a novel method for treating infectious diseases by bacteria.
Collapse
Affiliation(s)
| | - Stella Baliou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
4
|
Pląskowska K, Zakrzewska-Czerwińska J. Chromosome structure and DNA replication dynamics during the life cycle of the predatory bacterium Bdellovibrio bacteriovorus. FEMS Microbiol Rev 2023; 47:fuad057. [PMID: 37791401 PMCID: PMC11318664 DOI: 10.1093/femsre/fuad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023] Open
Abstract
Bdellovibrio bacteriovorus, an obligate predatory Gram-negative bacterium that proliferates inside and kills other Gram-negative bacteria, was discovered more than 60 years ago. However, we have only recently begun to understand the detailed cell biology of this proficient bacterial killer. Bdellovibrio bacteriovorus exhibits a peculiar life cycle and bimodal proliferation, and thus represents an attractive model for studying novel aspects of bacterial cell biology. The life cycle of B. bacteriovorus consists of two phases: a free-living nonreplicative attack phase and an intracellular reproductive phase. During the reproductive phase, B. bacteriovorus grows as an elongated cell and undergoes binary or nonbinary fission, depending on the prey size. In this review, we discuss: (1) how the chromosome structure of B. bacteriovorus is remodeled during its life cycle; (2) how its chromosome replication dynamics depends on the proliferation mode; (3) how the initiation of chromosome replication is controlled during the life cycle, and (4) how chromosome replication is spatiotemporally coordinated with the proliferation program.
Collapse
Affiliation(s)
- Karolina Pląskowska
- Department of Molecular Microbiology, Faculty of Biotechnology, University
of Wrocław, ul. Joliot-Curie 14A, Wrocław,
Poland
| | - Jolanta Zakrzewska-Czerwińska
- Department of Molecular Microbiology, Faculty of Biotechnology, University
of Wrocław, ul. Joliot-Curie 14A, Wrocław,
Poland
| |
Collapse
|
5
|
Kaplan M, Chang YW, Oikonomou CM, Nicolas WJ, Jewett AI, Kreida S, Dutka P, Rettberg LA, Maggi S, Jensen GJ. Bdellovibrio predation cycle characterized at nanometre-scale resolution with cryo-electron tomography. Nat Microbiol 2023; 8:1267-1279. [PMID: 37349588 PMCID: PMC11061892 DOI: 10.1038/s41564-023-01401-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/27/2023] [Indexed: 06/24/2023]
Abstract
Bdellovibrio bacteriovorus is a microbial predator that offers promise as a living antibiotic for its ability to kill Gram-negative bacteria, including human pathogens. Even after six decades of study, fundamental details of its predation cycle remain mysterious. Here we used cryo-electron tomography to comprehensively image the lifecycle of B. bacteriovorus at nanometre-scale resolution. With high-resolution images of predation in a native (hydrated, unstained) state, we discover several surprising features of the process, including macromolecular complexes involved in prey attachment/invasion and a flexible portal structure lining a hole in the prey peptidoglycan that tightly seals the prey outer membrane around the predator during entry. Unexpectedly, we find that B. bacteriovorus does not shed its flagellum during invasion, but rather resorbs it into its periplasm for degradation. Finally, following growth and division in the bdelloplast, we observe a transient and extensive ribosomal lattice on the condensed B. bacteriovorus nucleoid.
Collapse
Affiliation(s)
- Mohammed Kaplan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Microbiology, University of Chicago, Chicago, IL, USA.
| | - Yi-Wei Chang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Catherine M Oikonomou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - William J Nicolas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Andrew I Jewett
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Stefan Kreida
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden
| | - Przemysław Dutka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Stefano Maggi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
6
|
Lai TF, Ford RM, Huwiler SG. Advances in cellular and molecular predatory biology of Bdellovibrio bacteriovorus six decades after discovery. Front Microbiol 2023; 14:1168709. [PMID: 37256055 PMCID: PMC10225642 DOI: 10.3389/fmicb.2023.1168709] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023] Open
Abstract
Since its discovery six decades ago, the predatory bacterium Bdellovibrio bacteriovorus has sparked recent interest as a potential remedy to the antibiotic resistance crisis. Here we give a comprehensive historical overview from discovery to progressive developments in microscopy and molecular mechanisms. Research on B. bacteriovorus has moved from curiosity to a new model organism, revealing over time more details on its physiology and fascinating predatory life cycle with the help of a variety of methods. Based on recent findings in cryo-electron tomography, we recapitulate on the intricate molecular details known in the predatory life cycle including how this predator searches for its prey bacterium, to how it attaches, grows, and divides all from within the prey cell. Finally, the newly developed B. bacteriovorus progeny leave the prey cell remnants in the exit phase. While we end with some unanswered questions remaining in the field, new imaging technologies and quantitative, systematic advances will likely help to unravel them in the next decades.
Collapse
Affiliation(s)
- Ting F. Lai
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Rhian M. Ford
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Simona G. Huwiler
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Santin YG, Lamot T, van Raaphorst R, Kaljević J, Laloux G. Modulation of prey size reveals adaptability and robustness in the cell cycle of an intracellular predator. Curr Biol 2023:S0960-9822(23)00541-9. [PMID: 37207648 DOI: 10.1016/j.cub.2023.04.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/21/2023]
Abstract
Despite a remarkable diversity of lifestyles, bacterial replication has only been investigated in a few model species. In bacteria that do not rely on canonical binary division for proliferation, the coordination of major cellular processes is still largely mysterious. Moreover, the dynamics of bacterial growth and division remain unexplored within spatially confined niches where nutrients are limited. This includes the life cycle of the model endobiotic predatory bacterium Bdellovibrio bacteriovorus, which grows by filamentation within its prey and produces a variable number of daughter cells. Here, we examined the impact of the micro-compartment in which predators replicate (i.e., the prey bacterium) on their cell-cycle progression at the single-cell level. Using Escherichia coli with genetically encoded size differences, we show that the duration of the predator cell cycle scales with prey size. Consequently, prey size determines predator offspring numbers. We found that individual predators elongate exponentially, with a growth rate determined by the nutritional quality of the prey, irrespective of prey size. However, the size of newborn predator cells is remarkably stable across prey nutritional content and size variations. Tuning the predatory cell cycle by modulating prey dimensions also allowed us to reveal invariable temporal connections between key cellular processes. Altogether, our data imply adaptability and robustness shaping the enclosed cell-cycle progression of B. bacteriovorus, which might contribute to optimal exploitation of the finite resources and space in their prey. This study extends the characterization of cell cycle control strategies and growth patterns beyond canonical models and lifestyles.
Collapse
Affiliation(s)
- Yoann G Santin
- de Duve Institute, UCLouvain, 75 avenue Hippocrate, 1200 Brussels, Belgium
| | - Thomas Lamot
- de Duve Institute, UCLouvain, 75 avenue Hippocrate, 1200 Brussels, Belgium
| | | | - Jovana Kaljević
- de Duve Institute, UCLouvain, 75 avenue Hippocrate, 1200 Brussels, Belgium
| | - Géraldine Laloux
- de Duve Institute, UCLouvain, 75 avenue Hippocrate, 1200 Brussels, Belgium.
| |
Collapse
|
8
|
Matan O, Jurkevitch E. Predation of antibiotic persister bacteria by the predatory bacterium Bdellovibrio bacteriovorus. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:239-244. [PMID: 35247032 DOI: 10.1111/1758-2229.13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Ofra Matan
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| |
Collapse
|
9
|
Remy O, Lamot T, Santin Y, Kaljević J, de Pierpont C, Laloux G. An optimized workflow to measure bacterial predation in microplates. STAR Protoc 2022; 3:101104. [PMID: 35098160 PMCID: PMC8783149 DOI: 10.1016/j.xpro.2021.101104] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The predatory bacterium Bdellovibrio bacteriovorus invades and proliferates inside other bacteria by non-binary division. Here we describe a fluorescence-based technique for the immediate evaluation of predator density independently of plaque formation, an optimized setup to monitor predation in microplates, and the CuRveR package to quantify both prey killing and predator proliferation dynamics. This protocol allows to assess the impact of mutations or chemicals on predation. CuRveR also constitutes a user-friendly tool to analyze growth or decay data unrelated to predation. For complete details on the use and execution of this profile, please refer to Kaljević et al., 2021. A protocol for routine culturing of Bdellovibrio bacteriovorus predatory bacteria A quick fluorescence-based technique to obtain predator cells numbers An automated assay of prey killing and predator proliferation in microplates The CuRveR package to extract prey decay and predator growth parameters
Collapse
|
10
|
Mookherjee A, Jurkevitch E. Interactions between Bdellovibrio and like organisms and bacteria in biofilms: beyond predator-prey dynamics. Environ Microbiol 2021; 24:998-1011. [PMID: 34816563 DOI: 10.1111/1462-2920.15844] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022]
Abstract
Bdellovibrio and like organisms (BALOs) prey on Gram-negative bacteria in the planktonic phase as well as in biofilms, with the ability to reduce prey populations by orders of magnitude. During the last few years, evidence has mounted for a significant ecological role for BALOs, with important implications for our understanding of microbial community dynamics as well as for applications against pathogens, including drug-resistant pathogens, in medicine, agriculture and aquaculture, and in industrial settings for various uses. However, our understanding of biofilm predation by BALOs is still very fragmentary, including gaps in their effect on biofilm structure, on prey resistance, and on evolutionary outcomes of both predators and prey. Furthermore, their impact on biofilms has been shown to reach beyond predation, as they are reported to reduce biofilm structures of non-prey cells (including Gram-positive bacteria). Here, we review the available literature on BALOs in biofilms, extending known aspects to potential mechanisms employed by the predators to grow in biofilms. Within that context, we discuss the potential ecological significance and potential future utilization of the predatory and enzymatic possibilities offered by BALOs in medical, agricultural and environmental applications.
Collapse
Affiliation(s)
- Abhirup Mookherjee
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
11
|
Ezzedine JA, Desdevises Y, Jacquet S. Bdellovibrio and like organisms: current understanding and knowledge gaps of the smallest cellular hunters of the microbial world. Crit Rev Microbiol 2021; 48:428-449. [PMID: 34595998 DOI: 10.1080/1040841x.2021.1979464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Almost sixty years ago, Bdellovibrio and like organisms (BALOs) were discovered as the first obligate bacterial predators of other bacteria known to science. Since then, they were shown to be diverse and ubiquitous in the environment, and to bear astonishing ecological, physiological, and metabolic capabilities. The last decade has seen important strides made in understanding the mechanistic basis of their life cycle, the dynamics of their interactions with prey, along with significant developments towards their use in medicine, agriculture, and industry. This review details these achievements, identify current understanding and knowledge gaps to encourage and guide future BALO research.
Collapse
Affiliation(s)
- Jade A Ezzedine
- Université Savoie Mont-Blanc, INRAE, CARRTEL, Thonon-les-Bains, France.,Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, IRIG, Université Grenoble Alpes, Grenoble, France
| | - Yves Desdevises
- CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Stéphan Jacquet
- Université Savoie Mont-Blanc, INRAE, CARRTEL, Thonon-les-Bains, France
| |
Collapse
|
12
|
Aharon E, Mookherjee A, Pérez-Montaño F, Mateus da Silva G, Sathyamoorthy R, Burdman S, Jurkevitch E. Secretion systems play a critical role in resistance to predation by Bdellovibrio bacteriovorus. Res Microbiol 2021; 172:103878. [PMID: 34492337 DOI: 10.1016/j.resmic.2021.103878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 11/28/2022]
Abstract
Bdellovibrio bacteriovorus, a Gram-negative predatory bacterium belonging to the Bdellovibrio and like organisms (BALOs), predate on Gram-negative bacteria. BALO strains differ in prey range but so far, the genetic basis of resistance against BALO predation is hardly understood. We developed a loss-of-function approach to screen for sensitive mutants in a library of strain M6, a predation-resistant strain of the plant pathogen Acidovorax citrulli. The screen is based on tracking the growth of a B. bacteriovorus strain expressing the fluorescent reporter Tdtomato in mutant pools to reveal predation-sensitive variants. Two independent loci were identified in mutant strains exhibiting significant levels of susceptibility to the predator. Genes in the two loci were analysed using both protein sequence homology and protein structure modeling. Both were secretion-related proteins and thus associated to the bacterial cell wall. Successful complementation of gspK, a gene encoding for a minor pseudopilin protein confirmed the involvement of the type II secretion system in A. citrulli M6 resistance. This proof of concept study shows that our approach can identify key elements of the BALO-prey interaction, and it validates the hypothesis that mutational changes in a single gene can drastically impact prey resistance to BALO predation.
Collapse
Affiliation(s)
- Einav Aharon
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Abhirup Mookherjee
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Francisco Pérez-Montaño
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel; Department of Microbiology, University of Seville, Seville, Spain.
| | - Gustavo Mateus da Silva
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Rajesh Sathyamoorthy
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
13
|
Kaljević J, Saaki TNV, Govers SK, Remy O, van Raaphorst R, Lamot T, Laloux G. Chromosome choreography during the non-binary cell cycle of a predatory bacterium. Curr Biol 2021; 31:3707-3720.e5. [PMID: 34256020 PMCID: PMC8445325 DOI: 10.1016/j.cub.2021.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/13/2021] [Accepted: 06/09/2021] [Indexed: 12/03/2022]
Abstract
In bacteria, the dynamics of chromosome replication and segregation are tightly coordinated with cell-cycle progression and largely rely on specific spatiotemporal arrangement of the chromosome. Whereas these key processes are mostly investigated in species that divide by binary fission, they remain mysterious in bacteria producing larger number of descendants. Here, we establish the predatory bacterium Bdellovibrio bacteriovorus as a model to investigate the non-binary processing of a circular chromosome. We found that its single chromosome is highly compacted in a polarized nucleoid that excludes freely diffusing proteins during the non-proliferative stage of the cell cycle. A binary-like cycle of DNA replication and asymmetric segregation is followed by multiple asynchronous rounds of replication and progressive ParABS-dependent partitioning, uncoupled from cell division. Finally, we provide the first evidence for an on-off behavior of the ParB protein, which localizes at the centromere in a cell-cycle-regulated manner. Altogether, our findings support a model of complex chromosome choreography leading to the generation of variable, odd, or even numbers of offspring and highlight the adaptation of conserved mechanisms to achieve non-binary reproduction. The Bdellovibrio chromosome is polarized, with ori located near the invasive pole The highly compacted nucleoid excludes cytosolic proteins in non-replicative cells Replication and segregation of chromosomes are uncoupled from cell division The centromeric protein ParB localizes at parS in a cell-cycle-dependent manner
Collapse
Affiliation(s)
- Jovana Kaljević
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Terrens N V Saaki
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Sander K Govers
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ophélie Remy
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | | | - Thomas Lamot
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Géraldine Laloux
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium.
| |
Collapse
|
14
|
Sathyamoorthy R, Huppert A, Kadouri DE, Jurkevitch E. Effects of the prey landscape on the fitness of the bacterial predators Bdellovibrio and like organisms. FEMS Microbiol Ecol 2021; 97:6178867. [PMID: 33739375 DOI: 10.1093/femsec/fiab047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/17/2021] [Indexed: 11/12/2022] Open
Abstract
Bdellovibrio and like organisms (BALOs) are obligate predatory bacteria commonly encountered in the environment. In dual predator-prey cultures, prey accessibility ensures optimal feeding and replication and rapid BALO population growth. However, the environmental prey landscape is complex, as it also incorporates non-prey cells and other particles. These may act as decoys, generating unproductive encounters which in turn may affect both predator and prey population dynamics. In this study, we hypothesized that increasing decoy:prey ratios would bring about increasing costs on the predator's reproductive fitness. We also tested the hypothesis that different BALOs and decoys would have different effects. To this end, we constructed prey landscapes including periplasmic or epibiotic predators including two types of decoy under a large range of initial decoy:prey ratio, and mixed cultures containing multiple predators and prey. We show that as decoy:prey ratios increase, the maximal predator population sizes is reduced and the time to reach it significantly increases. We found that BALOs spent less time handling non-prey (including superinfection-immune invaded prey) than prey cells, and did not differentiate between efficient and less efficient prey. This may explain why in multiple predator and prey cultures, less preferred prey appear to act as decoy.
Collapse
Affiliation(s)
- Rajesh Sathyamoorthy
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Amit Huppert
- Bio-statistical Unit, The Gertner Institute for Epidemiology and Health Policy Research, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| |
Collapse
|
15
|
Waso M, Reyneke B, Havenga B, Khan S, Khan W. Insights into Bdellovibrio spp. mechanisms of action and potential applications. World J Microbiol Biotechnol 2021; 37:85. [PMID: 33860852 DOI: 10.1007/s11274-021-03054-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/09/2021] [Indexed: 11/28/2022]
Abstract
Recent studies investigating Bdellovibrio spp. have found that although this predator predominantly preys on Gram-negative organisms, under certain conditions (nutrient/prey limitation), it will adapt to survive and grow axenically (without prey) or in the presence of Gram-positive bacterial prey. These advances in the understanding of predatory bacteria have stimulated a renewed interest in these organisms and the potential applications of Bdellovibrio spp. to the benefit of society. Early studies primarily focused on the application of predatory bacteria as "live antibiotics" in the medical field, probiotics in aquaculture and veterinary medicine and their use in agriculture. Additionally, studies have investigated their prevalence in wastewater and environmental sources. However, comprehending that Bdellovibrio spp. may also prey on and target Gram-positive organisms, implies that these predators could specifically be applied for the bioremediation or removal of mixed bacterial communities. Recent studies have also indicated that Bdellovibrio spp. may be useful in controlling food spoilage organisms and subsequently decrease our reliance on food additives. This review will thus highlight recent developments in understanding Bdellovibrio spp. predation strategies and focus on potential new applications of these organisms for water treatment, food preservation, enhancement of industrial processes, and in combination therapies with bacteriophages and/or antibiotics to combat multi-drug resistant organisms.
Collapse
Affiliation(s)
- Monique Waso
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| | - Brandon Reyneke
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Benjamin Havenga
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Sehaam Khan
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa.
| |
Collapse
|
16
|
Sathyamoorthy R, Kushmaro Y, Rotem O, Matan O, Kadouri DE, Huppert A, Jurkevitch E. To hunt or to rest: prey depletion induces a novel starvation survival strategy in bacterial predators. THE ISME JOURNAL 2021; 15:109-123. [PMID: 32884113 PMCID: PMC7852544 DOI: 10.1038/s41396-020-00764-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
The small size of bacterial cells necessitates rapid adaption to sudden environmental changes. In Bdellovibrio bacteriovorus, an obligate predator of bacteria common in oligotrophic environments, the non-replicative, highly motile attack phase (AP) cell must invade a prey to ensure replication. AP cells swim fast and respire at high rates, rapidly consuming their own contents. How the predator survives in the absence of prey is unknown. We show that starvation for prey significantly alters swimming patterns and causes exponential decay in prey-searching cells over hours, until population-wide swim-arrest. Swim-arrest is accompanied by changes in energy metabolism, enabling rapid swim-reactivation upon introduction of prey or nutrients, and a sweeping change in gene expression and gene regulation that largely differs from those of the paradigmatic stationary phase. Swim-arrest is costly as it imposes a fitness penalty in the form of delayed growth. We track the control of the swim arrest-reactivation process to cyclic-di-GMP (CdG) effectors, including two motility brakes. CRISPRi transcriptional inactivation, and in situ localization of the brakes to the cell pole, demonstrated their essential role for effective survival under prey-induced starvation. Thus, obligate predators evolved a unique CdG-controlled survival strategy, enabling them to sustain their uncommon lifestyle under fluctuating prey supply.
Collapse
Affiliation(s)
- Rajesh Sathyamoorthy
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Yuval Kushmaro
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Or Rotem
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
- Seed-x., Magshimim, Israel
| | - Ofra Matan
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Amit Huppert
- Bio-statistical Unit, The Gertner Institute for Epidemiology and Health Policy Research, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
17
|
Studies on Bd0934 and Bd3507, Two Secreted Nucleases from Bdellovibrio bacteriovorus, Reveal Sequential Release of Nucleases during the Predatory Cycle. J Bacteriol 2020; 202:JB.00150-20. [PMID: 32601070 PMCID: PMC7925074 DOI: 10.1128/jb.00150-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/22/2020] [Indexed: 11/24/2022] Open
Abstract
Antibiotic resistance is a major global concern with few available new means to combat it. From a therapeutic perspective, predatory bacteria constitute an interesting tool. They not only eliminate the pathogen but also reduce the overall pool of antibiotic resistance genes through secretion of nucleases and complete degradation of exogenous DNA. Molecular knowledge of how these secreted DNases act will give us further insight into how antibiotic resistance, and the spread thereof, can be limited through the action of predatory bacteria. Bdellovibrio bacteriovorus is an obligate predatory bacterium that invades and kills a broad range of Gram-negative prey cells, including human pathogens. Its potential therapeutic application has been the subject of increased research interest in recent years. However, an improved understanding of the fundamental molecular aspects of the predatory life cycle is crucial for developing this bacterium as a “living antibiotic.” During intracellular growth, B. bacteriovorus secretes an arsenal of hydrolases, which digest the content of the host cell to provide growth nutrients for the predator, e.g., prey DNA is completely degraded by the nucleases. Here, we have, on a genetic and molecular level, characterized two secreted DNases from B. bacteriovorus, Bd0934 and Bd3507, and determined the temporal expression profile of other putative secreted nucleases. We conclude that Bd0934 and Bd3507 are likely a part of the predatosome but are not essential for the predation, host-independent growth, prey biofilm degradation, and self-biofilm formation. The detailed temporal expression analysis of genes encoding secreted nucleases revealed that these enzymes are produced in a sequential orchestrated manner. This work contributes to our understanding of the sequential breakdown of the prey nucleic acid by the nucleases secreted during the predatory life cycle of B. bacteriovorus. IMPORTANCE Antibiotic resistance is a major global concern with few available new means to combat it. From a therapeutic perspective, predatory bacteria constitute an interesting tool. They not only eliminate the pathogen but also reduce the overall pool of antibiotic resistance genes through secretion of nucleases and complete degradation of exogenous DNA. Molecular knowledge of how these secreted DNases act will give us further insight into how antibiotic resistance, and the spread thereof, can be limited through the action of predatory bacteria.
Collapse
|
18
|
Caulton SG, Lovering AL. Bacterial invasion and killing by predatory Bdellovibrio primed by predator prey cell recognition and self protection. Curr Opin Microbiol 2020; 56:74-80. [DOI: 10.1016/j.mib.2020.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 01/13/2023]
|
19
|
Bonfiglio G, Neroni B, Radocchia G, Marazzato M, Pantanella F, Schippa S. Insight into the Possible Use of the Predator Bdellovibrio bacteriovorus as a Probiotic. Nutrients 2020; 12:E2252. [PMID: 32731403 PMCID: PMC7468853 DOI: 10.3390/nu12082252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/25/2022] Open
Abstract
The gut microbiota is a complex microbial ecosystem that coexists with the human organism in the intestinal tract. The members of this ecosystem live together in a balance between them and the host, contributing to its healthy state. Stress, aging, and antibiotic therapies are the principal factors affecting the gut microbiota composition, breaking the mutualistic relationship among microbes and resulting in the overgrowth of potential pathogens. This condition, called dysbiosis, has been linked to several chronic pathologies. In this review, we propose the use of the predator Bdellovibrio bacteriovorus as a possible probiotic to prevent or counteract dysbiotic outcomes and look at the findings of previous research.
Collapse
|
20
|
Wang S, Mu D, Du ZJ. Persicimonas caeni gen. nov., sp. nov., the Representative of a Novel Wide-Ranging Predatory Taxon in Bradymonadales. Front Microbiol 2020; 11:698. [PMID: 32390976 PMCID: PMC7188933 DOI: 10.3389/fmicb.2020.00698] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/25/2020] [Indexed: 11/29/2022] Open
Abstract
A novel bacterial strain, designated YN101T, was isolated from a marine solar saltern in the coast of Weihai, Shandong Province, China. Strain YN101T was Gram-stain negative, facultatively anaerobic, oxidase and catalase negative bacterium with the ability to prey on other microbes. A cross-streaking culture method was utilized to analyze the predatory activity of strain YN101T. The results showed strain YN101T could prey on various bacteria, either Gram-stain negative or Gram-stain positive. According to the predatory assays, different species in the same genus may behave differently when attacked by strain YN101T. The predatory behavior of strain YN101T to four typical species was analyzed, and furthermore, predation to Algoriphagus marinus am2T were quantitatively studied by fluorogenic quantitative PCR, and the gene copies decreased over two magnitudes. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YN101T shared the greatest sequence similarity of 93.9% to Bradymonas sediminis FA350T. The complete genome sequence of strain YN101T was 8,047,306 bp in size and the genomic DNA G + C content was 63.8 mol%. The digital DNA-DNA hybridization (dDDH) values and average nucleotide identity (ANI) values between strain YN101T and B. sediminis FA350T were 13.9 and 74.0%. The genetic features showed that the biosynthesis of many important compounds was deficient in genome of strain YN101T, which may lead to its predation. Moreover, its genome encoded many genes affiliated with type IV pili, secretion system, membrane proteins and transduction proteins. Similar with myxobacteria and Bdellovibrio and like organisms (BALOs), these genes should play important roles in motility, adhesion or virulence to attack prey cells during predation. The predominant polar lipid profile of strain YN101T consisted of phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), and one unidentified aminophospholipid (APL). The major cellular fatty acid of strain YN101T was iso-C17:0, and the sole respiratory quinone was MK-7. Based on the chemotaxonomic, physiological and biochemical characteristics, strain YN101T represents a novel species of a novel genus in the family Bradymonadaceae, for which the name Persicimonas caeni gen. nov., sp. nov. is proposed. The type strain is YN101T (=KCTC 72083T = MCCC 1H00374T).
Collapse
Affiliation(s)
- Shuo Wang
- Marine College, Shandong University, Weihai, China
| | - Dashuai Mu
- Marine College, Shandong University, Weihai, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
21
|
Bratanis E, Andersson T, Lood R, Bukowska-Faniband E. Biotechnological Potential of Bdellovibrio and Like Organisms and Their Secreted Enzymes. Front Microbiol 2020; 11:662. [PMID: 32351487 PMCID: PMC7174725 DOI: 10.3389/fmicb.2020.00662] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/23/2020] [Indexed: 02/01/2023] Open
Abstract
Bdellovibrio and like organisms (BALOs) are obligate predatory bacteria that selectively prey on a broad range of Gram-negative bacteria, including multidrug-resistant human pathogens. Due to their unique lifestyle, they have been long recognized as a potential therapeutic and biocontrol agent. Research on BALOs has rapidly grown over the recent decade, resulting in many publications concerning molecular details of bacterial predation as well as applications thereof in medicine and biotechnology. This review summarizes the current knowledge on biotechnological potential of obligate predatory bacteria and their secreted enzymes.
Collapse
Affiliation(s)
- Eleni Bratanis
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Tilde Andersson
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Rolf Lood
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ewa Bukowska-Faniband
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
22
|
Youdkes D, Helman Y, Burdman S, Matan O, Jurkevitch E. Potential Control of Potato Soft Rot Disease by the Obligate Predators Bdellovibrio and Like Organisms. Appl Environ Microbiol 2020; 86:e02543-19. [PMID: 31953332 PMCID: PMC7054095 DOI: 10.1128/aem.02543-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/18/2019] [Indexed: 11/20/2022] Open
Abstract
Bacterial soft rot diseases caused by Pectobacterium spp. and Dickeya spp. affect a wide range of crops, including potatoes, a major food crop. As of today, farmers mostly rely on sanitary practices, water management, and plant nutrition for control. We tested the bacterial predators Bdellovibrio and like organisms (BALOs) to control potato soft rot. BALOs are small, motile predatory bacteria found in terrestrial and aquatic environments. They prey on a wide range of Gram-negative bacteria, including animal and plant pathogens. To this end, BALO strains HD100, 109J, and a ΔmerRNA derivative of HD100 were shown to efficiently prey on various rot-causing strains of Pectobacterium and Dickeya solani BALO control of maceration caused by a highly virulent strain of Pectobacterium carotovorum subsp. brasilense was then tested in situ using a potato slice assay. All BALO strains were highly effective at reducing disease, up to complete prevention. Effectivity was concentration dependent, and BALOs applied before P. carotovorum subsp. brasilense inoculation performed significantly better than those applied after the disease-causing agent, maybe due to in situ consumption of glucose by the prey, as glucose metabolism by live prey bacteria was shown to prevent predation. Dead predators and the supernatant of BALO cultures did not significantly prevent maceration, indicating that predation was the major mechanism for the prevention of the disease. Finally, plastic resistance to predation was affected by prey and predator population parameters, suggesting that population dynamics affect prey response to predation.IMPORTANCE Bacterial soft rot diseases caused by Pectobacterium spp. and Dickeya spp. are among the most important plant diseases caused by bacteria. Among other crops, they inflict large-scale damage to potatoes. As of today, farmers have few options to control them. The bacteria Bdellovibrio and like organisms (BALOs) are obligate predators of bacteria. We tested their potential to prey on Pectobacterium spp. and Dickeya spp. and to protect potato. We show that different BALOs can prey on soft rot-causing bacteria and prevent their growth in situ, precluding tissue maceration. Dead predators and the supernatant of BALO cultures did not significantly prevent maceration, showing that the effect is due to predation. Soft rot control by the predators was concentration dependent and was higher when the predator was inoculated ahead of the prey. As residual prey remained, we investigated what determines their level and found that initial prey and predator population parameters affect prey response to predation.
Collapse
Affiliation(s)
- Daniel Youdkes
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yael Helman
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ofra Matan
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
23
|
Expression of attack and growth phase genes of Bdellovibrio bacteriovorus in the presence of Gram-negative and Gram-positive prey. Microbiol Res 2020; 235:126437. [PMID: 32088503 DOI: 10.1016/j.micres.2020.126437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 11/21/2022]
Abstract
The expression of attack phase (AP) and growth phase (GP) genes of Bdellovibrio bacteriovorus (B. bacteriovorus) was compared in the presence of Gram-negative [Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae)] and Gram-positive [Enterococcus faecium (E. faecium)] prey, using relative quantitative polymerase chain reaction (relative qPCR) assays. The genes bd0108 (pili retraction/extrusion) and merRNA (massively expressed riboswitch RNA) were highly expressed in the AP cells [3.99- to 6.06-fold (E. coli), 3.91- to 7.05-fold (K. pneumoniae) and 2.91- to 7.30-fold (E. faecium)]. The fliC1 gene (flagella filament) was also expressed at a high level in the AP cells however, after 240 min of co-culture with E. faecium the expression of fliC1 remained low (at 0.759-fold), while in the presence of the Gram-negative prey fliC1 expression increased. Additionally, the GP genes bd0816 (peptidoglycan-modifying enzyme) and groES1 (chaperone protein) were not induced in the presence of E. faecium. However, they were expressed in the early GP and GP of B. bacteriovorus after exposure to the Gram-negative prey. It can thus be concluded that B. bacteriovorus senses the presence of potential prey when exposed to Gram-positive and Gram-negative bacteria, however the GP genes are not induced in co-culture with E. faecium. The results from this study thus indicate that B. bacteriovorus does not actively grow in the presence of E. faecium and the second predatory cue (induces active growth of B. bacteriovorus) is lacking when B. bacteriovorus is co-cultured with the Gram-positive prey.
Collapse
|
24
|
Laloux G. Shedding Light on the Cell Biology of the Predatory Bacterium Bdellovibrio bacteriovorus. Front Microbiol 2020; 10:3136. [PMID: 32038570 PMCID: PMC6985089 DOI: 10.3389/fmicb.2019.03136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022] Open
Abstract
Bdellovibrio bacteriovorus is a predatory bacterium that feeds upon and proliferates inside other Gram-negative bacteria. Upon entry into the periplasmic space of the prey envelope, B. bacteriovorus initiates an exquisite developmental program in which it digests the host resources and grows as a filament, which eventually divides in a non-binary manner, releasing a variable number of daughter cells. The progeny then escape from the prey ghost to encounter new victims and resume the predation cycle. Owing to its unique biology, B. bacteriovorus undoubtedly represents an attractive model to unravel novel mechanisms of bacterial cell cycle control and cellular organization. Yet, the molecular factors behind the sophisticated lifestyle of this micro-predator are still mysterious. In particular, the spatiotemporal dynamics of proteins that control key cellular processes such as transmission of the genetic information, cell growth and division remain largely unexplored. In this Perspective article, I highlight outstanding fundamental questions related to these aspects and arising from the original biology of this bacterium. I also discuss available insights and potential cell biology approaches based on quantitative live imaging techniques, in combination with bacterial genetics and biochemistry, to shed light on the intracellular organization of B. bacteriovorus in space and time.
Collapse
Affiliation(s)
- Géraldine Laloux
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
25
|
Complete genome sequence of Bradymonas sediminis FA350T, the first representative of the order Bradymonadales. Mar Genomics 2019. [DOI: 10.1016/j.margen.2019.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
26
|
Dynamics of Chromosome Replication and Its Relationship to Predatory Attack Lifestyles in Bdellovibrio bacteriovorus. Appl Environ Microbiol 2019; 85:AEM.00730-19. [PMID: 31076424 PMCID: PMC6606864 DOI: 10.1128/aem.00730-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/04/2019] [Indexed: 12/20/2022] Open
Abstract
Bdellovibrio bacteriovorus is a small Gram-negative, obligate predatory bacterium that is largely found in wet, aerobic environments (e.g., soil). This bacterium attacks and invades other Gram-negative bacteria, including animal and plant pathogens. The intriguing life cycle of B. bacteriovorus consists of two phases: a free-living nonreplicative attack phase, in which the predatory bacterium searches for its prey, and a reproductive phase, in which B. bacteriovorus degrades a host's macromolecules and reuses them for its own growth and chromosome replication. Although the cell biology of this predatory bacterium has gained considerable interest in recent years, we know almost nothing about the dynamics of its chromosome replication. Here, we performed a real-time investigation into the subcellular localization of the replisome(s) in single cells of B. bacteriovorus Our results show that in B. bacteriovorus, chromosome replication takes place only during the reproductive phase and exhibits a novel spatiotemporal arrangement of replisomes. The replication process starts at the invasive pole of the predatory bacterium inside the prey cell and proceeds until several copies of the chromosome have been completely synthesized. Chromosome replication is not coincident with the predator cell division, and it terminates shortly before synchronous predator filament septation occurs. In addition, we demonstrate that if this B. bacteriovorus life cycle fails in some cells of Escherichia coli, they can instead use second prey cells to complete their life cycle.IMPORTANCE New strategies are needed to combat multidrug-resistant bacterial infections. Application of the predatory bacterium Bdellovibrio bacteriovorus, which kills other bacteria, including pathogens, is considered promising for combating bacterial infections. The B. bacteriovorus life cycle consists of two phases, a free-living, invasive attack phase and an intracellular reproductive phase, in which this predatory bacterium degrades the host's macromolecules and reuses them for its own growth. To understand the use of B. bacteriovorus as a "living antibiotic," it is first necessary to dissect its life cycle, including chromosome replication. Here, we present a real-time investigation into subcellular localization of chromosome replication in a single cell of B. bacteriovorus This process initiates at the invasion pole of B. bacteriovorus and proceeds until several copies of the chromosome have been completely synthesized. Interestingly, we demonstrate that some cells of B. bacteriovorus require two prey cells sequentially to complete their life cycle.
Collapse
|
27
|
Diversity, Dynamics, and Distribution of Bdellovibrio and Like Organisms in Perialpine Lakes. Appl Environ Microbiol 2019; 85:AEM.02494-18. [PMID: 30635378 DOI: 10.1128/aem.02494-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/30/2018] [Indexed: 11/20/2022] Open
Abstract
Microbes drive a variety of ecosystem processes and services, but many of them remain largely unexplored because of a lack of knowledge on both the diversity and functionality of some potentially crucial microbiological compartments. This is the case with and within the group of bacterial predators collectively known as Bdellovibrio and like organisms (BALOs). Here, we report the abundance, distribution, and diversity of three families of these obligate predatory Gram-negative bacteria in three perialpine lakes (Lakes Annecy, Bourget, and Geneva). The study was conducted at different depths (near-surface versus 45 or 50 m) from August 2015 to January 2016. Using PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and cloning-sequencing approaches, we show that the diversity of BALOs is relatively low and very specific to freshwaters or even the lakes themselves. While the Peredibacteraceae family was represented mainly by a single species (Peredibacter starrii), it could represent up to 7% of the total bacterial cell abundances. Comparatively, the abundances of the two other families (Bdellovibrionaceae and Bacteriovoracaceae) were significantly lower. In addition, the distributions in the water column were very different between the three groups, suggesting various life strategies/niches, as follows: Peredibacteraceae dominated near the surface, while Bdellovibrionaceae and Bacteriovoracaceae were more abundant at greater depths. Statistical analyses revealed that BALOs seem mainly to be driven by depth and temperature. Finally, this original study was also the opportunity to design new quantitative PCR (qPCR) primers for Peredibacteraceae quantification.IMPORTANCE This study highlights the abundance, distribution, and diversity of a poorly known microbial compartment in natural aquatic ecosystems, the Bdellovibrio and like organisms (BALOs). These obligate bacterial predators of other bacteria may have an important functional role. This study shows the relative quantitative importance of the three main families of this group, with the design of a new primer pair, and their diversity. While both the diversity and the abundances of these BALOs were globally low, it is noteworthy that the abundance of the Peredibacteraceae could reach important values.
Collapse
|
28
|
Dwidar M, Yokobayashi Y. Controlling Bdellovibrio bacteriovorus Gene Expression and Predation Using Synthetic Riboswitches. ACS Synth Biol 2017; 6:2035-2041. [PMID: 28812884 DOI: 10.1021/acssynbio.7b00171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bdellovibrio bacteriovorus is a predatory bacterium that feeds on Gram-negative bacteria including a wide range of pathogens and thus has potential applications as a biocontrol agent. Owing to its unique life cycle, however, there are limited tools that enable genetic manipulation of B. bacteriovorus. This work describes our first steps toward engineering the predatory bacterium for practical applications by developing basic genetic parts to control gene expression. Specifically, we evaluated four robust promoters that are active during the attack phase of B. bacteriovorus. Subsequently, we tested several synthetic riboswitches that have been reported to function in Escherichia coli, and identified theophylline-activated riboswitches that function in B. bacteriovorus. Finally, we inserted the riboswitch into the bacterial chromosome to regulate expression of the flagellar sigma factor fliA, which was previously predicted to be essential for predation, and observed that the engineered strain shows a faster predation kinetics in the presence of theophylline.
Collapse
Affiliation(s)
- Mohammed Dwidar
- Nucleic Acid Chemistry and
Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and
Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| |
Collapse
|
29
|
Dwidar M, Im H, Seo JK, Mitchell RJ. Attack-Phase Bdellovibrio bacteriovorus Responses to Extracellular Nutrients Are Analogous to Those Seen During Late Intraperiplasmic Growth. MICROBIAL ECOLOGY 2017; 74:937-946. [PMID: 28601973 DOI: 10.1007/s00248-017-1003-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
Bdellovibrio bacteriovorus is a predatory bacterium which lives by invading the periplasm of gram-negative bacteria and consuming them from within. This predator was thought to be dependent upon prey for nutrients since it lacks genes encoding for critical enzymes involved in amino acid biosynthesis. This study, however, found that planktonic attack-phase predators are not just dependent upon prey for nutrients, but rather, they respond to nutrients in the surrounding medium and, subsequently, synthesize and secrete proteases in a nutrient-dependent manner. The major secreted proteases were identified through mass spectrometry analyses. Subsequent RT-qPCR analyses found that the nutrient-induced proteases are similar to those expressed within the prey periplasm during the late intraperiplasmic growth phase. Furthermore, RNA sequencing found that incubating the planktonic attack-phase cells in a nutritious environment for a short period of time (4 h) changes its gene expression pattern to a status that is akin to the late intraperiplasmic phase, with more than 94% of the genes previously identified as being late intraperiplasmic-specific also being induced by nutrient broth in this study. This strong correlation between the gene expression patterns hints that the availability of hydrolyzed prey cell components to the predator is likely the stimulus controlling the expression of late intraperiplasmic B. bacteriovorus genes during predation.
Collapse
Affiliation(s)
- Mohammed Dwidar
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 689-798, Republic of Korea.
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Hansol Im
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 689-798, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facility, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Robert J Mitchell
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 689-798, Republic of Korea.
| |
Collapse
|
30
|
Arias Del Angel JA, Escalante AE, Martínez-Castilla LP, Benítez M. An Evo-Devo Perspective on Multicellular Development of Myxobacteria. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:165-178. [PMID: 28217903 DOI: 10.1002/jez.b.22727] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 12/12/2016] [Accepted: 12/25/2016] [Indexed: 11/07/2022]
Abstract
The transition to multicellularity, recognized as one the major transitions in evolution, has occurred independently several times. While multicellular development has been extensively studied in zygotic organisms including plant and animal groups, just a few aggregative multicellular organisms have been employed as model organisms for the study of multicellularity. Studying different evolutionary origins and modes of multicellularity enables comparative analyses that can help identifying lineage-specific aspects of multicellular evolution and generic factors and mechanisms involved in the transition to multicellularity. Among aggregative multicellular organisms, myxobacteria are a valuable system to explore the particularities that aggregation confers to the evolution of multicellularity and mechanisms shared with clonal organisms. Moreover, myxobacteria species develop fruiting bodies displaying a range of morphological diversity. In this review, we aim to synthesize diverse lines of evidence regarding myxobacteria development and discuss them in the context of Evo-Devo concepts and approaches. First, we briefly describe the developmental processes in myxobacteria, present an updated comparative analysis of the genes involved in their developmental processes and discuss these and other lines of evidence in terms of co-option and developmental system drift, two concepts key to Evo-Devo studies. Next, as has been suggested from Evo-Devo approaches, we discuss how broad comparative studies and integration of diverse genetic, physicochemical, and environmental factors into experimental and theoretical models can further our understanding of myxobacterial development, phenotypic variation, and evolution.
Collapse
Affiliation(s)
- Juan A Arias Del Angel
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecologiía, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana E Escalante
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecologiía, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - León Patricio Martínez-Castilla
- Departamento de Bioquímica, Facultad de Quiímica, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecologiía, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
31
|
Jurkevitch É, Jacquet S. [Bdellovibrio and like organisms: outstanding predators!]. Med Sci (Paris) 2017; 33:519-527. [PMID: 28612728 DOI: 10.1051/medsci/20173305016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Obligate predatory bacteria, i.e. bacteria requiring a Gram negative prey cell in order to complete their cell cycle, belong to the polyphyletic group referred to as the Bdellovibrio And Like Organisms (BALO). Predatory interactions between bacteria are complex, yet their dynamics and impact on bacterial communities in the environment are becoming better understood. BALO have unique life cycles: they grow epibiotically with the predator remaining attached to the prey's envelope, dividing in a binary manner or periplasmically, i.e. by penetrating the prey's periplasm to generate a number of progeny cells. The periplasmic life cycle includes unique gene and protein patterns and unique signaling features. These ecological and cellular features, along with applications of the BALO in the medical, agricultural and environmental fields are surveyed.
Collapse
Affiliation(s)
- Édouard Jurkevitch
- Faculté d'Agriculture, de l'Alimentation et de l'Environnement, Université Hébraïque de Jérusalem, Rehovot, Israël
| | - Stéphan Jacquet
- INRA, UMR CARRTEL, 75, avenue de Corzent, 74200 Thonon-les-Bains, France
| |
Collapse
|
32
|
Identification and Characterization of Differentially-Regulated Type IVb Pilin Genes Necessary for Predation in Obligate Bacterial Predators. Sci Rep 2017; 7:1013. [PMID: 28432347 PMCID: PMC5430801 DOI: 10.1038/s41598-017-00951-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/17/2017] [Indexed: 11/08/2022] Open
Abstract
Bdellovibrio bacteriovorus is an obligate predator of bacteria that grows and divides within the periplasm of its prey. Functions involved in the early steps of predation have been identified and characterized, but mediators of prey invasion are still poorly detailed. By combining omics data available for Bdellovibrio and like organisms (BALO’s), we identified 43 genes expressed in B. bacteriovorus during the early interaction with prey. These included genes in a tight adherence (TAD) operon encoding for two type IVb fimbriae-like pilin proteins (flp1 and flp2), and their processing and export machinery. Two additional flp genes (flp3 and flp4) were computationally identified at other locations along the chromosome, defining the largest and most diverse type IVb complement known in bacteria to date. Only flp1, flp2 and flp4 were expressed; their respective gene knock-outs resulted in a complete loss of the predatory ability without losing the ability to adhere to prey cells. Additionally, we further demonstrate differential regulation of the flp genes as the TAD operon of BALOs with different predatory strategies is controlled by a flagellar sigma factor FliA, while flp4 is not. Finally, we show that FliA, a known flagellar transcriptional regulator in other bacteria, is an essential Bdellovibrio gene.
Collapse
|
33
|
Monnappa AK, Bari W, Choi SY, Mitchell RJ. Investigating the Responses of Human Epithelial Cells to Predatory Bacteria. Sci Rep 2016; 6:33485. [PMID: 27629536 PMCID: PMC5024164 DOI: 10.1038/srep33485] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022] Open
Abstract
One beguiling alternative to antibiotics for treating multi-drug resistant infections are Bdellovibrio-and-like-organisms (BALOs), predatory bacteria known to attack human pathogens. Consequently, in this study, the responses from four cell lines (three human and one mouse) were characterized during an exposure to different predatory bacteria, Bdellovibrio bacteriovorus HD100, Bacteriovorus BY1 and Bacteriovorax stolpii EB1. TNF-α levels were induced in Raw 264.7 mouse macrophage cultures with each predator, but paled in comparison to those obtained with E. coli. This was true even though the latter strain was added at an 11.1-fold lower concentration (p < 0.01). Likewise, E. coli led to a significant (54%) loss in the Raw 264.7 murine macrophage viability while the predatory strains had no impact. Tests with various epithelial cells, including NuLi-1 airway, Caco2, HT29 and T84 colorectal cells, gave similar results, with E. coli inducing IL-8 production. The viabilities of the NuLi-1 and Caco-2 cells were slightly reduced (8%) when exposed to the predators, while T84 viability remained steady. In no cases did the predatory bacteria induce actin rearrangement. These results clearly demonstrate the gentle natures of predatory bacteria and their impacts on human cells.
Collapse
Affiliation(s)
- Ajay K Monnappa
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 44919, South Korea
| | - Wasimul Bari
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 44919, South Korea
| | - Seong Yeol Choi
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 44919, South Korea
| | - Robert J Mitchell
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 44919, South Korea
| |
Collapse
|
34
|
McFarlin BK, Gary MA. Flow cytometry what you see matters: Enhanced clinical detection using image-based flow cytometry. Methods 2016; 112:1-8. [PMID: 27620330 DOI: 10.1016/j.ymeth.2016.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/01/2016] [Accepted: 09/08/2016] [Indexed: 02/08/2023] Open
Abstract
Image-based flow cytometry combines the throughput of traditional flow cytometry with the ability to visually confirm findings and collect novel data that would not be possible otherwise. Since image-based flow cytometry borrows measurement parameters and analysis techniques from microscopy, it is possible to collect unique measures (i.e. nuclear translocation, co-localization, cellular synapse, cellular endocytosis, etc.) that would not be possible with traditional flow cytometry. The ability to collect unique outcomes has led many researchers to develop novel assays for the monitoring and detection of a variety of clinical conditions and diseases. In many cases, investigators have innovated and expanded classical assays to provide new insight regarding clinical conditions and chronic disease. Beyond human clinical applications, image-based flow cytometry has been used to monitor marine biology changes, nano-particles for solar cell production, and particle quality in pharmaceuticals. This review article summarizes work from the major scientists working in the field of image-based flow cytometry.
Collapse
Affiliation(s)
- Brian K McFarlin
- University of North Texas, Applied Physiology Laboratory, United States; University of North Texas, Department of Biological Sciences, United States.
| | - Melody A Gary
- University of North Texas, Applied Physiology Laboratory, United States
| |
Collapse
|
35
|
Lambert C, Lerner TR, Bui NK, Somers H, Aizawa SI, Liddell S, Clark A, Vollmer W, Lovering AL, Sockett RE. Interrupting peptidoglycan deacetylation during Bdellovibrio predator-prey interaction prevents ultimate destruction of prey wall, liberating bacterial-ghosts. Sci Rep 2016; 6:26010. [PMID: 27211869 PMCID: PMC4876506 DOI: 10.1038/srep26010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/22/2016] [Indexed: 11/25/2022] Open
Abstract
The peptidoglycan wall, located in the periplasm between the inner and outer membranes of the cell envelope in Gram-negative bacteria, maintains cell shape and endows osmotic robustness. Predatory Bdellovibrio bacteria invade the periplasm of other bacterial prey cells, usually crossing the peptidoglycan layer, forming transient structures called bdelloplasts within which the predators replicate. Prey peptidoglycan remains intact for several hours, but is modified and then degraded by escaping predators. Here we show predation is altered by deleting two Bdellovibrio N-acetylglucosamine (GlcNAc) deacetylases, one of which we show to have a unique two domain structure with a novel regulatory”plug”. Deleting the deacetylases limits peptidoglycan degradation and rounded prey cell “ghosts” persist after mutant-predator exit. Mutant predators can replicate unusually in the periplasmic region between the peptidoglycan wall and the outer membrane rather than between wall and inner-membrane, yet still obtain nutrients from the prey cytoplasm. Deleting two further genes encoding DacB/PBP4 family proteins, known to decrosslink and round prey peptidoglycan, results in a quadruple mutant Bdellovibrio which leaves prey-shaped ghosts upon predation. The resultant bacterial ghosts contain cytoplasmic membrane within bacteria-shaped peptidoglycan surrounded by outer membrane material which could have promise as “bacterial skeletons” for housing artificial chromosomes.
Collapse
Affiliation(s)
- Carey Lambert
- Centre for Genetics and Genomics, School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Thomas R Lerner
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Nhat Khai Bui
- The Centre for Bacterial Cell Biology, Baddiley Clark Building, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Hannah Somers
- Centre for Genetics and Genomics, School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Shin-Ichi Aizawa
- Department of Life Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima, 727-0023, Japan
| | - Susan Liddell
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Ana Clark
- Centre for Genetics and Genomics, School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Baddiley Clark Building, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Andrew L Lovering
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - R Elizabeth Sockett
- Centre for Genetics and Genomics, School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| |
Collapse
|
36
|
Pérez J, Moraleda-Muñoz A, Marcos-Torres FJ, Muñoz-Dorado J. Bacterial predation: 75 years and counting! Environ Microbiol 2016; 18:766-79. [PMID: 26663201 DOI: 10.1111/1462-2920.13171] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 11/30/2022]
Abstract
The first documented study on bacterial predation was carried out using myxobacteria three quarters of a century ago. Since then, many predatory strains, diverse hunting strategies, environmental consequences and potential applications have been reported by groups all over the world. Now we know that predatory bacteria are distributed in a wide variety of environments and that interactions between predatory and non-predatory populations seem to be the most important factor in bacterial selection and mortality in some ecosystems. Bacterial predation has now been proposed as an evolutionary driving force. The structure and diversity of the predatory bacterial community is beginning to be recognized as an important factor in biodiversity due to its potential role in controlling and modelling bacterial populations in the environment. In this paper, we review the current understanding of bacterial predation, going over the strategies used by the main predatory bacteria to kill their prey. We have also reviewed and integrated the accumulated advances of the last 75 years with the interesting new insights that are provided by the analyses of genomes, predatomes, predatosomes and other comparative genomics studies, focusing on potential applications that derive from all of these areas of study.
Collapse
Affiliation(s)
- Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, E-18071, Granada, Spain
| | - Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, E-18071, Granada, Spain
| | - Francisco Javier Marcos-Torres
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, E-18071, Granada, Spain
| | - José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, E-18071, Granada, Spain
| |
Collapse
|
37
|
Russo R, Chae R, Mukherjee S, Singleton EJ, Occi JL, Kadouri DE, Connell ND. Susceptibility of Select Agents to Predation by Predatory Bacteria. Microorganisms 2015; 3:903-12. [PMID: 27682124 PMCID: PMC5023276 DOI: 10.3390/microorganisms3040903] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/08/2015] [Accepted: 11/13/2015] [Indexed: 01/07/2023] Open
Abstract
Select Agents are microorganisms and toxins considered to be exploitable as biological weapons. Although infections by many Select Agents can be treated by conventional antibiotics, the risk of an emerging or engineered drug resistant strain is of great concern. One group of microorganisms that is showing potential to control drug resistant Gram-negative bacteria are the predatory bacteria from the genera Bdellovibrio spp. and Micavibrio spp. In this study, we have examined the ability of Bdellovibrio bacteriovorus (B. bacteriovorus) strain 109J, HD100 and Micavibrio aeruginosavorus (M. aeruginosavorus) ARL-13 to prey on a variety of Select Agents. Our findings demonstrate that B. bacteriovorus and M. aeruginosavorus are able to prey efficiently on Yersinia pestis and Burkholderia mallei. Modest predation was also measured in co-cultures of B. bacteriovorus and Francisella tularensis. However, neither of the predators showed predation when Burkholderia pseudomallei and Brucella melitensis were used as prey.
Collapse
Affiliation(s)
- Riccardo Russo
- Department of Medicine and the Center for Emerging Pathogens, Rutgers, New Jersey Medical School, Newark, NJ 07101, USA.
| | - Richard Chae
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07101, USA.
| | - Somdatta Mukherjee
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07101, USA.
| | - Eric J Singleton
- Department of Medicine and the Center for Emerging Pathogens, Rutgers, New Jersey Medical School, Newark, NJ 07101, USA.
| | - James L Occi
- Department of Medicine and the Center for Emerging Pathogens, Rutgers, New Jersey Medical School, Newark, NJ 07101, USA.
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07101, USA.
| | - Nancy D Connell
- Department of Medicine and the Center for Emerging Pathogens, Rutgers, New Jersey Medical School, Newark, NJ 07101, USA.
| |
Collapse
|