1
|
Chik JK, Su XB, Klepin S, Raygoza J, Pillus L. Non-canonical chromatin-based functions for the threonine metabolic pathway. Sci Rep 2024; 14:22629. [PMID: 39349514 PMCID: PMC11442984 DOI: 10.1038/s41598-024-72394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/05/2024] [Indexed: 10/02/2024] Open
Abstract
The emerging class of multi-functional proteins known as moonlighters challenges the "one protein, one function" mentality by demonstrating crosstalk between biological pathways that were previously thought to be functionally discrete. Here, we present new links between amino acid metabolism and chromatin regulation, two biological pathways that are critical for cellular and organismal homeostasis. We discovered that the threonine biosynthetic pathway is required for the transcriptional silencing of ribosomal DNA (rDNA) in Saccharomyces cerevisiae. The enzymes in the pathway promote rDNA silencing through distinct mechanisms as a subset of silencing phenotypes was rescued with exogenous threonine. In addition, we found that a key pathway enzyme, homoserine dehydrogenase, promotes DNA repair through a mechanism involving the MRX complex, a major player in DNA double strand break repair. These data further the understanding of enzymes with non-canonical roles, here demonstrated within the threonine biosynthetic pathway, and provide insight into their roles as potential anti-fungal pharmaceutical targets.
Collapse
Affiliation(s)
- Jennifer K Chik
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0347, USA
| | - Xue Bessie Su
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0347, USA
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Stephen Klepin
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0347, USA
| | - Jessica Raygoza
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0347, USA
| | - Lorraine Pillus
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0347, USA.
| |
Collapse
|
2
|
Young TA, Bahnassy S, Abalum TC, Pope EA, Rivera AT, Fernandez AI, Olukoya AO, Mobin D, Ranjit S, Libbey NE, Persaud S, Rozeboom AM, Chaldekas K, Harris BT, Madak-Erdogan Z, Sottnik JL, Sikora MJ, Riggins RB. Glutamate Transport Proteins and Metabolic Enzymes are Poor Prognostic Factors in Invasive Lobular Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.29.615681. [PMID: 39464069 PMCID: PMC11507668 DOI: 10.1101/2024.09.29.615681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Invasive Lobular Carcinoma (ILC) is a subtype of breast cancer characterized by distinct biological features, and limited glucose uptake coupled with increased reliance on amino acid and lipid metabolism. Our prior studies highlight the importance of glutamate as a key regulator of ILC tumor growth and therapeutic response. Here we examine the expression of four key proteins involved in glutamate transport and metabolism - SLC3A2, SLC7A11, GPX4, and GLUD1/2 - in a racially diverse cohort of 72 estrogen receptor-positive (ER+) ILC and 50 ER+ invasive ductal carcinoma, no special type (IDC/NST) patients with primary disease. All four proteins are associated with increased tumor size in ILC, but not IDC/NST, with SLC3A2 also specifically linked to shorter overall survival and the presence of comorbidities in ILC. Notably, GLUD1/2 expression is associated with ER expression in ILC, and is most strongly associated with increased tumor size and stage in Black women with ILC from our cohort and TCGA. We further explore the effects of GLUD1 inhibition in endocrine therapy-resistant ILC cells using the small-molecule inhibitor R162, which reduces ER protein levels, increases reactive oxygen species, and inhibits oxidative phosphorylation. These findings highlight a potentially important role for glutamate metabolism in ILC, particularly for Black women, and position several of these glutamate-handling proteins as potential targets for therapeutic intervention in ILC.
Collapse
Affiliation(s)
- Todd A. Young
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Shaymaa Bahnassy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Theresa C. Abalum
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
- Towson University, Towson, MD 21252
| | - Eden A. Pope
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
- Wake Forest University, Winston-Salem, NC 27109
| | - Amanda Torres Rivera
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Aileen I. Fernandez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520
| | - Ayodeji O. Olukoya
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Dua Mobin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Suman Ranjit
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057
| | - Nicole E. Libbey
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Sonali Persaud
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Aaron M. Rozeboom
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Krysta Chaldekas
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Brent T. Harris
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
- Departments of Neurology and Pathology, Georgetown University Medical Center, Washington, DC 20057
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, Cancer Center at Illinois, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Joseph L. Sottnik
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Matthew J. Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Rebecca B. Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| |
Collapse
|
3
|
Di Nisio E, Danovska S, Condemi L, Cirigliano A, Rinaldi T, Licursi V, Negri R. H3 Lysine 4 Methylation Is Required for Full Activation of Genes Involved in α-Ketoglutarate Availability in the Nucleus of Yeast Cells after Diauxic Shift. Metabolites 2023; 13:metabo13040507. [PMID: 37110165 PMCID: PMC10146420 DOI: 10.3390/metabo13040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
We show that in S. cerevisiae the metabolic diauxic shift is associated with a H3 lysine 4 tri-methylation (H3K4me3) increase which involves a significant fraction of transcriptionally induced genes which are required for the metabolic changes, suggesting a role for histone methylation in their transcriptional regulation. We show that histone H3K4me3 around the start site correlates with transcriptional induction in some of these genes. Among the methylation-induced genes are IDP2 and ODC1, which regulate the nuclear availability of α-ketoglutarate, which, as a cofactor for Jhd2 demethylase, regulates H3K4 tri-methylation. We propose that this feedback circuit could be used to regulate the nuclear α-ketoglutarate pool concentration. We also show that yeast cells adapt to the absence of Jhd2 by decreasing Set1 methylation activity.
Collapse
|
4
|
He F, Yu Q, Wang M, Wang R, Gong X, Ge F, Yu X, Li S. SESAME-catalyzed H3T11 phosphorylation inhibits Dot1-catalyzed H3K79me3 to regulate autophagy and telomere silencing. Nat Commun 2022; 13:7526. [PMID: 36473858 PMCID: PMC9726891 DOI: 10.1038/s41467-022-35182-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The glycolytic enzyme, pyruvate kinase Pyk1 maintains telomere heterochromatin by phosphorylating histone H3T11 (H3pT11), which promotes SIR (silent information regulator) complex binding at telomeres and prevents autophagy-mediated Sir2 degradation. However, the exact mechanism of action for H3pT11 is poorly understood. Here, we report that H3pT11 directly inhibits Dot1-catalyzed H3K79 tri-methylation (H3K79me3) and uncover how this histone crosstalk regulates autophagy and telomere silencing. Mechanistically, Pyk1-catalyzed H3pT11 directly reduces the binding of Dot1 to chromatin and inhibits Dot1-catalyzed H3K79me3, which leads to transcriptional repression of autophagy genes and reduced autophagy. Despite the antagonism between H3pT11 and H3K79me3, they work together to promote the binding of SIR complex at telomeres to maintain telomere silencing. Furthermore, we identify Reb1 as a telomere-associated factor that recruits Pyk1-containing SESAME (Serine-responsive SAM-containing Metabolic Enzyme) complex to telomere regions to phosphorylate H3T11 and prevent the invasion of H3K79me3 from euchromatin into heterochromatin to maintain telomere silencing. Together, these results uncover a histone crosstalk and provide insights into dynamic regulation of silent heterochromatin and autophagy in response to cell metabolism.
Collapse
Affiliation(s)
- Fei He
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062 China
| | - Qi Yu
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062 China
| | - Min Wang
- grid.9227.e0000000119573309Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 China
| | - Rongsha Wang
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062 China
| | - Xuanyunjing Gong
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062 China
| | - Feng Ge
- grid.9227.e0000000119573309Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 China
| | - Xilan Yu
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062 China
| | - Shanshan Li
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062 China
| |
Collapse
|
5
|
Metabolic enzymes function as epigenetic modulators: A Trojan Horse for chromatin regulation and gene expression. Pharmacol Res 2021; 173:105834. [PMID: 34450321 DOI: 10.1016/j.phrs.2021.105834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
Epigenetic modification is a fundamental biological process in living organisms, which has significant impact on health and behavior. Metabolism refers to a set of life-sustaining chemical reactions, including the uptake of nutrients, the subsequent conversion of nutrients into energy or building blocks for organism growth, and finally the clearance of redundant or toxic substances. It is well established that epigenetic modifications govern the metabolic profile of a cell by modulating the expression of metabolic enzymes. Strikingly, almost all the epigenetic modifications require substrates produced by cellular metabolism, and a large proportion of metabolic enzymes can transfer into nucleus to locally produce substrates for epigenetic modification, thereby providing an alternative link between metabolism, epigenetic modification and gene expression. Here, we summarize the recent literature pertinent to metabolic enzymes functioning as epigenetic modulators in the regulation of chromatin architecture and gene expression.
Collapse
|
6
|
Sharma NK, Pal JK. Metabolic Ink Lactate Modulates Epigenomic Landscape: A Concerted Role of Pro-tumor Microenvironment and Macroenvironment During Carcinogenesis. Curr Mol Med 2021; 21:177-181. [PMID: 32436828 DOI: 10.2174/1566524020666200521075252] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 11/22/2022]
Abstract
Tumor heterogeneity is influenced by various factors including genetic, epigenetic and axis of metabolic-epigenomic regulation. In recent years, metabolic-epigenomic reprogramming has been considered as one of the many tumor hallmarks and it appears to be driven by both microenvironment and macroenvironment factors including diet, microbiota and environmental pressures. Epigenetically, histone lysine residues are altered by various post-translational modifications (PTMs) such as acetylation, acylation, methylation and lactylation. Furthermore, lactylation is suggested as a new form of PTM that uses a lactate substrate as a metabolic ink for epigenetic writer enzyme that remodels histone proteins. Therefore, preclinical and clinical attempts are warranted to disrupt the pathway of metabolic-epigenomic reprogramming that will turn pro-tumor microenvironment into an anti-tumor microenvironment. This paper highlights the metabolicepigenomic regulation events including lactylation and its metabolic substrate lactate in the tumor microenvironment.
Collapse
Affiliation(s)
- Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Department of Biotechnology, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra 411033, India
| | - Jayanta K Pal
- Cancer and Translational Research Lab, Department of Biotechnology, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra 411033, India
| |
Collapse
|
7
|
Zhang S, Yu X, Zhang Y, Xue X, Yu Q, Zha Z, Gogol M, Workman JL, Li S. Metabolic regulation of telomere silencing by SESAME complex-catalyzed H3T11 phosphorylation. Nat Commun 2021; 12:594. [PMID: 33500413 PMCID: PMC7838282 DOI: 10.1038/s41467-020-20711-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Telomeres are organized into a heterochromatin structure and maintenance of silent heterochromatin is required for chromosome stability. How telomere heterochromatin is dynamically regulated in response to stimuli remains unknown. Pyruvate kinase Pyk1 forms a complex named SESAME (Serine-responsive SAM-containing Metabolic Enzyme complex) to regulate gene expression by phosphorylating histone H3T11 (H3pT11). Here, we identify a function of SESAME in regulating telomere heterochromatin structure. SESAME phosphorylates H3T11 at telomeres, which maintains SIR (silent information regulator) complex occupancy at telomeres and protects Sir2 from degradation by autophagy. Moreover, SESAME-catalyzed H3pT11 directly represses autophagy-related gene expression to further prevent autophagy-mediated Sir2 degradation. By promoting H3pT11, serine increases Sir2 protein levels and enhances telomere silencing. Loss of H3pT11 leads to reduced Sir2 and compromised telomere silencing during chronological aging. Together, our study provides insights into dynamic regulation of silent heterochromatin by histone modifications and autophagy in response to cell metabolism and aging.
Collapse
Affiliation(s)
- Shihao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Yuan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xiangyan Xue
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Qi Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Zitong Zha
- Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Madelaine Gogol
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| |
Collapse
|
8
|
Espinosa-Cantú A, Cruz-Bonilla E, Noda-Garcia L, DeLuna A. Multiple Forms of Multifunctional Proteins in Health and Disease. Front Cell Dev Biol 2020; 8:451. [PMID: 32587857 PMCID: PMC7297953 DOI: 10.3389/fcell.2020.00451] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/14/2020] [Indexed: 12/23/2022] Open
Abstract
Protein science has moved from a focus on individual molecules to an integrated perspective in which proteins emerge as dynamic players with multiple functions, rather than monofunctional specialists. Annotation of the full functional repertoire of proteins has impacted the fields of biochemistry and genetics, and will continue to influence basic and applied science questions - from the genotype-to-phenotype problem, to our understanding of human pathologies and drug design. In this review, we address the phenomena of pleiotropy, multidomain proteins, promiscuity, and protein moonlighting, providing examples of multitasking biomolecules that underlie specific mechanisms of human disease. In doing so, we place in context different types of multifunctional proteins, highlighting useful attributes for their systematic definition and classification in future research directions.
Collapse
Affiliation(s)
- Adriana Espinosa-Cantú
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, Guanajuato, Mexico
| | - Erika Cruz-Bonilla
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, Guanajuato, Mexico
| | - Lianet Noda-Garcia
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alexander DeLuna
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, Guanajuato, Mexico
| |
Collapse
|
9
|
Proteomic Analysis of Saccharomyces cerevisiae Response to Oxidative Stress Mediated by Cocoa Polyphenols Extract. Molecules 2020; 25:molecules25030452. [PMID: 31973232 PMCID: PMC7037337 DOI: 10.3390/molecules25030452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
The present study addressed the protective effects against oxidative stress (OS) of a cocoa powder extract (CPEX) on the protein expression profile of S. cerevisiae. A proteomic analysis was performed after culture preincubation with CPEX either without stress (−OS) or under stress conditions (+OS) (5 mM of H2O2). LC-MS/MS identified 33 differentially expressed proteins (–OS: 14, +OS: 19) that were included By Gene Ontology analysis in biological processes: biosynthesis of amino acids, carbohydrate metabolism and reactive oxygen species metabolic process. In a gene-knockout strains study, eight proteins were identified as putative candidates for being involved in the protective mechanism of cocoa polyphenols against OS induced by H2O2. CPEX was able to exert its antioxidant activity in yeast mainly through the regulation of: (a) amino acids metabolism proteins by modulating the production of molecules with known antioxidant roles; (b) stress-responsive protein Yhb1, but we were unable to fully understand its down-regulation; (c) protein Prb1, which can act by clipping Histone H3 N-terminal tails that are related to cellular resistance to DNA damaging agents.
Collapse
|
10
|
Mara P, Fragiadakis GS, Gkountromichos F, Alexandraki D. The pleiotropic effects of the glutamate dehydrogenase (GDH) pathway in Saccharomyces cerevisiae. Microb Cell Fact 2018; 17:170. [PMID: 30384856 PMCID: PMC6211499 DOI: 10.1186/s12934-018-1018-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022] Open
Abstract
Ammonium assimilation is linked to fundamental cellular processes that include the synthesis of non-essential amino acids like glutamate and glutamine. In Saccharomyces cerevisiae glutamate can be synthesized from α-ketoglutarate and ammonium through the action of NADP-dependent glutamate dehydrogenases Gdh1 and Gdh3. Gdh1 and Gdh3 are evolutionarily adapted isoforms and cover the anabolic role of the GDH-pathway. Here, we review the role and function of the GDH pathway in glutamate metabolism and we discuss the additional contributions of the pathway in chromatin regulation, nitrogen catabolite repression, ROS-mediated apoptosis, iron deficiency and sphingolipid-dependent actin cytoskeleton modulation in S.cerevisiae. The pleiotropic effects of GDH pathway in yeast biology highlight the importance of glutamate homeostasis in vital cellular processes and reveal new features for conserved enzymes that were primarily characterized for their metabolic capacity. These newly described features constitute insights that can be utilized for challenges regarding genetic engineering of glutamate homeostasis and maintenance of redox balances, biosynthesis of important metabolites and production of organic substrates. We also conclude that the discussed pleiotropic features intersect with basic metabolism and set a new background for further glutamate-dependent applied research of biotechnological interest.
Collapse
Affiliation(s)
- P. Mara
- Department of Chemistry, University of Crete, Voutes University Campus, 71003 Heraklion, Crete Greece
- Present Address: Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA
| | - G. S. Fragiadakis
- Institute of Molecular Biology & Biotechnology, FORTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete Greece
| | - F. Gkountromichos
- Department of Biology, University of Crete, Voutes University Campus, 71003 Heraklion, Crete Greece
- Faculty of Biology, Biocenter, Ludwig-Maximilians-University of Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - D. Alexandraki
- Department of Biology, University of Crete, Voutes University Campus, 71003 Heraklion, Crete Greece
- Institute of Molecular Biology & Biotechnology, FORTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete Greece
| |
Collapse
|
11
|
Azad GK, Swagatika S, Kumawat M, Kumawat R, Tomar RS. Modifying Chromatin by Histone Tail Clipping. J Mol Biol 2018; 430:3051-3067. [DOI: 10.1016/j.jmb.2018.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022]
|
12
|
Korthout T, Poramba-Liyanage DW, van Kruijsbergen I, Verzijlbergen KF, van Gemert FPA, van Welsem T, van Leeuwen F. Decoding the chromatin proteome of a single genomic locus by DNA sequencing. PLoS Biol 2018; 16:e2005542. [PMID: 30005073 PMCID: PMC6059479 DOI: 10.1371/journal.pbio.2005542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/25/2018] [Accepted: 06/26/2018] [Indexed: 12/14/2022] Open
Abstract
Transcription, replication, and repair involve interactions of specific genomic loci with many different proteins. How these interactions are orchestrated at any given location and under changing cellular conditions is largely unknown because systematically measuring protein-DNA interactions at a specific locus in the genome is challenging. To address this problem, we developed Epi-Decoder, a Tag-chromatin immunoprecipitation-Barcode-Sequencing (TAG-ChIP-Barcode-Seq) technology in budding yeast. Epi-Decoder is orthogonal to proteomics approaches because it does not rely on mass spectrometry (MS) but instead takes advantage of DNA sequencing. Analysis of the proteome of a transcribed locus proximal to an origin of replication revealed more than 400 interacting proteins. Moreover, replication stress induced changes in local chromatin proteome composition prior to local origin firing, affecting replication proteins as well as transcription proteins. Finally, we show that native genomic loci can be decoded by efficient construction of barcode libraries assisted by clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9). Thus, Epi-Decoder is an effective strategy to identify and quantify in an unbiased and systematic manner the proteome of an individual genomic locus by DNA sequencing.
Collapse
Affiliation(s)
- Tessy Korthout
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Ila van Kruijsbergen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
13
|
Campero‐Basaldua C, Quezada H, Riego‐Ruíz L, Márquez D, Rojas E, González J, El‐Hafidi M, González A. Diversification of the kinetic properties of yeast NADP-glutamate-dehydrogenase isozymes proceeds independently of their evolutionary origin. Microbiologyopen 2017; 6:e00419. [PMID: 27864882 PMCID: PMC5387307 DOI: 10.1002/mbo3.419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 02/02/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, the ScGDH1 and ScGDH3 encoded glutamate dehydrogenases (NADP-GDHs) catalyze the synthesis of glutamate from ammonium and α-ketoglutarate (α-KG). Previous kinetic characterization showed that these enzymes displayed different allosteric properties and respectively high or low rate of α-KG utilization. Accordingly, the coordinated action of ScGdh1 and ScGdh3, regulated balanced α-KG utilization for glutamate biosynthesis under either fermentative or respiratory conditions, safeguarding energy provision. Here, we have addressed the question of whether there is a correlation between the regulation and kinetic properties of the NADP-GDH isozymes present in S. cerevisiae (ScGdh1 and ScGdh3), Kluyveromyces lactis (KlGdh1), and Lachancea kluyveri (LkGdh1) and their evolutionary history. Our results show that the kinetic properties of K. lactis and L. kluyveri single NADP-GDHs are respectively similar to either ScGDH3 or ScGDH1, which arose from the whole genome duplication event of the S. cerevisiae lineage, although, KlGDH1 and LkGDH1 originated from a GDH clade, through an ancient interspecies hybridization event that preceded the divergence between the Saccharomyces clade and the one containing the genera Kluyveromyces, Lachancea, and Eremothecium. Thus, the kinetic properties which determine the NADP-GDHs capacity to utilize α-KG and synthesize glutamate do not correlate with their evolutionary origin.
Collapse
Affiliation(s)
- Carlos Campero‐Basaldua
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMéxico
| | - Héctor Quezada
- Laboratorio de Inmunología y ProteómicaHospital Infantil de México Federico GómezMexico CityMéxico
| | | | - Dariel Márquez
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMéxico
| | - Erendira Rojas
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMéxico
| | - James González
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMéxico
| | - Mohammed El‐Hafidi
- Departamento de Biomedicina CardiovascularInstituto Nacional de Cardiología Ignacio ChávezMexico CityMéxico
| | - Alicia González
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMéxico
| |
Collapse
|
14
|
|
15
|
Chauhan S, Mandal P, Tomar RS. Biochemical Analysis Reveals the Multifactorial Mechanism of Histone H3 Clipping by Chicken Liver Histone H3 Protease. Biochemistry 2016; 55:5464-82. [PMID: 27586699 DOI: 10.1021/acs.biochem.6b00625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteolytic clipping of histone H3 has been identified in many organisms. Despite several studies, the mechanism of clipping, the substrate specificity, and the significance of this poorly understood epigenetic mechanism are not clear. We have previously reported histone H3 specific proteolytic clipping and a protein inhibitor in chicken liver. However, the sites of clipping are still not known very well. In this study, we attempt to identify clipping sites in histone H3 and to determine the mechanism of inhibition by stefin B protein, a cysteine protease inhibitor. By employing site-directed mutagenesis and in vitro biochemical assays, we have identified three distinct clipping sites in recombinant human histone H3 and its variants (H3.1, H3.3, and H3t). However, post-translationally modified histones isolated from chicken liver and Saccharomyces cerevisiae wild-type cells showed different clipping patterns. Clipping of histone H3 N-terminal tail at three sites occurs in a sequential manner. We have further observed that clipping sites are regulated by the structure of the N-terminal tail as well as the globular domain of histone H3. We also have identified the QVVAG region of stefin B protein to be very crucial for inhibition of the protease activity. Altogether, our comprehensive biochemical studies have revealed three distinct clipping sites in histone H3 and their regulation by the structure of histone H3, histone modifications marks, and stefin B.
Collapse
Affiliation(s)
- Sakshi Chauhan
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research , Bhopal 462066, India
| | - Papita Mandal
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research , Bhopal 462066, India
| | - Raghuvir S Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research , Bhopal 462066, India
| |
Collapse
|