1
|
Ilitchev AI, Giammona MJ, Olivas C, Claud SL, Lazar Cantrell KL, Wu C, Buratto SK, Bowers MT. Hetero-oligomeric Amyloid Assembly and Mechanism: Prion Fragment PrP(106-126) Catalyzes the Islet Amyloid Polypeptide β-Hairpin. J Am Chem Soc 2018; 140:9685-9695. [PMID: 29989407 DOI: 10.1021/jacs.8b05925] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein aggregation is typically attributed to the association of homologous amino acid sequences between monomers of the same protein. Coaggregation of heterogeneous peptide species can occur, however, and is implicated in the proliferation of seemingly unrelated protein diseases in the body. The prion protein fragment (PrP106-126) and human islet amyloid polypeptide (hIAPP) serve as an interesting model of nonhomologous protein assembly as they coaggregate, despite a lack of sequence homology. We have applied ion-mobility mass spectrometry, atomic force microscopy, circular dichroism, and high-level molecular modeling to elucidate this important assembly process. We found that the prion fragment not only forms pervasive hetero-oligomeric aggregates with hIAPP but also promotes the transition of hIAPP into its amyloidogenic β-hairpin conformation. Further, when PrP106-126 was combined with non-amyloidogenic rIAPP, the two formed nearly identical hetero-oligomers to those seen with hIAPP, despite rIAPP containing β-sheet breaking proline substitutions. Additionally, while rIAPP does not natively form the amyloidogenic β-hairpin structure, it did so in the presence of PrP106-126 and underwent a conformational transition to β-sheet in solution. We also find that PrP106-126 forms hetero-oligomers with the IAPP8-20 fragment but not with the "aggregation hot spot" IAPP20-29 fragment. PrP106-126 apparently induces IAPP into a β-hairpin structure within the PrP:IAPP heterodimer complex and then, through ligand exchange, catalytically creates the amyloidogenic β-hairpin dimer of IAPP in significantly greater abundance than IAPP does on its own. This is a new mechanistic model that provides a critical foundation for the detailed study of hetero-oligomerization and prion-like proliferation in amyloid systems.
Collapse
Affiliation(s)
- Alexandre I Ilitchev
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , United States
| | - Maxwell J Giammona
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , United States
| | - Carina Olivas
- Department of Chemistry and Biochemistry , Rowan University , Glassboro , New Jersey 08028 , United States
| | - Sarah L Claud
- Department of Chemistry , Westmont College , Santa Barbara , California 93108 , United States
| | - Kristi L Lazar Cantrell
- Department of Chemistry , Westmont College , Santa Barbara , California 93108 , United States
| | - Chun Wu
- Department of Chemistry and Biochemistry , Rowan University , Glassboro , New Jersey 08028 , United States
| | - Steven K Buratto
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , United States
| | - Michael T Bowers
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , United States
| |
Collapse
|
2
|
Abstract
The concept of a prion as an infectious self-propagating protein isoform was initially proposed to explain certain mammalian diseases. It is now clear that yeast also has heritable elements transmitted via protein. Indeed, the "protein only" model of prion transmission was first proven using a yeast prion. Typically, known prions are ordered cross-β aggregates (amyloids). Recently, there has been an explosion in the number of recognized prions in yeast. Yeast continues to lead the way in understanding cellular control of prion propagation, prion structure, mechanisms of de novo prion formation, specificity of prion transmission, and the biological roles of prions. This review summarizes what has been learned from yeast prions.
Collapse
Affiliation(s)
- Susan W Liebman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA.
| | | |
Collapse
|
3
|
Wagner SC, Roskamp M, Pallerla M, Araghi RR, Schlecht S, Koksch B. Nanoparticle-induced folding and fibril formation of coiled-coil-based model peptides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:1321-1328. [PMID: 20517875 DOI: 10.1002/smll.200902067] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Nanomedicine is a rapidly growing field that has the potential to deliver treatments for many illnesses. However, relatively little is known about the biological risks of nanoparticles. Some studies have shown that nanoparticles can have an impact on the aggregation properties of proteins, including fibril formation. Moreover, these studies also show that the capacity of nanoscale objects to induce or prevent misfolding of the proteins strongly depends on the primary structure of the protein. Herein, light is shed on the role of the peptide primary structure in directing nanoparticle-induced misfolding by means of two model peptides. The design of these peptides is based on the alpha-helical coiled-coil folding motif, but also includes features that enable them to respond to pH changes, thus allowing pH-dependent beta-sheet formation. Previous studies showed that the two peptides differ in the pH range required for beta-sheet folding. Time-dependent circular dichroism spectroscopy and transmission electron microscopy are used to characterize peptide folding and aggregate morphology in the presence of negatively charged gold nanoparticles (AuNPs). Both peptides are found to undergo nanoparticle-induced fibril formation. The determination of binding parameters by isothermal titration calorimetry further reveals that the different propensities of both peptides to form amyloid-like structures in the presence of AuNPs is primarily due to the binding stoichiometry to the AuNPs. Modification of one of the peptide sequences shows that AuNP-induced beta-sheet formation is related to the structural propensity of the primary structure and is not a generic feature of peptide sequences with a sufficiently high binding stoichiometry to the nanoparticles.
Collapse
Affiliation(s)
- Sara C Wagner
- Department of Organic Chemistry, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
4
|
Tanaka M. A protein transformation protocol for introducing yeast prion particles into yeast. Methods Enzymol 2010; 470:681-93. [PMID: 20946831 DOI: 10.1016/s0076-6879(10)70028-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A range of methods for transforming organisms with nucleic acids has been established. However, techniques for introducing proteins, or particularly protein aggregates, into cells are less developed. Here, we introduce a highly efficient protocol for introducing protein aggregates such as prions into yeast. The protein transformation protocol allows one to infect yeast with amyloid fibers of recombinant fragments (Sup-NM) of Sup35p, the protein determinant of the yeast prion state [PSI+], or in vivo Sup35p prions. Infectivity is dependent on the concentration of Sup-NM fibers and approaches approximately 100% at high Sup-NM concentrations. We also describe a method to create distinct conformations of Sup-NM amyloids. Using the protein transformation protocol, infection of yeast with different Sup-NM amyloid conformations leads to distinct [PSI+] strains. This protein transformation procedure is readily adaptable to other prion proteins and makes it possible to bridge in vitro and in vivo studies and greatly helps to elucidate the principles of prion inheritance.
Collapse
Affiliation(s)
- Motomasa Tanaka
- Tanaka Research Unit, RIKEN Brain Science Institute, Hirosawa, Wako, Saitama, Japan
| |
Collapse
|
5
|
Abstract
A short review of the results of molecular modeling of prion disease is presented in this chapter. According to the "one-protein theory" proposed by Prusiner, prion proteins are misfolded naturally occurring proteins, which, on interaction with correctly folded proteins may induce misfolding and propagate the disease, resulting in insoluble amyloid aggregates in cells of affected specimens. Because of experimental difficulties in measurements of origin and growth of insoluble amyloid aggregations in cells, theoretical modeling is often the only one source of information regarding the molecular mechanism of the disease. Replica exchange Monte Carlo simulations presented in this chapter indicate that proteins in the native state, N, on interaction with an energetically higher structure, R, can change their conformation into R and form a dimer, R(2). The addition of another protein in the N state to R(2) may lead to spontaneous formation of a trimer, R(3). These results reveal the molecular basis for a model of prion disease propagation or conformational diseases in general.
Collapse
|
6
|
Maddelein ML. Infectious fold and amyloid propagation in Podospora anserina. Prion 2007; 1:44-7. [PMID: 19164904 PMCID: PMC2633707 DOI: 10.4161/pri.1.1.4083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Revised: 02/23/2007] [Accepted: 02/28/2007] [Indexed: 11/19/2022] Open
Abstract
Amyloid protein aggregation is involved in serious neurodegenerative disorders such as Alzheimer's disease and transmissible encephalopathies. The concept of an infectious protein (prion) being the scrapie agent was successfully validated for several yeast and fungi proteins. Ure2, Sup35 and Rnq1 in Saccharomyces cerevisiae and HET-s in Podospora anserina have been genetically and biochemically identified as prion proteins. Studies on these proteins have revealed critical information on the mechanisms of prions appearance and propagation. The prion phenotype correlates with the aggregation state of these particular proteins. In vitro, the recombinant prion proteins form amyloid fibers characterized by rich beta sheet content. In a previous work on the HET-s prion protein Podospora, we demonstrated the infectivity of HET-s recombinant amyloid aggregates. More recently, the structural analysis of the HET-s prion domain associated with in vivo mutagenesis allowed us to propose a model for the infectious fold of the HET-s prion domain. Further investigations to complete this model are discussed in this review, as are relevant questions about the [Het-s] system of Podospora anserina.
Collapse
Affiliation(s)
- Marie-Lise Maddelein
- CNRS, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Toulouse, France.
| |
Collapse
|
7
|
Patel BK, Liebman SW. "Prion-proof" for [PIN+]: infection with in vitro-made amyloid aggregates of Rnq1p-(132-405) induces [PIN+]. J Mol Biol 2006; 365:773-82. [PMID: 17097676 PMCID: PMC2570204 DOI: 10.1016/j.jmb.2006.10.069] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 10/17/2006] [Accepted: 10/19/2006] [Indexed: 11/29/2022]
Abstract
Prions are self-propagating, infectious protein conformations. The mammalian prion, PrP(Sc), responsible for neurodegenerative diseases like bovine spongiform encephalopathy (BSE; "mad cow" disease) and Creutzfeldt-Jakob's disease, appears to be a beta-sheet-rich amyloid conformation of PrP(c) that converts PrP(c) into PrP(Sc). However, an unequivocal demonstration of "protein-only" infection by PrP(Sc) is still lacking. So far, protein only infection has been proven for three prions, [PSI(+)], [URE3] and [Het-s], all of fungal origin. Considerable evidence supports the hypothesis that another protein, the yeast Rnq1p, can form a prion, [PIN(+)]. While Rnq1p does not lose any known function upon prionization, [PIN(+)] has interesting positive phenotypes: facilitating the appearance and destabilization of other prions as well as the aggregation of polyglutamine extensions of the Huntingtin protein. Here, we polymerize a Gln/Asn-rich recombinant fragment of Rnq1p into beta-sheet-rich amyloid-like aggregates. While the method used for [PSI(+)] and [URE3] infectivity assays did not yield protein-only infection for the Rnq1p aggregates, we did successfully obtain protein-only infection by modifying the protocol. This work proves that [PIN(+)] is a prion mediated by amyloid-like aggregates of Rnq1p, and supports the hypothesis that heterologous prions affect each other's appearance and propagation through interaction of their amyloid-like regions.
Collapse
Affiliation(s)
| | - Susan W Liebman
- Corresponding author, e-mail: , Phone: 312-996-4662, Fax: 312-413-2691
| |
Collapse
|
8
|
Elgersma RC, Meijneke T, Posthuma G, Rijkers DTS, Liskamp RMJ. Self-Assembly of Amylin(20–29) Amide-Bond Derivatives into Helical Ribbons and Peptide Nanotubes rather than Fibrils. Chemistry 2006; 12:3714-25. [PMID: 16528792 DOI: 10.1002/chem.200501374] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Uncontrolled aggregation of proteins or polypeptides can be detrimental for normal cellular processes in healthy organisms. Proteins or polypeptides that form these amyloid deposits differ in their primary sequence but share a common structural motif: the (anti)parallel beta sheet. A well-accepted approach for interfering with beta-sheet formation is the design of soluble beta-sheet peptides to disrupt the hydrogen-bonding network; this ultimately leads to the disassembly of the aggregates or fibrils. Here, we describe the synthesis, spectroscopic analysis, and aggregation behavior, imaged by electron microscopy, of several backbone-modified amylin(20-29) derivatives. It was found that these amylin derivatives were not able to form fibrils and to some extent were able to inhibit fibril growth of native amylin(20-29). However, two of the amylin peptides were able to form large supramolecular assemblies, like helical ribbons and peptide nanotubes, in which beta-sheet formation was clearly absent. This was quite unexpected since these peptides have been designed as soluble beta-sheet breakers for disrupting the characteristic hydrogen-bonding network of (anti)parallel beta sheets. The increased hydrophobicity and the presence of essential amino acid side chains in the newly designed amylin(20-29) derivatives were found to be the driving force for self-assembly into helical ribbons and peptide nanotubes. This example of controlled and desired peptide aggregation may be a strong impetus for research on bionanomaterials in which special shapes and assemblies are the focus of interest.
Collapse
Affiliation(s)
- Ronald C Elgersma
- Department of Medicinal Chemistry, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
Liebman SW, Mastrianni JA. Tracking the elusive prion. Trends Mol Med 2006; 11:439-41. [PMID: 16150640 DOI: 10.1016/j.molmed.2005.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 08/10/2005] [Accepted: 08/26/2005] [Indexed: 11/19/2022]
Abstract
Prion diseases are infectious neurodegenerative fatal disorders. There are currently no treatments or cures. Considerable evidence suggests that the infectious agent is an abnormally folded protein that promotes or seeds its normal cellular isoform to fold into the infectious form. However, the precise mechanism and factors involved in this conversion remain unknown. A major stumbling block to further investigation has been the inability to seed the formation of new infectious material in vitro. Now, however, infectious material has been generated in a cell-free system. Although this system uses cell lysate rather than pure proteins, it nevertheless opens the door to the elucidation of targets of intervention and the development of useful diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Susan W Liebman
- Department of Biological Sciences, The University of Illinois at Chicago, Chicago, IL 60670, USA.
| | | |
Collapse
|
10
|
Affiliation(s)
- Gerald R Fink
- Whitehead Institute and Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, MA 02142, USA.
| |
Collapse
|
11
|
King CY, Diaz-Avalos R. Protein-only transmission of three yeast prion strains. Nature 2004; 428:319-23. [PMID: 15029195 DOI: 10.1038/nature02391] [Citation(s) in RCA: 381] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Accepted: 02/02/2004] [Indexed: 11/09/2022]
Abstract
Key questions regarding the molecular nature of prions are how different prion strains can be propagated by the same protein and whether they are only protein. Here we demonstrate the protein-only nature of prion strains in a yeast model, the [PSI] genetic element that enhances the read-through of nonsense mutations in the yeast Saccharomyces cerevisiae. Infectious fibrous aggregates containing a Sup35 prion-determining amino-terminal fragment labelled with green fluorescent protein were purified from yeast harbouring distinctive prion strains. Using the infectious aggregates as 'seeds', elongated fibres were generated in vitro from the bacterially expressed labelled prion protein. De novo generation of strain-specific [PSI] infectivity was demonstrated by introducing sheared fibres into uninfected yeast hosts. The cross-sectional morphology of the elongated fibres generated in vitro was indistinguishable from that of the short yeast seeds, as visualized by electron microscopy. Electron diffraction of the long fibres showed the 4.7 A spacing characteristic of the cross-beta structure of amyloids. The fact that the amyloid fibres nucleated in vitro propagate the strain-specific infectivity of the yeast seeds implies that the heritable information of distinct prion strains must be encoded by different, self-propagating cross-beta folding patterns of the same prion protein.
Collapse
Affiliation(s)
- Chih-Yen King
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA.
| | | |
Collapse
|
12
|
|
13
|
Tanaka M, Chien P, Naber N, Cooke R, Weissman JS. Conformational variations in an infectious protein determine prion strain differences. Nature 2004; 428:323-8. [PMID: 15029196 DOI: 10.1038/nature02392] [Citation(s) in RCA: 640] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Accepted: 02/05/2004] [Indexed: 11/10/2022]
Abstract
A remarkable feature of prion biology is the strain phenomenon wherein prion particles apparently composed of the same protein lead to phenotypically distinct transmissible states. To reconcile the existence of strains with the 'protein-only' hypothesis of prion transmission, it has been proposed that a single protein can misfold into multiple distinct infectious forms, one for each different strain. Several studies have found correlations between strain phenotypes and conformations of prion particles; however, whether such differences cause or are simply a secondary manifestation of prion strains remains unclear, largely due to the difficulty of creating infectious material from pure protein. Here we report a high-efficiency protocol for infecting yeast with the [PSI+] prion using amyloids composed of a recombinant Sup35 fragment (Sup-NM). Using thermal stability and electron paramagnetic resonance spectroscopy, we demonstrate that Sup-NM amyloids formed at different temperatures adopt distinct, stably propagating conformations. Infection of yeast with these different amyloid conformations leads to different [PSI+] strains. These results establish that Sup-NM adopts an infectious conformation before entering the cell--fulfilling a key prediction of the prion hypothesis--and directly demonstrate that differences in the conformation of the infectious protein determine prion strain variation.
Collapse
Affiliation(s)
- Motomasa Tanaka
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California-San Francisco, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
14
|
Lundberg P, Magzoub M, Lindberg M, Hällbrink M, Jarvet J, Eriksson LEG, Langel U, Gräslund A. Cell membrane translocation of the N-terminal (1-28) part of the prion protein. Biochem Biophys Res Commun 2002; 299:85-90. [PMID: 12435392 DOI: 10.1016/s0006-291x(02)02595-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The N-terminal (1-28) part of the mouse prion protein (PrP) is a cell penetrating peptide, capable of transporting large hydrophilic cargoes through a cell membrane. Confocal fluorescence microscopy shows that it transports the protein avidin (67kDa) into several cell lines. The (1-28) peptide has a strong tendency for aggregation and beta-structure formation, particularly in interaction with negatively charged phospholipid membranes. The findings have implications for how prion proteins with uncleaved signal peptides in the N-termini may enter into cells, which is important for infection. The secondary structure conversion into beta-structure may be relevant as a seed for the conversion into the scrapie (PrP(Sc)) form of the protein and its amyloidic transformation.
Collapse
Affiliation(s)
- P Lundberg
- Department of Neurochemistry and Neurotoxicology, Stockholm University, SE-106 91, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|