1
|
Mukhopadhyay P, Miller H, Stoja A, Bishop AJR. Approaches for Mapping and Analysis of R-loops. Curr Protoc 2024; 4:e1037. [PMID: 38666626 DOI: 10.1002/cpz1.1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
R-loops are nucleic acid structures composed of a DNA:RNA hybrid with a displaced non-template single-stranded DNA. Current approaches to identify and map R-loop formation across the genome employ either an antibody targeted against R-loops (S9.6) or a catalytically inactivated form of RNase H1 (dRNH1), a nuclease that can bind and resolve DNA:RNA hybrids via RNA exonuclease activity. This overview article outlines several ways to map R-loops using either methodology, explaining the differences and similarities among the approaches. Bioinformatic analysis of R-loops involves several layers of quality control and processing before visualizing the data. This article provides resources and tools that can be used to accurately process R-loop mapping data and explains the advantages and disadvantages of the resources as compared to one another. © 2024 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Pramiti Mukhopadhyay
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas
| | | | - Aiola Stoja
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas
| |
Collapse
|
2
|
Du P, Hu J, Du M, Gao X, Yang W, Zhang C, Zou X, Wang X, Li W. Interaction of a bacterial non-classically secreted RNase HⅠ with a citrus B-Box zinc finger protein delays flowering in Arabidopsis thaliana and suppresses the expression of FLOWERING LOCUS T. Microbiol Res 2024; 278:127541. [PMID: 37972521 DOI: 10.1016/j.micres.2023.127541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Ribonuclease HI (RNase HI) is well conserved across prokaryotes and eukaryotes, and has long been known to localize in the nucleic acid-containing cellular compartments for acting as an R-loop eraser but has never been determined to be a secreted protein. "Candidatus Liberibacter asiaticus" (CLas) is a fastidious α-proteobacterium that causes Huanglongbing (HLB), a devastating citrus disease often associated with flowering out of season. In this study, using the SecretomeP program coupled with an Escherichia coli-based alkaline phosphatase assay, we demonstrated that the CLas RNase HI (LasRNHⅠ) was a non-classically secreted protein. Further experiments identified that LasRNHⅠ could interact with a citrus B-box zinc finger protein CsBBX28 in the plant nucleolus. The in vitro assays indicated that CsBBX28 dramatically enhanced the R-loop-degrading activity of LasRNHⅠ. Remarkably, co-expression of CsBBX28 and LasRNHⅠ in Arabidopsis thaliana led to a much later flowering time than that of wild-type Arabidopsis, as well as that of the transgenic A. thaliana expressing only CsBBX28 or LasRNHⅠ, and lastingly and significantly repressed transcription of FLOWERING LOCUS T (FT), a floral pathway integrator. Similarly, ectopic expression of LasRNHⅠ in citrus greatly reduced the transcription level of FT. The data together disclosed the extracellular secretion of LasRNHⅠ, and that LasRNHⅠ physically interacted with CsBBX28 and served as a flowering repressor through suppressing the FT expression, suggesting a novel role of RNase HI in the bacteria interacting with the host plants.
Collapse
Affiliation(s)
- Peixiu Du
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, PR China; Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Junxia Hu
- Department of Plant Protection, Beijing University of Agriculture, Beijing 102206, PR China
| | - Meixia Du
- Citrus Research Institute, Southwest University, Chongqing 400716, PR China
| | - Xiaoyu Gao
- Department of Plant Protection, Beijing University of Agriculture, Beijing 102206, PR China
| | - Wendi Yang
- Department of Plant Protection, Beijing University of Agriculture, Beijing 102206, PR China
| | - Chao Zhang
- College of Life Science, Hebei Agricultural University, Baoding 071001, PR China
| | - Xiuping Zou
- Citrus Research Institute, Southwest University, Chongqing 400716, PR China
| | - Xuefeng Wang
- Citrus Research Institute, Southwest University, Chongqing 400716, PR China
| | - Weimin Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, PR China; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Department of Plant Protection, Beijing University of Agriculture, Beijing 102206, PR China.
| |
Collapse
|
3
|
Martin RM, de Almeida MR, Gameiro E, de Almeida SF. Live-cell imaging unveils distinct R-loop populations with heterogeneous dynamics. Nucleic Acids Res 2023; 51:11010-11023. [PMID: 37819055 PMCID: PMC10639055 DOI: 10.1093/nar/gkad812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
We have developed RHINO, a genetically encoded sensor that selectively binds RNA:DNA hybrids enabling live-cell imaging of cellular R-loops. RHINO comprises a tandem array of three copies of the RNA:DNA hybrid binding domain of human RNase H1 connected by optimized linker segments and fused to a fluorescent protein. This tool allows the measurement of R-loop abundance and dynamics in live cells with high specificity and sensitivity. Using RHINO, we provide a kinetic framework for R-loops at nucleoli, telomeres and protein-coding genes. Our findings demonstrate that R-loop dynamics vary significantly across these regions, potentially reflecting the distinct roles R-loops play in different chromosomal contexts. RHINO is a powerful tool for investigating the role of R-loops in cellular processes and their contribution to disease development and progression.
Collapse
Affiliation(s)
- Robert M Martin
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Madalena R de Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Eduardo Gameiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Sérgio F de Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
4
|
Regulation of Heat Stress in Physcomitrium (Physcomitrella) patens Provides Novel Insight into the Functions of Plant RNase H1s. Int J Mol Sci 2022; 23:ijms23169270. [PMID: 36012542 PMCID: PMC9409398 DOI: 10.3390/ijms23169270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/02/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
RNase H1s are associated with growth and development in both plants and animals, while the roles of RNase H1s in bryophytes have been rarely reported. Our previous data found that PpRNH1A, a member of the RNase H1 family, could regulate the development of Physcomitrium (Physcomitrella) patens by regulating the auxin. In this study, we further investigated the biological functions of PpRNH1A and found PpRNH1A may participate in response to heat stress by affecting the numbers and the mobilization of lipid droplets and regulating the expression of heat-related genes. The expression level of PpRNH1A was induced by heat stress (HS), and we found that the PpRNH1A overexpression plants (A-OE) were more sensitive to HS. At the same time, A-OE plants have a higher number of lipid droplets but with less mobility in cells. Consistent with the HS sensitivity phenotype in A-OE plants, transcriptomic analysis results indicated that PpRNH1A is involved in the regulation of expression of heat-related genes such as DNAJ and DNAJC. Taken together, these results provide novel insight into the functions of RNase H1s.
Collapse
|
5
|
Brickner JR, Garzon JL, Cimprich KA. Walking a tightrope: The complex balancing act of R-loops in genome stability. Mol Cell 2022; 82:2267-2297. [PMID: 35508167 DOI: 10.1016/j.molcel.2022.04.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 12/14/2022]
Abstract
Although transcription is an essential cellular process, it is paradoxically also a well-recognized cause of genomic instability. R-loops, non-B DNA structures formed when nascent RNA hybridizes to DNA to displace the non-template strand as single-stranded DNA (ssDNA), are partially responsible for this instability. Yet, recent work has begun to elucidate regulatory roles for R-loops in maintaining the genome. In this review, we discuss the cellular contexts in which R-loops contribute to genomic instability, particularly during DNA replication and double-strand break (DSB) repair. We also summarize the evidence that R-loops participate as an intermediate during repair and may influence pathway choice to preserve genomic integrity. Finally, we discuss the immunogenic potential of R-loops and highlight their links to disease should they become pathogenic.
Collapse
Affiliation(s)
- Joshua R Brickner
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jada L Garzon
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Abstract
R-loops forming inadvertently during transcription can threaten genome stability, but R-loops are also formed intentionally, as a means of regulating transcription and other aspects of DNA metabolism. The study of R-loops in mitochondria is in its infancy, and yet there is already clear evidence that they are predominantly located in the major regulatory region of the mammalian mitochondrial genome. Here, we describe how mitochondrial R-loops have been characterized to date, with the emphasis on the problems of their being extremely labile, and how to minimize their loss during extraction. The oft-overlooked issues of RNA-DNA hybrids not being synonymous with R-loops, and adventitious RNA hybridization to DNA, are tackled head on; and possible new approaches are described and placed in the context of future research lines that could reveal the detailed roles of R-loops in the metabolism of mitochondrial DNA.
Collapse
Affiliation(s)
- Ian J Holt
- Biodonostia Health Research Institute, San Sebastián, Spain.
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), Madrid, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Universidad de País Vasco, Bilbao, Spain.
| |
Collapse
|
7
|
Bohálová N, Dobrovolná M, Brázda V, Bidula S. Conservation and over-representation of G-quadruplex sequences in regulatory regions of mitochondrial DNA across distinct taxonomic sub-groups. Biochimie 2021; 194:28-34. [PMID: 34942301 DOI: 10.1016/j.biochi.2021.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 12/14/2021] [Indexed: 11/02/2022]
Abstract
G-quadruplexes have important regulatory roles in the nuclear genome but their distribution and potential roles in mitochondrial DNA (mtDNA) are poorly understood. We analysed 11883 mtDNA sequences from 18 taxonomic sub-groups and identified their frequency and location within mtDNA. Large differences in both the frequency and number of putative quadruplex-forming sequences (PQS) were observed amongst all the organisms and PQS frequency was negatively correlated with an increase in evolutionary age. PQS were over-represented in the 3'UTRs, D-loops, replication origins, and stem loops, indicating regulatory roles for quadruplexes in mtDNA. Variations of the G-quadruplex-forming sequence in the conserved sequence block II (CSBII) region of the human D-loop were conserved amongst other mammals, amphibians, birds, reptiles, and fishes. This D-loop PQS was conserved in the duplicated control regions of some birds and reptiles, indicating its importance to mitochondrial function. The guanine tracts in these PQS also displayed significant length heterogeneity and the length of these guanine tracts were generally longest in bird mtDNA. This information provides further insights into how G4s may contribute to the regulation and function of mtDNA and acts as a database of information for future studies investigating mitochondrial G4s in organisms other than humans.
Collapse
Affiliation(s)
- Natália Bohálová
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michaela Dobrovolná
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic
| | - Stefan Bidula
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
8
|
Guo H, Golczer G, Wittner BS, Langenbucher A, Zachariah M, Dubash TD, Hong X, Comaills V, Burr R, Ebright RY, Horwitz E, Vuille JA, Hajizadeh S, Wiley DF, Reeves BA, Zhang JM, Niederhoffer KL, Lu C, Wesley B, Ho U, Nieman LT, Toner M, Vasudevan S, Zou L, Mostoslavsky R, Maheswaran S, Lawrence MS, Haber DA. NR4A1 regulates expression of immediate early genes, suppressing replication stress in cancer. Mol Cell 2021; 81:4041-4058.e15. [PMID: 34624217 PMCID: PMC8549465 DOI: 10.1016/j.molcel.2021.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/23/2021] [Accepted: 09/12/2021] [Indexed: 01/14/2023]
Abstract
Deregulation of oncogenic signals in cancer triggers replication stress. Immediate early genes (IEGs) are rapidly and transiently expressed following stressful signals, contributing to an integrated response. Here, we find that the orphan nuclear receptor NR4A1 localizes across the gene body and 3' UTR of IEGs, where it inhibits transcriptional elongation by RNA Pol II, generating R-loops and accessible chromatin domains. Acute replication stress causes immediate dissociation of NR4A1 and a burst of transcriptionally poised IEG expression. Ectopic expression of NR4A1 enhances tumorigenesis by breast cancer cells, while its deletion leads to massive chromosomal instability and proliferative failure, driven by deregulated expression of its IEG target, FOS. Approximately half of breast and other primary cancers exhibit accessible chromatin domains at IEG gene bodies, consistent with this stress-regulatory pathway. Cancers that have retained this mechanism in adapting to oncogenic replication stress may be dependent on NR4A1 for their proliferation.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Antineoplastic Agents/pharmacology
- Binding Sites
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Proliferation/drug effects
- Chromatin Assembly and Disassembly
- Female
- Gene Expression Regulation, Neoplastic
- Genomic Instability
- HEK293 Cells
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Indoles/pharmacology
- MCF-7 Cells
- Mice, Inbred NOD
- Mice, SCID
- Mitosis/drug effects
- Neoplastic Cells, Circulating/drug effects
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Nuclear Receptor Subfamily 4, Group A, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Phenylacetates/pharmacology
- Proto-Oncogene Proteins c-fos/genetics
- Proto-Oncogene Proteins c-fos/metabolism
- R-Loop Structures
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- Signal Transduction
- Transcription Elongation, Genetic
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Hongshan Guo
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Gabriel Golczer
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Ben S Wittner
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | | | | | - Xin Hong
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | | - Risa Burr
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | | - Elad Horwitz
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Joanna A Vuille
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | - Devon F Wiley
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | - Jia-Min Zhang
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | - Chenyue Lu
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Benjamin Wesley
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Uyen Ho
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Linda T Nieman
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Mehmet Toner
- Center for Bioengineering in Medicine and Shriners Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shobha Vasudevan
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Raul Mostoslavsky
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
9
|
Menger KE, Rodríguez-Luis A, Chapman J, Nicholls TJ. Controlling the topology of mammalian mitochondrial DNA. Open Biol 2021; 11:210168. [PMID: 34547213 PMCID: PMC8455175 DOI: 10.1098/rsob.210168] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genome of mitochondria, called mtDNA, is a small circular DNA molecule present at thousands of copies per human cell. MtDNA is packaged into nucleoprotein complexes called nucleoids, and the density of mtDNA packaging affects mitochondrial gene expression. Genetic processes such as transcription, DNA replication and DNA packaging alter DNA topology, and these topological problems are solved by a family of enzymes called topoisomerases. Within mitochondria, topoisomerases are involved firstly in the regulation of mtDNA supercoiling and secondly in disentangling interlinked mtDNA molecules following mtDNA replication. The loss of mitochondrial topoisomerase activity leads to defects in mitochondrial function, and variants in the dual-localized type IA topoisomerase TOP3A have also been reported to cause human mitochondrial disease. We review the current knowledge on processes that alter mtDNA topology, how mtDNA topology is modulated by the action of topoisomerases, and the consequences of altered mtDNA topology for mitochondrial function and human health.
Collapse
Affiliation(s)
- Katja E. Menger
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Alejandro Rodríguez-Luis
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - James Chapman
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Thomas J. Nicholls
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
10
|
Cheng L, Wang W, Yao Y, Sun Q. Mitochondrial RNase H1 activity regulates R-loop homeostasis to maintain genome integrity and enable early embryogenesis in Arabidopsis. PLoS Biol 2021; 19:e3001357. [PMID: 34343166 PMCID: PMC8330923 DOI: 10.1371/journal.pbio.3001357] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022] Open
Abstract
Plant mitochondrial genomes undergo frequent homologous recombination (HR). Ectopic HR activity is inhibited by the HR surveillance pathway, but the underlying regulatory mechanism is unclear. Here, we show that the mitochondrial RNase H1 AtRNH1B impairs the formation of RNA:DNA hybrids (R-loops) and participates in the HR surveillance pathway in Arabidopsis thaliana. AtRNH1B suppresses ectopic HR at intermediate-sized repeats (IRs) and thus maintains mitochondrial DNA (mtDNA) replication. The RNase H1 AtRNH1C is restricted to the chloroplast; however, when cells lack AtRNH1B, transport of chloroplast AtRNH1C into the mitochondria secures HR surveillance, thus ensuring the integrity of the mitochondrial genome and allowing embryogenesis to proceed. HR surveillance is further regulated by the single-stranded DNA-binding protein ORGANELLAR SINGLE-STRANDED DNA BINDING PROTEIN1 (OSB1), which decreases the formation of R-loops. This study uncovers a facultative dual targeting mechanism between organelles and sheds light on the roles of RNase H1 in organellar genome maintenance and embryogenesis. This study clarifies the function of mitochondrial RNase H1 in genome stability and early embryogenesis in plants, and shows that mitochondrial R-loops are involved in homologous recombination surveillance of mtDNA. Facultative re-targeting of the chloroplast RNase H1 protein to mitochondria, in response to cellular conditions, can help guarantee mitochondrial RNase H1 activity.
Collapse
Affiliation(s)
- Lingling Cheng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenjie Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yao Yao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
11
|
Renaudin X, Lee M, Shehata M, Surmann EM, Venkitaraman AR. BRCA2 deficiency reveals that oxidative stress impairs RNaseH1 function to cripple mitochondrial DNA maintenance. Cell Rep 2021; 36:109478. [PMID: 34348152 PMCID: PMC8356021 DOI: 10.1016/j.celrep.2021.109478] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 06/16/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023] Open
Abstract
Oxidative stress is a ubiquitous cellular challenge implicated in aging, neurodegeneration, and cancer. By studying pathogenic mutations in the tumor suppressor BRCA2, we identify a general mechanism by which oxidative stress restricts mitochondrial (mt)DNA replication. BRCA2 inactivation induces R-loop accumulation in the mtDNA regulatory region and diminishes mtDNA replication initiation. In BRCA2-deficient cells, intracellular reactive oxygen species (ROS) are elevated, and ROS scavengers suppress the mtDNA defects. Conversely, wild-type cells exposed to oxidative stress by pharmacologic or genetic manipulation phenocopy these defects. Mechanistically, we find that 8-oxoguanine accumulation in mtDNA caused by oxidative stress suffices to impair recruitment of the mitochondrial enzyme RNaseH1 to sites of R-loop accrual, restricting mtDNA replication initiation. Thus, oxidative stress impairs RNaseH1 function to cripple mtDNA maintenance. Our findings highlight a molecular mechanism that links oxidative stress to mitochondrial dysfunction and is elicited by the inactivation of genes implicated in neurodegeneration and cancer. BRCA2-deficient cells accumulate mtDNA R-loops due to oxidative stress This stress creates 8-oxoguanine lesions impairing RNaseH1 recruitment to mtDNA RNaseH1 impairment triggers R-loop formation and restricts mtDNA replication Other sources of oxidative stress also cripple mtDNA maintenance via this mechanism
Collapse
Affiliation(s)
- Xavier Renaudin
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Miyoung Lee
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Mona Shehata
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Eva-Maria Surmann
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Ashok R Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK.
| |
Collapse
|
12
|
Friedman Y, Hizi A, Avni D, Bakhanashvili M. Mitochondrial matrix-localized p53 participates in degradation of mitochondrial RNAs. Mitochondrion 2021; 58:200-212. [PMID: 33775872 DOI: 10.1016/j.mito.2021.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 11/18/2022]
Abstract
Mitochondrial RNA degradation plays an important role in maintenance of the mitochondria genetic integrity. Mitochondrial localization of p53 was observed in non-stressed and stressed cells. p53, as an RNA-binding protein, exerts 3'→5' exoribonuclease activity. The data suggest that in non-stressed cells, mitochondrial matrix-localized p53, with exoribonuclease activity, may play a housekeeping positive role. p53, through restriction the formation of new RNA/DNA hybrid and processing R-loop, might serve as mitochondrial R-loop suppressor. Conversely, stress-induced matrix-p53 decreases the amount of mitochondrial single-stranded RNA transcripts (including polyA- and non-polyA RNAs), thereby leading to the decline in the amount of mitochondria-encoded oxidative phosphorylation components.
Collapse
Affiliation(s)
- Yael Friedman
- Infectious Diseases Unit, Sheba Medical Center, Tel-Hashomer 5265601, Israel
| | - Amnon Hizi
- Department of Cellular and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Dror Avni
- Lab. Mol. Cell Biology, Center for Cancer Research & Dep. of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
| | - Mary Bakhanashvili
- Infectious Diseases Unit, Sheba Medical Center, Tel-Hashomer 5265601, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
13
|
González de Cózar JM, Carretero-Junquera M, Ciesielski GL, Miettinen SM, Varjosalo M, Kaguni LS, Dufour E, Jacobs HT. A second hybrid-binding domain modulates the activity of Drosophila ribonuclease H1. J Biochem 2020; 168:515-533. [PMID: 32589740 PMCID: PMC7657459 DOI: 10.1093/jb/mvaa067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/15/2020] [Indexed: 11/14/2022] Open
Abstract
In eukaryotes, ribonuclease H1 (RNase H1) is involved in the processing and removal of RNA/DNA hybrids in both nuclear and mitochondrial DNA. The enzyme comprises a C-terminal catalytic domain and an N-terminal hybrid-binding domain (HBD), separated by a linker of variable length, 115 amino acids in Drosophila melanogaster (Dm). Molecular modelling predicted this extended linker to fold into a structure similar to the conserved HBD. Based on a deletion series, both the catalytic domain and the conserved HBD were required for high-affinity binding to heteroduplex substrates, while loss of the novel HBD led to an ∼90% drop in Kcat with a decreased KM, and a large increase in the stability of the RNA/DNA hybrid-enzyme complex, supporting a bipartite-binding model in which the second HBD facilitates processivity. Shotgun proteomics following in vivo cross-linking identified single-stranded DNA-binding proteins from both nuclear and mitochondrial compartments, respectively RpA-70 and mtSSB, as prominent interaction partners of Dm RNase H1. However, we were not able to document direct and stable interactions with mtSSB when the proteins were co-overexpressed in S2 cells, and functional interactions between them in vitro were minor.
Collapse
Affiliation(s)
| | | | - Grzegorz L Ciesielski
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL 36117, USA
| | - Sini M Miettinen
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Laurie S Kaguni
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Eric Dufour
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
| | - Howard T Jacobs
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
| |
Collapse
|
14
|
|
15
|
Reyes A, Rusecka J, Tońska K, Zeviani M. RNase H1 Regulates Mitochondrial Transcription and Translation via the Degradation of 7S RNA. Front Genet 2020; 10:1393. [PMID: 32082360 PMCID: PMC7006045 DOI: 10.3389/fgene.2019.01393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/19/2019] [Indexed: 02/02/2023] Open
Abstract
RNase H1 is able to recognize DNA/RNA heteroduplexes and to degrade their RNA component. As a consequence, it has been implicated in different aspects of mtDNA replication such as primer formation, primer removal, and replication termination, and significant differences have been reported between control and mutant RNASEH1 skin fibroblasts from patients. However, neither mtDNA depletion nor the presence of deletions have been described in skin fibroblasts while still presenting signs of mitochondrial dysfunction (lower mitochondrial membrane potential, reduced oxygen consumption, slow growth in galactose). Here, we show that RNase H1 has an effect on mtDNA transcripts, most likely through the regulation of 7S RNA and other R-loops. The observed effect on both mitochondrial mRNAs and 16S rRNA results in decreased mitochondrial translation and subsequently mitochondrial dysfunction in cells carrying mutations in RNASEH1.
Collapse
Affiliation(s)
- Aurelio Reyes
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom,*Correspondence: Aurelio Reyes, ; Massimo Zeviani,
| | - Joanna Rusecka
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Tońska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom,*Correspondence: Aurelio Reyes, ; Massimo Zeviani,
| |
Collapse
|
16
|
Matkarimov BT, Saparbaev MK. DNA Repair and Mutagenesis in Vertebrate Mitochondria: Evidence for Asymmetric DNA Strand Inheritance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:77-100. [DOI: 10.1007/978-3-030-41283-8_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Holt IJ. The mitochondrial R-loop. Nucleic Acids Res 2019; 47:5480-5489. [PMID: 31045202 PMCID: PMC6582354 DOI: 10.1093/nar/gkz277] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/11/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Abstract
The DNA in mitochondria contributes essential components of the organelle’s energy producing machinery that is essential for life. In 1971, many mitochondrial DNA molecules were found to have a third strand of DNA that maps to a region containing critical regulatory elements for transcription and replication. Forty-five years later, a third strand of RNA in the same region has been reported. This mitochondrial R-loop is present on thousands of copies of mitochondrial DNA per cell making it potentially the most abundant R-loop in nature. Here, I assess the discovery of the mitochondrial R-loop, discuss why it remained unrecognized for almost half a century and propose for it central roles in the replication, organization and expression of mitochondrial DNA, which if compromised can lead to disease states.
Collapse
Affiliation(s)
- Ian J Holt
- Biodonostia Health Research Institute, 20014 San Sebastián, Spain & IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK.,CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), Madrid, Spain
| |
Collapse
|
18
|
Moriyama M, Koshiba T, Ichinohe T. Influenza A virus M2 protein triggers mitochondrial DNA-mediated antiviral immune responses. Nat Commun 2019; 10:4624. [PMID: 31604929 PMCID: PMC6789137 DOI: 10.1038/s41467-019-12632-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/23/2019] [Indexed: 01/06/2023] Open
Abstract
Cytosolic mitochondrial DNA (mtDNA) activates cGAS-mediated antiviral immune responses, but the mechanism by which RNA viruses stimulate mtDNA release remains unknown. Here we show that viroporin activity of influenza virus M2 or encephalomyocarditis virus (EMCV) 2B protein triggers translocation of mtDNA into the cytosol in a MAVS-dependent manner. Although influenza virus-induced cytosolic mtDNA stimulates cGAS- and DDX41-dependent innate immune responses, the nonstructural protein 1 (NS1) of influenza virus associates with mtDNA to evade the STING-dependent antiviral immunity. The STING-dependent antiviral signaling is amplified in neighboring cells through gap junctions. In addition, we find that STING-dependent recognition of influenza virus is essential for limiting virus replication in vivo. Our results show a mechanism by which influenza virus stimulates mtDNA release and highlight the importance of DNA sensing pathway in limiting influenza virus replication. Cytosolic mitochondrial DNA (mtDNA) plays a role in innate antiviral immunity but how this is triggered during infection remains unclear. Here, the authors provide evidence that the Influenza virus protein M2 stimulates translocation of mtDNA into the cytosol in a MAVS-dependent manner.
Collapse
Affiliation(s)
- Miyu Moriyama
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan.,Department of Chemistry, Faculty of Science, Fukuoka University, Jonan-ku, Fukuoka, 814-0180, Japan.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Takumi Koshiba
- Department of Chemistry, Faculty of Science, Fukuoka University, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Takeshi Ichinohe
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
19
|
Billard P, Poncet DA. Replication Stress at Telomeric and Mitochondrial DNA: Common Origins and Consequences on Ageing. Int J Mol Sci 2019; 20:ijms20194959. [PMID: 31597307 PMCID: PMC6801922 DOI: 10.3390/ijms20194959] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/12/2022] Open
Abstract
Senescence is defined as a stress-induced durable cell cycle arrest. We herein revisit the origin of two of these stresses, namely mitochondrial metabolic compromise, associated with reactive oxygen species (ROS) production, and replicative senescence, activated by extreme telomere shortening. We discuss how replication stress-induced DNA damage of telomeric DNA (telDNA) and mitochondrial DNA (mtDNA) can be considered a common origin of senescence in vitro, with consequences on ageing in vivo. Unexpectedly, mtDNA and telDNA share common features indicative of a high degree of replicative stress, such as G-quadruplexes, D-loops, RNA:DNA heteroduplexes, epigenetic marks, or supercoiling. To avoid these stresses, both compartments use similar enzymatic strategies involving, for instance, endonucleases, topoisomerases, helicases, or primases. Surprisingly, many of these replication helpers are active at both telDNA and mtDNA (e.g., RNAse H1, FEN1, DNA2, RecQ helicases, Top2α, Top2β, TOP3A, DNMT1/3a/3b, SIRT1). In addition, specialized telomeric proteins, such as TERT (telomerase reverse transcriptase) and TERC (telomerase RNA component), or TIN2 (shelterin complex), shuttle from telomeres to mitochondria, and, by doing so, modulate mitochondrial metabolism and the production of ROS, in a feedback manner. Hence, mitochondria and telomeres use common weapons and cooperate to resist/prevent replication stresses, otherwise producing common consequences, namely senescence and ageing.
Collapse
Affiliation(s)
- Pauline Billard
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France.
- Institut de Biopathologie moléculaire, Centre de Bio-Pathologie Est, Groupement hospitalier Est, Hospices Civils de Lyon, 69500 Bron, France.
| | - Delphine A Poncet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France.
- Institut de Biopathologie moléculaire, Centre de Bio-Pathologie Est, Groupement hospitalier Est, Hospices Civils de Lyon, 69500 Bron, France.
| |
Collapse
|
20
|
Cluett TJ, Akman G, Reyes A, Kazak L, Mitchell A, Wood SR, Spinazzola A, Spelbrink JN, Holt IJ. Transcript availability dictates the balance between strand-asynchronous and strand-coupled mitochondrial DNA replication. Nucleic Acids Res 2019; 46:10771-10781. [PMID: 30239839 PMCID: PMC6237803 DOI: 10.1093/nar/gky852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 09/12/2018] [Indexed: 11/15/2022] Open
Abstract
Mammalian mitochondria operate multiple mechanisms of DNA replication. In many cells and tissues a strand-asynchronous mechanism predominates over coupled leading and lagging-strand DNA synthesis. However, little is known of the factors that control or influence the different mechanisms of replication, and the idea that strand-asynchronous replication entails transient incorporation of transcripts (aka bootlaces) is controversial. A firm prediction of the bootlace model is that it depends on mitochondrial transcripts. Here, we show that elevated expression of Twinkle DNA helicase in human mitochondria induces bidirectional, coupled leading and lagging-strand DNA synthesis, at the expense of strand-asynchronous replication; and this switch is accompanied by decreases in the steady-state level of some mitochondrial transcripts. However, in the so-called minor arc of mitochondrial DNA where transcript levels remain high, the strand-asynchronous replication mechanism is instated. Hence, replication switches to a strand-coupled mechanism only where transcripts are scarce, thereby establishing a direct correlation between transcript availability and the mechanism of replication. Thus, these findings support a critical role of mitochondrial transcripts in the strand-asynchronous mechanism of mitochondrial DNA replication; and, as a corollary, mitochondrial RNA availability and RNA/DNA hybrid formation offer means of regulating the mechanisms of DNA replication in the organelle.
Collapse
Affiliation(s)
- Tricia J Cluett
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB1 9SY, UK
| | | | - Aurelio Reyes
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB1 9SY, UK
| | - Lawrence Kazak
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB1 9SY, UK
| | - Alice Mitchell
- Department of Clinical Movement Neurosciences, Institute of Neurology, Royal Free Campus, University College London, London NW3 2PF, UK
| | - Stuart R Wood
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB1 9SY, UK
| | - Antonella Spinazzola
- Department of Clinical Movement Neurosciences, Institute of Neurology, Royal Free Campus, University College London, London NW3 2PF, UK.,MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Johannes N Spelbrink
- Department of Pediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Geert Grooteplein 10, 6500 HB, Nijmegen, The Netherlands
| | - Ian J Holt
- Department of Clinical Movement Neurosciences, Institute of Neurology, Royal Free Campus, University College London, London NW3 2PF, UK.,Biodonostia Health Research Institute, 20014 San Sebastián, Spain and IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
21
|
Mitochondrial Homeostasis and Cellular Senescence. Cells 2019; 8:cells8070686. [PMID: 31284597 PMCID: PMC6678662 DOI: 10.3390/cells8070686] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 01/07/2023] Open
Abstract
Cellular senescence refers to a stress response aiming to preserve cellular and, therefore, organismal homeostasis. Importantly, deregulation of mitochondrial homeostatic mechanisms, manifested as impaired mitochondrial biogenesis, metabolism and dynamics, has emerged as a hallmark of cellular senescence. On the other hand, impaired mitostasis has been suggested to induce cellular senescence. This review aims to provide an overview of homeostatic mechanisms operating within mitochondria and a comprehensive insight into the interplay between cellular senescence and mitochondrial dysfunction.
Collapse
|
22
|
Holt IJ. The Jekyll and Hyde character of RNase H1 and its multiple roles in mitochondrial DNA metabolism. DNA Repair (Amst) 2019; 84:102630. [PMID: 31178343 DOI: 10.1016/j.dnarep.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
Abstract
The activity and specificity of ribonuclease H1, RNase H1, has been known for over half a century; like all enzymes in its class, it degrades RNA only when it is hybridized to DNA. However, the essential role of RNase H1 in mitochondrial DNA maintenance was not recognized until 2003, and empirical evidence that it is required to process RNA primers of mitochondrial DNA had to wait until 2015. In the same year, mutations in the RNASEH1 gene were linked to human mitochondrial diseases. The most recent studies suggest that in addition to primer-processing, RNase H1 determines the fate of R-loops, although not primarily those that might present an obstacle to DNA replication, but ones that contribute to the organization of mitochondrial DNA and the unusual mechanism of replication in mitochondria that utilizes transcripts for the strand-asynchronous mechanism of mitochondrial DNA replication. A full understanding of the role of RNase H1 in mtDNA metabolism will depend on further study, including careful consideration of its ability to stabilize, as well as to degrade RNA/DNA hybrids, and its regulation by oxidation or other mechanisms. Nevertheless, RNase H1 is already staking a strong claim to be the most versatile factor involved in propagating the DNA in the mitochondria.
Collapse
Affiliation(s)
- Ian J Holt
- Biodonostia Health Research Institute, 20014 San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK; CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), Madrid, Spain.
| |
Collapse
|
23
|
High-resolution, strand-specific R-loop mapping via S9.6-based DNA-RNA immunoprecipitation and high-throughput sequencing. Nat Protoc 2019; 14:1734-1755. [PMID: 31053798 DOI: 10.1038/s41596-019-0159-1] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/28/2019] [Indexed: 11/08/2022]
Abstract
R-loops are prevalent three-stranded non-B DNA structures composed of an RNA-DNA hybrid and a single strand of DNA. R-loops are implicated in various basic nuclear processes, such as class-switch recombination, transcription termination and chromatin patterning. Perturbations in R-loop metabolism have been linked to genomic instability and have been implicated in human disorders, including cancer. As a consequence, the accurate mapping of these structures has been of increasing interest in recent years. Here, we describe two related immunoprecipitation-based methods for mapping R-loop structures: basic DRIP-seq (DNA-RNA immunoprecipitation followed by high-throughput DNA sequencing), an easy, robust, but resolution-limited technique; and DRIPc-seq (DNA-RNA immunoprecipitation followed by cDNA conversion coupled to high-throughput sequencing), a high-resolution and strand-specific iteration of the method that permits accurate R-loop mapping genome wide. Briefly, after gentle DNA extraction and restriction digestion with a cocktail of enzymes, R-loop structures are immunoprecipitated with the anti-RNA-DNA hybrid S9.6 antibody. Compared with DRIP-seq, in which the immunoprecipitated DNA is directly sequenced, DRIPc-seq permits the recovery of the RNA moiety of R-loops, and these RNA strands are subjected to strand-specific RNA sequencing (RNA-seq) analysis. DRIPc-seq can be performed in 5 d and can be applied to any cell type, provided sufficient starting material can be collected. Accurately mapping R-loop distribution in various cell lines and under varied conditions is essential to understanding the formation, roles and dynamic resolution of these important structures.
Collapse
|
24
|
Durigon R, Mitchell AL, Jones AW, Manole A, Mennuni M, Hirst EM, Houlden H, Maragni G, Lattante S, Doronzio PN, Dalla Rosa I, Zollino M, Holt IJ, Spinazzola A. LETM1 couples mitochondrial DNA metabolism and nutrient preference. EMBO Mol Med 2019; 10:emmm.201708550. [PMID: 30012579 PMCID: PMC6127893 DOI: 10.15252/emmm.201708550] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The diverse clinical phenotypes of Wolf–Hirschhorn syndrome (WHS) are the result of haploinsufficiency of several genes, one of which, LETM1, encodes a protein of the mitochondrial inner membrane of uncertain function. Here, we show that LETM1 is associated with mitochondrial ribosomes, is required for mitochondrial DNA distribution and expression, and regulates the activity of an ancillary metabolic enzyme, pyruvate dehydrogenase. LETM1 deficiency in WHS alters mitochondrial morphology and DNA organization, as does substituting ketone bodies for glucose in control cells. While this change in nutrient availability leads to the death of fibroblasts with normal amounts of LETM1, WHS‐derived fibroblasts survive on ketone bodies, which can be attributed to their reduced dependence on glucose oxidation. Thus, remodeling of mitochondrial nucleoprotein complexes results from the inability of mitochondria to use specific substrates for energy production and is indicative of mitochondrial dysfunction. However, the dysfunction could be mitigated by a modified diet—for WHS, one high in lipids and low in carbohydrates.
Collapse
Affiliation(s)
- Romina Durigon
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
| | - Alice L Mitchell
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
| | - Aleck We Jones
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
| | - Andreea Manole
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Mara Mennuni
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
| | | | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | | - Serena Lattante
- Institute of Genomic Medicine, Catholic University, Rome, Italy
| | | | - Ilaria Dalla Rosa
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
| | | | - Ian J Holt
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK.,Biodonostia Health Research Institute, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Antonella Spinazzola
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK .,MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
25
|
Wang C, Wang G, Feng X, Shepherd P, Zhang J, Tang M, Chen Z, Srivastava M, McLaughlin ME, Navone NM, Hart GT, Chen J. Genome-wide CRISPR screens reveal synthetic lethality of RNASEH2 deficiency and ATR inhibition. Oncogene 2019; 38:2451-2463. [PMID: 30532030 PMCID: PMC6450769 DOI: 10.1038/s41388-018-0606-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/30/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022]
Abstract
Ataxia telangiectasia mutated and RAD3 related (ATR) protein kinase plays critical roles in ensuring DNA replication, DNA repair, and cell cycle control in response to replication stress, making ATR inhibition a promising therapeutic strategy for cancer treatment. To identify genes whose loss makes tumor cells hypersensitive to ATR inhibition, we performed CRISPR/Cas9-based whole-genome screens in 3 independent cell lines treated with a highly selective ATR inhibitor, AZD6738. These screens uncovered a comprehensive genome-wide profile of ATR inhibitor sensitivity. From the candidate genes, we demonstrated that RNASEH2 deficiency is synthetic lethal with ATR inhibition both in vitro and in vivo. RNASEH2-deficient cells exhibited elevated levels of DNA damage and, when treated with AZD6738, underwent apoptosis (short-time treated) or senescence (long-time treated). Notably, RNASEH2 deficiency is frequently found in prostate adenocarcinoma; we found decreased RNASEH2B protein levels in prostate adenocarcinoma patient-derived xenograft (PDX) samples. Our findings suggest that ATR inhibition may be beneficial for cancer patients with reduced levels of RNASEH2 and that RNASEH2 merits further exploration as a potential biomarker for ATR inhibitor-based therapy.
Collapse
Affiliation(s)
- Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gang Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Peter Shepherd
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mrinal Srivastava
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Megan E McLaughlin
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Nora M Navone
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Glen Traver Hart
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
26
|
González de Cózar JM, Gerards M, Teeri E, George J, Dufour E, Jacobs HT, Jõers P. RNase H1 promotes replication fork progression through oppositely transcribed regions of Drosophila mitochondrial DNA. J Biol Chem 2019; 294:4331-4344. [PMID: 30635398 PMCID: PMC6433063 DOI: 10.1074/jbc.ra118.007015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/09/2019] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial DNA (mtDNA) replication uses a simple core machinery similar to those of bacterial viruses and plasmids, but its components are challenging to unravel. Here, we found that, as in mammals, the single Drosophila gene for RNase H1 (rnh1) has alternative translational start sites, resulting in two polypeptides, targeted to either mitochondria or the nucleus. RNAi-mediated rnh1 knockdown did not influence growth or viability of S2 cells, but compromised mtDNA integrity and copy number. rnh1 knockdown in intact flies also produced a phenotype of impaired mitochondrial function, characterized by respiratory chain deficiency, locomotor dysfunction, and decreased lifespan. Its overexpression in S2 cells resulted in cell lethality after 5–9 days, attributable to the nuclearly localized isoform. rnh1 knockdown and overexpression produced opposite effects on mtDNA replication intermediates. The most pronounced effects were seen in genome regions beyond the major replication pauses where the replication fork needs to progress through a gene cluster that is transcribed in the opposite direction. RNase H1 deficiency led to an accumulation of replication intermediates in these zones, abundant mtDNA molecules joined by four-way junctions, and species consistent with fork regression from the origin. These findings indicate replication stalling due to the presence of unprocessed RNA/DNA heteroduplexes, potentially leading to the degradation of collapsed forks or to replication restart by a mechanism involving strand invasion. Both mitochondrial RNA and DNA syntheses were affected by rnh1 knockdown, suggesting that RNase H1 also plays a role in integrating or coregulating these processes in Drosophila mitochondria.
Collapse
Affiliation(s)
- Jose M González de Cózar
- From the Faculty of Medicine and Health Technology and Tampere University Hospital, FI-33014 Tampere University, Finland
| | - Mike Gerards
- From the Faculty of Medicine and Health Technology and Tampere University Hospital, FI-33014 Tampere University, Finland
| | - Eveliina Teeri
- From the Faculty of Medicine and Health Technology and Tampere University Hospital, FI-33014 Tampere University, Finland
| | - Jack George
- From the Faculty of Medicine and Health Technology and Tampere University Hospital, FI-33014 Tampere University, Finland
| | - Eric Dufour
- From the Faculty of Medicine and Health Technology and Tampere University Hospital, FI-33014 Tampere University, Finland
| | - Howard T Jacobs
- From the Faculty of Medicine and Health Technology and Tampere University Hospital, FI-33014 Tampere University, Finland, .,Institute of Biotechnology, FI-00014 University of Helsinki, Finland, and
| | - Priit Jõers
- From the Faculty of Medicine and Health Technology and Tampere University Hospital, FI-33014 Tampere University, Finland.,Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| |
Collapse
|
27
|
Belotserkovskii BP, Tornaletti S, D'Souza AD, Hanawalt PC. R-loop generation during transcription: Formation, processing and cellular outcomes. DNA Repair (Amst) 2018; 71:69-81. [PMID: 30190235 PMCID: PMC6340742 DOI: 10.1016/j.dnarep.2018.08.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
R-loops are structures consisting of an RNA-DNA duplex and an unpaired DNA strand. They can form during transcription upon nascent RNA "threadback" invasion into the DNA duplex to displace the non-template strand. Although R-loops occur naturally in all kingdoms of life and serve regulatory roles, they are often deleterious and can cause genomic instability. Of particular importance are the disastrous consequences when replication forks or transcription complexes collide with R-loops. The appropriate processing of R-loops is essential to avoid a number of human neurodegenerative and other clinical disorders. We provide a perspective on mechanistic aspects of R-loop formation and their resolution learned from studies in model systems. This should contribute to improved understanding of R-loop biological functions and enable their practical applications. We propose the novel employment of artificially-generated stable R-loops to selectively inactivate tumor cells.
Collapse
Affiliation(s)
- Boris P Belotserkovskii
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305-5020, United States
| | - Silvia Tornaletti
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305-5020, United States
| | - Alicia D D'Souza
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305-5020, United States
| | - Philip C Hanawalt
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305-5020, United States.
| |
Collapse
|
28
|
Human mitochondrial degradosome prevents harmful mitochondrial R loops and mitochondrial genome instability. Proc Natl Acad Sci U S A 2018; 115:11024-11029. [PMID: 30301808 DOI: 10.1073/pnas.1807258115] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
R loops are nucleic acid structures comprising an DNA-RNA hybrid and a displaced single-stranded DNA. These structures may occur transiently during transcription, playing essential biological functions. However, persistent R loops may become pathological as they are important drivers of genome instability and have been associated with human diseases. The mitochondrial degradosome is a functionally conserved complex from bacteria to human mitochondria. It is composed of the ATP-dependent RNA and DNA helicase SUV3 and the PNPase ribonuclease, playing a central role in mitochondrial RNA surveillance and degradation. Here we describe a new role for the mitochondrial degradosome in preventing the accumulation of pathological R loops in the mitochondrial DNA, in addition to preventing dsRNA accumulation. Our data indicate that, similar to the molecular mechanisms acting in the nucleus, RNA surveillance mechanisms in the mitochondria are crucial to maintain its genome integrity by counteracting pathological R-loop accumulation.
Collapse
|
29
|
Yasukawa T, Kang D. An overview of mammalian mitochondrial DNA replication mechanisms. J Biochem 2018; 164:183-193. [PMID: 29931097 PMCID: PMC6094444 DOI: 10.1093/jb/mvy058] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/15/2018] [Indexed: 11/14/2022] Open
Abstract
While the majority of DNA is enclosed within the nucleus, the mitochondria also contain their own, separate DNA, the mitochondrial DNA (mtDNA). Mutations in mtDNA are associated with various human diseases, demonstrating the importance of mtDNA. Intensive studies over the last 18 years have demonstrated the presence of two distinct classes of mtDNA replication intermediates in mammals. One involves leading-strand DNA synthesis in the absence of synchronous lagging-strand DNA synthesis. Currently there are competing models in which the lagging-strand template is either systematically hybridized to processed mitochondrial transcripts, or coated with protein, until the lagging-strand DNA synthesis takes place. The other class of mtDNA replication intermediates has many properties of conventional, coupled leading- and lagging-strand DNA synthesis. Additionally, the highly unusual arrangement of DNA in human heart mitochondria suggests a third mechanism of replication. These findings indicate that the mtDNA replication systems of humans and other mammals are far more complex than previously thought, and thereby will require further research to understand the full picture of mtDNA replication.
Collapse
Affiliation(s)
- Takehiro Yasukawa
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
30
|
Loutre R, Heckel AM, Smirnova A, Entelis N, Tarassov I. Can Mitochondrial DNA be CRISPRized: Pro and Contra. IUBMB Life 2018; 70:1233-1239. [PMID: 30184317 DOI: 10.1002/iub.1919] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 01/08/2023]
Abstract
Mitochondria represent a chimera of macromolecules encoded either in the organellar genome, mtDNA, or in the nuclear one. If the pathway of protein targeting to different sub-compartments of mitochondria was relatively well studied, import of small noncoding RNAs into mammalian mitochondria still awaits mechanistic explanations and its functional issues are often not understood thus raising polemics. At the same time, RNA mitochondrial import pathway has an obvious attractiveness as it appears as a unique natural mechanism permitting to address nucleic acids into the organelles. Deciphering the function(s) of imported RNAs inside the mitochondria is extremely complicated due to their relatively low abundance, which suggests their regulatory role. We previously demonstrated that mitochondrial targeting of small noncoding RNAs able to specifically anneal with the mutant mitochondrial DNA led to a decrease of the mtDNA heteroplasmy level by inhibiting mutant mtDNA replication. We then demonstrated that increasing level of expression of such antireplicative recombinant RNAs increases significantly the antireplicative effect. In this report, we present a new data investigating the possibility to establish a CRISPR-Cas9 system targeting mtDNA exploiting of the pathway of RNA import into mitochondria. Mitochondrially addressed Cas9 versions and a set of mitochondrially targeted guide RNAs were tested in vitro and in vivo and their effect on mtDNA copy number was demonstrated. So far, the system appeared as more complicated for use than previously found for nuclear DNA, because only application of a pair of guide RNAs produced the effect of mtDNA depletion. We discuss, in a critical way, these results and put them in a broader context of polemics concerning the possibilities of manipulation of mtDNA in mammalians. The findings described here prove the potential of the RNA import pathway as a tool for studying mtDNA and for future therapy of mitochondrial disorders. © The Authors. IUBMB Life published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 70(12):1233-1239, 2018.
Collapse
Affiliation(s)
- Romuald Loutre
- UMR 7156 GMGM (Molecular Genetics, Genomics, Microbiology), University of Strasbourg - CNRS, Strasbourg, France
| | - Anne-Marie Heckel
- UMR 7156 GMGM (Molecular Genetics, Genomics, Microbiology), University of Strasbourg - CNRS, Strasbourg, France
| | - Anna Smirnova
- UMR 7156 GMGM (Molecular Genetics, Genomics, Microbiology), University of Strasbourg - CNRS, Strasbourg, France
| | - Nina Entelis
- UMR 7156 GMGM (Molecular Genetics, Genomics, Microbiology), University of Strasbourg - CNRS, Strasbourg, France
| | - Ivan Tarassov
- UMR 7156 GMGM (Molecular Genetics, Genomics, Microbiology), University of Strasbourg - CNRS, Strasbourg, France
| |
Collapse
|
31
|
Manzo SG, Hartono SR, Sanz LA, Marinello J, De Biasi S, Cossarizza A, Capranico G, Chedin F. DNA Topoisomerase I differentially modulates R-loops across the human genome. Genome Biol 2018; 19:100. [PMID: 30060749 PMCID: PMC6066927 DOI: 10.1186/s13059-018-1478-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/10/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Co-transcriptional R-loops are abundant non-B DNA structures in mammalian genomes. DNA Topoisomerase I (Top1) is often thought to regulate R-loop formation owing to its ability to resolve both positive and negative supercoils. How Top1 regulates R-loop structures at a global level is unknown. RESULTS Here, we perform high-resolution strand-specific R-loop mapping in human cells depleted for Top1 and find that Top1 depletion results in both R-loop gains and losses at thousands of transcribed loci, delineating two distinct gene classes. R-loop gains are characteristic for long, highly transcribed, genes located in gene-poor regions anchored to Lamin B1 domains and in proximity to H3K9me3-marked heterochromatic patches. R-loop losses, by contrast, occur in gene-rich regions overlapping H3K27me3-marked active replication initiation regions. Interestingly, Top1 depletion coincides with a block of the cell cycle in G0/G1 phase and a trend towards replication delay. CONCLUSIONS Our findings reveal new properties of Top1 in regulating R-loop homeostasis in a context-dependent manner and suggest a potential role for Top1 in modulating the replication process via R-loop formation.
Collapse
Affiliation(s)
- Stefano G Manzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Present address: Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Stella R Hartono
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, USA
| | - Lionel A Sanz
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, USA
| | - Jessica Marinello
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Frederic Chedin
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, USA.
| |
Collapse
|
32
|
Mitochondrial DNA replication in mammalian cells: overview of the pathway. Essays Biochem 2018; 62:287-296. [PMID: 29880722 PMCID: PMC6056714 DOI: 10.1042/ebc20170100] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 12/27/2022]
Abstract
Mammalian mitochondria contain multiple copies of a circular, double-stranded DNA genome and a dedicated DNA replication machinery is required for its maintenance. Many disease-causing mutations affect mitochondrial replication factors and a detailed understanding of the replication process may help to explain the pathogenic mechanisms underlying a number of mitochondrial diseases. We here give a brief overview of DNA replication in mammalian mitochondria, describing our current understanding of this process and some unanswered questions remaining.
Collapse
|
33
|
Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations. Blood 2018; 132:1225-1240. [PMID: 29930011 DOI: 10.1182/blood-2018-04-843771] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
SF3B1, SRSF2, and U2AF1 are the most frequently mutated splicing factor genes in the myelodysplastic syndromes (MDS). We have performed a comprehensive and systematic analysis to determine the effect of these commonly mutated splicing factors on pre-mRNA splicing in the bone marrow stem/progenitor cells and in the erythroid and myeloid precursors in splicing factor mutant MDS. Using RNA-seq, we determined the aberrantly spliced genes and dysregulated pathways in CD34+ cells of 84 patients with MDS. Splicing factor mutations result in different alterations in splicing and largely affect different genes, but these converge in common dysregulated pathways and cellular processes, focused on RNA splicing, protein synthesis, and mitochondrial dysfunction, suggesting common mechanisms of action in MDS. Many of these dysregulated pathways and cellular processes can be linked to the known disease pathophysiology associated with splicing factor mutations in MDS, whereas several others have not been previously associated with MDS, such as sirtuin signaling. We identified aberrantly spliced events associated with clinical variables, and isoforms that independently predict survival in MDS and implicate dysregulation of focal adhesion and extracellular exosomes as drivers of poor survival. Aberrantly spliced genes and dysregulated pathways were identified in the MDS-affected lineages in splicing factor mutant MDS. Functional studies demonstrated that knockdown of the mitosis regulators SEPT2 and AKAP8, aberrantly spliced target genes of SF3B1 and SRSF2 mutations, respectively, led to impaired erythroid cell growth and differentiation. This study illuminates the effect of the common spliceosome mutations on the MDS phenotype and provides novel insights into disease pathophysiology.
Collapse
|
34
|
Nicholls TJ, Nadalutti CA, Motori E, Sommerville EW, Gorman GS, Basu S, Hoberg E, Turnbull DM, Chinnery PF, Larsson NG, Larsson E, Falkenberg M, Taylor RW, Griffith JD, Gustafsson CM. Topoisomerase 3α Is Required for Decatenation and Segregation of Human mtDNA. Mol Cell 2017; 69:9-23.e6. [PMID: 29290614 DOI: 10.1016/j.molcel.2017.11.033] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/26/2017] [Accepted: 11/26/2017] [Indexed: 01/01/2023]
Abstract
How mtDNA replication is terminated and the newly formed genomes are separated remain unknown. We here demonstrate that the mitochondrial isoform of topoisomerase 3α (Top3α) fulfills this function, acting independently of its nuclear role as a component of the Holliday junction-resolving BLM-Top3α-RMI1-RMI2 (BTR) complex. Our data indicate that mtDNA replication termination occurs via a hemicatenane formed at the origin of H-strand replication and that Top3α is essential for resolving this structure. Decatenation is a prerequisite for separation of the segregating unit of mtDNA, the nucleoid, within the mitochondrial network. The importance of this process is highlighted in a patient with mitochondrial disease caused by biallelic pathogenic variants in TOP3A, characterized by muscle-restricted mtDNA deletions and chronic progressive external ophthalmoplegia (CPEO) plus syndrome. Our work establishes Top3α as an essential component of the mtDNA replication machinery and as the first component of the mtDNA separation machinery.
Collapse
Affiliation(s)
- Thomas J Nicholls
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, 405 30 Gothenburg, Sweden
| | - Cristina A Nadalutti
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Elisa Motori
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Ewen W Sommerville
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Swaraj Basu
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, 405 30 Gothenburg, Sweden
| | - Emily Hoberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, 405 30 Gothenburg, Sweden
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Nils-Göran Larsson
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, 405 30 Gothenburg, Sweden
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, 405 30 Gothenburg, Sweden
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, 405 30 Gothenburg, Sweden.
| |
Collapse
|
35
|
Greenfield A, Braude P, Flinter F, Lovell-Badge R, Ogilvie C, Perry ACF. Assisted reproductive technologies to prevent human mitochondrial disease transmission. Nat Biotechnol 2017; 35:1059-1068. [PMID: 29121011 DOI: 10.1038/nbt.3997] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022]
Abstract
Mitochondria are essential cytoplasmic organelles that generate energy (ATP) by oxidative phosphorylation and mediate key cellular processes such as apoptosis. They are maternally inherited and in humans contain a 16,569-base-pair circular genome (mtDNA) encoding 37 genes required for oxidative phosphorylation. Mutations in mtDNA cause a range of pathologies, commonly affecting energy-demanding tissues such as muscle and brain. Because mitochondrial diseases are incurable, attention has focused on limiting the inheritance of pathogenic mtDNA by mitochondrial replacement therapy (MRT). MRT aims to avoid pathogenic mtDNA transmission between generations by maternal spindle transfer, pronuclear transfer or polar body transfer: all involve the transfer of nuclear DNA from an egg or zygote containing defective mitochondria to a corresponding egg or zygote with normal mitochondria. Here we review recent developments in animal and human models of MRT and the underlying biology. These have led to potential clinical applications; we identify challenges to their technical refinement.
Collapse
Affiliation(s)
- Andy Greenfield
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Harwell, Oxfordshire, UK
| | - Peter Braude
- Division of Women's Health, King's College, London, UK
| | - Frances Flinter
- Clinical Genetics Department, Guy's Hospital, Great Maze Pond, London, UK
| | | | - Caroline Ogilvie
- Genetics Department, Guy's & St Thomas' NHS Foundation Trust and Division of Women's Health, King's College, London, UK
| | - Anthony C F Perry
- Laboratory of Mammalian Molecular Embryology, Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
36
|
Dalla Rosa I, Zhang H, Khiati S, Wu X, Pommier Y. Transcription profiling suggests that mitochondrial topoisomerase IB acts as a topological barrier and regulator of mitochondrial DNA transcription. J Biol Chem 2017; 292:20162-20172. [PMID: 29021209 DOI: 10.1074/jbc.m117.815241] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/01/2017] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial DNA (mtDNA) is essential for cell viability because it encodes subunits of the respiratory chain complexes. Mitochondrial topoisomerase IB (TOP1MT) facilitates mtDNA replication by removing DNA topological tensions produced during mtDNA transcription, but it appears to be dispensable. To test whether cells lacking TOP1MT have aberrant mtDNA transcription, we performed mitochondrial transcriptome profiling. To that end, we designed and implemented a customized tiling array, which enabled genome-wide, strand-specific, and simultaneous detection of all mitochondrial transcripts. Our technique revealed that Top1mt KO mouse cells process the mitochondrial transcripts normally but that protein-coding mitochondrial transcripts are elevated. Moreover, we found discrete long noncoding RNAs produced by H-strand transcription and encompassing the noncoding regulatory region of mtDNA in human and murine cells and tissues. Of note, these noncoding RNAs were strongly up-regulated in the absence of TOP1MT. In contrast, 7S DNA, produced by mtDNA replication, was reduced in the Top1mt KO cells. We propose that the long noncoding RNA species in the D-loop region are generated by the extension of H-strand transcripts beyond their canonical stop site and that TOP1MT acts as a topological barrier and regulator for mtDNA transcription and D-loop formation.
Collapse
Affiliation(s)
- Ilaria Dalla Rosa
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Hongliang Zhang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Salim Khiati
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Xiaolin Wu
- Laboratory of Molecular Technology, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
37
|
Yang Z, Hou Q, Cheng L, Xu W, Hong Y, Li S, Sun Q. RNase H1 Cooperates with DNA Gyrases to Restrict R-Loops and Maintain Genome Integrity in Arabidopsis Chloroplasts. THE PLANT CELL 2017; 29:2478-2497. [PMID: 28939594 PMCID: PMC5774575 DOI: 10.1105/tpc.17.00305] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/05/2017] [Accepted: 09/20/2017] [Indexed: 05/19/2023]
Abstract
Maintaining organellar genome integrity is essential for eukaryotic cells, and many factors can threaten genome integrity. R-loops are DNA:RNA duplexes produced during transcription, with the nontemplated DNA forming a single-stranded region. R-loops function in the regulation of transcription, DNA replication, and DNA repair, but can also be susceptible to lesions that form double-stranded breaks and thus induce genome instability. From investigating the function of a plant chloroplast-localized R-loop removing enzyme AtRNH1C, we have found that it is responsible for plastid R-loop homeostasis, chloroplast genome instability, and development. Interactome analysis revealed that AtRNH1C associates with multiple chloroplast-localized DNA and RNA metabolism-related proteins, including the core DNA gyrases complex. The interaction between AtRNH1C and AtGyrases was critical for R-loop homeostasis in chloroplast and important to release the transcription-replication conflicts in the highly transcribed and replication originated cp-rDNA regions and thus to reduce the DNA damage. Our results reveal the plastid R-loop accumulation leads to chloroplast DNA instability and provide insight into the maintenance of genome integrity in chloroplasts, in which the evolutionarily conserved RNase H1 and DNA gyrase proteins are involved.
Collapse
Affiliation(s)
- Zhuo Yang
- Center for Plant Biology and Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Quancan Hou
- Center for Plant Biology and Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lingling Cheng
- Center for Plant Biology and Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Xu
- Center for Plant Biology and Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yantao Hong
- Center for Plant Biology and Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuai Li
- Center for Plant Biology and Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qianwen Sun
- Center for Plant Biology and Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
38
|
Desai R, Frazier AE, Durigon R, Patel H, Jones AW, Dalla Rosa I, Lake NJ, Compton AG, Mountford HS, Tucker EJ, Mitchell ALR, Jackson D, Sesay A, Di Re M, van den Heuvel LP, Burke D, Francis D, Lunke S, McGillivray G, Mandelstam S, Mochel F, Keren B, Jardel C, Turner AM, Ian Andrews P, Smeitink J, Spelbrink JN, Heales SJ, Kohda M, Ohtake A, Murayama K, Okazaki Y, Lombès A, Holt IJ, Thorburn DR, Spinazzola A. ATAD3 gene cluster deletions cause cerebellar dysfunction associated with altered mitochondrial DNA and cholesterol metabolism. Brain 2017; 140:1595-1610. [PMID: 28549128 PMCID: PMC5445257 DOI: 10.1093/brain/awx094] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/09/2017] [Indexed: 12/03/2022] Open
Abstract
Although mitochondrial disorders are clinically heterogeneous, they frequently involve the central nervous system and are among the most common neurogenetic disorders. Identifying the causal genes has benefited enormously from advances in high-throughput sequencing technologies; however, once the defect is known, researchers face the challenge of deciphering the underlying disease mechanism. Here we characterize large biallelic deletions in the region encoding the ATAD3C, ATAD3B and ATAD3A genes. Although high homology complicates genomic analysis of the ATAD3 defects, they can be identified by targeted analysis of standard single nucleotide polymorphism array and whole exome sequencing data. We report deletions that generate chimeric ATAD3B/ATAD3A fusion genes in individuals from four unrelated families with fatal congenital pontocerebellar hypoplasia, whereas a case with genomic rearrangements affecting the ATAD3C/ATAD3B genes on one allele and ATAD3B/ATAD3A genes on the other displays later-onset encephalopathy with cerebellar atrophy, ataxia and dystonia. Fibroblasts from affected individuals display mitochondrial DNA abnormalities, associated with multiple indicators of altered cholesterol metabolism. Moreover, drug-induced perturbations of cholesterol homeostasis cause mitochondrial DNA disorganization in control cells, while mitochondrial DNA aggregation in the genetic cholesterol trafficking disorder Niemann-Pick type C disease further corroborates the interdependence of mitochondrial DNA organization and cholesterol. These data demonstrate the integration of mitochondria in cellular cholesterol homeostasis, in which ATAD3 plays a critical role. The dual problem of perturbed cholesterol metabolism and mitochondrial dysfunction could be widespread in neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Radha Desai
- MRC Laboratory, Mill Hill, London NW71AA, UK
| | - Ann E Frazier
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia
| | - Romina Durigon
- Department of Clinical Neurosciences, Institute of Neurology, Royal Free Campus, University College London, NW3 2PF, UK
| | - Harshil Patel
- Bioinformatics and Biostatistics, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Aleck W Jones
- Department of Clinical Neurosciences, Institute of Neurology, Royal Free Campus, University College London, NW3 2PF, UK
| | - Ilaria Dalla Rosa
- Department of Clinical Neurosciences, Institute of Neurology, Royal Free Campus, University College London, NW3 2PF, UK
| | - Nicole J Lake
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia
| | - Alison G Compton
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia
| | - Hayley S Mountford
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia
| | - Elena J Tucker
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia
| | - Alice L R Mitchell
- Department of Clinical Neurosciences, Institute of Neurology, Royal Free Campus, University College London, NW3 2PF, UK
| | - Deborah Jackson
- Bioinformatics and Biostatistics, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Abdul Sesay
- Bioinformatics and Biostatistics, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Miriam Di Re
- Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY, UK
| | - Lambert P van den Heuvel
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Derek Burke
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, UK and Laboratory Medicine, Great Ormond Street Hospital, London, UK
| | - David Francis
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne VIC 3052, Australia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne VIC 3052, Australia.,Department of Pathology, University of Melbourne, Melbourne 3052, Australia
| | - George McGillivray
- MRC Laboratory, Mill Hill, London NW71AA, UK.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne VIC 3052, Australia
| | - Simone Mandelstam
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia.,The Florey Institute of Neuroscience and Mental Health Melbourne, Australia.,Departments of Radiology and Paediatrics, University of Melbourne, Melbourne, Australia
| | - Fanny Mochel
- AP-HP, Department of Genetics, GHU Pitié-Salpêtrière, Paris, F-75651 France.,Inserm U975; CNRS UMR 7225, ICM; F-75013, Paris, France
| | - Boris Keren
- Inserm U975; CNRS UMR 7225, ICM; F-75013, Paris, France.,AP-HP, Service de Biochimie Métabolique et Centre de Génétique moléculaire et chromosomique, GHU Pitié-Salpêtrière, Paris, F-75651 France
| | - Claude Jardel
- AP-HP, Service de Biochimie Métabolique et Centre de Génétique moléculaire et chromosomique, GHU Pitié-Salpêtrière, Paris, F-75651 France.,Inserm U1016; CNRS UMR 8104; Université Paris-Descartes-Paris 5; Institut Cochin, 75014 Paris, France
| | - Anne M Turner
- Department of Clinical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia.,School of Women's and Children's Health, University of New South Wales, Kensington, NSW, Australia
| | - P Ian Andrews
- School of Women's and Children's Health, University of New South Wales, Kensington, NSW, Australia.,Department of Paediatric Neurology, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Jan Smeitink
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johannes N Spelbrink
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Simon J Heales
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, UK and Laboratory Medicine, Great Ormond Street Hospital, London, UK.,Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London, UK
| | - Masakazu Kohda
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Akira Ohtake
- Department of Pediatrics, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Yasushi Okazaki
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan.,Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Anne Lombès
- MRC Laboratory, Mill Hill, London NW71AA, UK.,Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ian J Holt
- MRC Laboratory, Mill Hill, London NW71AA, UK.,Department of Clinical Neurosciences, Institute of Neurology, Royal Free Campus, University College London, NW3 2PF, UK.,Biodonostia Health Research Institute, 20014 San Sebastián, Spain. IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - David R Thorburn
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne VIC 3052, Australia
| | - Antonella Spinazzola
- Department of Clinical Neurosciences, Institute of Neurology, Royal Free Campus, University College London, NW3 2PF, UK.,MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
39
|
Liang XH, Sun H, Nichols JG, Crooke ST. RNase H1-Dependent Antisense Oligonucleotides Are Robustly Active in Directing RNA Cleavage in Both the Cytoplasm and the Nucleus. Mol Ther 2017; 25:2075-2092. [PMID: 28663102 PMCID: PMC5589097 DOI: 10.1016/j.ymthe.2017.06.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
RNase H1-dependent antisense oligonucleotides (ASOs) are active in reducing levels of both cytoplasmic mRNAs and nuclear retained RNAs. Although ASO activity in the nucleus has been well demonstrated, the cytoplasmic activity of ASOs is less clear. Using kinetic and subcellular fractionation studies, we evaluated ASO activity in the cytoplasm. Upon transfection, ASOs targeting exonic regions rapidly reduced cytoplasmically enriched mRNAs, whereas an intron-targeting ASO that only degrades the nuclear pre-mRNA reduced mRNA levels at a slower rate, similar to normal mRNA decay. Importantly, some exon-targeting ASOs can rapidly and vigorously reduce mRNA levels without decreasing pre-mRNA levels, suggesting that pre-existing cytoplasmic mRNAs can be cleaved by RNase H1-ASO treatment. In addition, we expressed a cytoplasm-localized mutant 7SL RNA that contains a partial U16 small nucleolar RNA (snoRNA) sequence. Treatment with an ASO simultaneously reduced both the nuclear U16 snoRNA and the cytoplasmic 7SL mutant RNA as early as 30 min after transfection in an RNase H1-dependent manner. Both the 5′ and 3′ cleavage products of the 7SL mutant RNA were accumulated in the cytoplasm. Together, these results demonstrate that RNase H1-dependent ASOs are robustly active in both the cytoplasm and nucleus.
Collapse
Affiliation(s)
- Xue-Hai Liang
- Department of Core Antisense Research, Ionis Pharmaceutics, Inc., Carlsbad, CA 92010, USA.
| | - Hong Sun
- Department of Core Antisense Research, Ionis Pharmaceutics, Inc., Carlsbad, CA 92010, USA
| | - Joshua G Nichols
- Department of Core Antisense Research, Ionis Pharmaceutics, Inc., Carlsbad, CA 92010, USA
| | - Stanley T Crooke
- Department of Core Antisense Research, Ionis Pharmaceutics, Inc., Carlsbad, CA 92010, USA
| |
Collapse
|
40
|
Bugiardini E, Poole OV, Manole A, Pittman AM, Horga A, Hargreaves I, Woodward CE, Sweeney MG, Holton JL, Taanman JW, Plant GT, Poulton J, Zeviani M, Ghezzi D, Taylor J, Smith C, Fratter C, Kanikannan MA, Paramasivam A, Thangaraj K, Spinazzola A, Holt IJ, Houlden H, Hanna MG, Pitceathly RDS. Clinicopathologic and molecular spectrum of RNASEH1-related mitochondrial disease. Neurol Genet 2017; 3:e149. [PMID: 28508084 PMCID: PMC5413961 DOI: 10.1212/nxg.0000000000000149] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/13/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Pathologic ribonuclease H1 (RNase H1) causes aberrant mitochondrial DNA (mtDNA) segregation and is associated with multiple mtDNA deletions. We aimed to determine the prevalence of RNase H1 gene (RNASEH1) mutations among patients with mitochondrial disease and establish clinically meaningful genotype-phenotype correlations. METHODS RNASEH1 was analyzed in patients with (1) multiple deletions/depletion of muscle mtDNA and (2) mendelian progressive external ophthalmoplegia (PEO) with neuropathologic evidence of mitochondrial dysfunction, but no detectable multiple deletions/depletion of muscle mtDNA. Clinicopathologic and molecular evaluation of the newly identified and previously reported patients harboring RNASEH1 mutations was subsequently undertaken. RESULTS Pathogenic c.424G>A p.Val142Ile RNASEH1 mutations were detected in 3 pedigrees among the 74 probands screened. Given that all 3 families had Indian ancestry, RNASEH1 genetic analysis was undertaken in 50 additional Indian probands with variable clinical presentations associated with multiple mtDNA deletions, but no further RNASEH1 mutations were confirmed. RNASEH1-related mitochondrial disease was characterized by PEO (100%), cerebellar ataxia (57%), and dysphagia (50%). The ataxia neuropathy spectrum phenotype was observed in 1 patient. Although the c.424G>A p.Val142Ile mutation underpins all reported RNASEH1-related mitochondrial disease, haplotype analysis suggested an independent origin, rather than a founder event, for the variant in our families. CONCLUSIONS In our cohort, RNASEH1 mutations represent the fourth most common cause of adult mendelian PEO associated with multiple mtDNA deletions, following mutations in POLG, RRM2B, and TWNK. RNASEH1 genetic analysis should also be considered in all patients with POLG-negative ataxia neuropathy spectrum. The pathophysiologic mechanisms by which the c.424G>A p.Val142Ile mutation impairs human RNase H1 warrant further investigation.
Collapse
Affiliation(s)
- Enrico Bugiardini
- MRC Centre for Neuromuscular Diseases (E.B., O.V.P., A.M., A.H., J.L.H., H.H., M.G.H., R.D.S.P.), UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery; Department of Molecular Neuroscience (A.M., A.M.P., J.L.H., H.H., M.G.H.), Division of Neuropathology (J.L.H.), Department of Clinical Neuroscience (J.-W.T., A.S., I.J.H.), UCL Institute of Neurology; Neurometabolic Unit (I.H.), Neurogenetics Unit (C.E.W., M.G.S.), Department of Neuro-ophthalmology (G.T.P.), National Hospital for Neurology and Neurosurgery, London; Nuffield Department of Obstetrics and Gynaecology (J.P.), University of Oxford; MRC-Mitochondrial Biology Unit (M.Z.), Cambridge, UK; Unit of Molecular Neurogenetics (D.G.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Oxford Medical Genetics Laboratories (J.T., C.S., C.F.), Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, UK; Department of Neurology (M.A.K.), Nizam's Institute of Medical Sciences; CSIR-Centre for Cellular and Molecular Biology (A.P., K.T.), Hyderabad, Telangana, India; MRC Mill Hill Laboratory (I.J.H.), London, UK; Biodonostia Research Institute (I.J.H.), San Sebastián, Spain; and Department of Basic and Clinical Neuroscience (R.D.S.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Olivia V Poole
- MRC Centre for Neuromuscular Diseases (E.B., O.V.P., A.M., A.H., J.L.H., H.H., M.G.H., R.D.S.P.), UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery; Department of Molecular Neuroscience (A.M., A.M.P., J.L.H., H.H., M.G.H.), Division of Neuropathology (J.L.H.), Department of Clinical Neuroscience (J.-W.T., A.S., I.J.H.), UCL Institute of Neurology; Neurometabolic Unit (I.H.), Neurogenetics Unit (C.E.W., M.G.S.), Department of Neuro-ophthalmology (G.T.P.), National Hospital for Neurology and Neurosurgery, London; Nuffield Department of Obstetrics and Gynaecology (J.P.), University of Oxford; MRC-Mitochondrial Biology Unit (M.Z.), Cambridge, UK; Unit of Molecular Neurogenetics (D.G.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Oxford Medical Genetics Laboratories (J.T., C.S., C.F.), Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, UK; Department of Neurology (M.A.K.), Nizam's Institute of Medical Sciences; CSIR-Centre for Cellular and Molecular Biology (A.P., K.T.), Hyderabad, Telangana, India; MRC Mill Hill Laboratory (I.J.H.), London, UK; Biodonostia Research Institute (I.J.H.), San Sebastián, Spain; and Department of Basic and Clinical Neuroscience (R.D.S.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Andreea Manole
- MRC Centre for Neuromuscular Diseases (E.B., O.V.P., A.M., A.H., J.L.H., H.H., M.G.H., R.D.S.P.), UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery; Department of Molecular Neuroscience (A.M., A.M.P., J.L.H., H.H., M.G.H.), Division of Neuropathology (J.L.H.), Department of Clinical Neuroscience (J.-W.T., A.S., I.J.H.), UCL Institute of Neurology; Neurometabolic Unit (I.H.), Neurogenetics Unit (C.E.W., M.G.S.), Department of Neuro-ophthalmology (G.T.P.), National Hospital for Neurology and Neurosurgery, London; Nuffield Department of Obstetrics and Gynaecology (J.P.), University of Oxford; MRC-Mitochondrial Biology Unit (M.Z.), Cambridge, UK; Unit of Molecular Neurogenetics (D.G.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Oxford Medical Genetics Laboratories (J.T., C.S., C.F.), Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, UK; Department of Neurology (M.A.K.), Nizam's Institute of Medical Sciences; CSIR-Centre for Cellular and Molecular Biology (A.P., K.T.), Hyderabad, Telangana, India; MRC Mill Hill Laboratory (I.J.H.), London, UK; Biodonostia Research Institute (I.J.H.), San Sebastián, Spain; and Department of Basic and Clinical Neuroscience (R.D.S.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Alan M Pittman
- MRC Centre for Neuromuscular Diseases (E.B., O.V.P., A.M., A.H., J.L.H., H.H., M.G.H., R.D.S.P.), UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery; Department of Molecular Neuroscience (A.M., A.M.P., J.L.H., H.H., M.G.H.), Division of Neuropathology (J.L.H.), Department of Clinical Neuroscience (J.-W.T., A.S., I.J.H.), UCL Institute of Neurology; Neurometabolic Unit (I.H.), Neurogenetics Unit (C.E.W., M.G.S.), Department of Neuro-ophthalmology (G.T.P.), National Hospital for Neurology and Neurosurgery, London; Nuffield Department of Obstetrics and Gynaecology (J.P.), University of Oxford; MRC-Mitochondrial Biology Unit (M.Z.), Cambridge, UK; Unit of Molecular Neurogenetics (D.G.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Oxford Medical Genetics Laboratories (J.T., C.S., C.F.), Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, UK; Department of Neurology (M.A.K.), Nizam's Institute of Medical Sciences; CSIR-Centre for Cellular and Molecular Biology (A.P., K.T.), Hyderabad, Telangana, India; MRC Mill Hill Laboratory (I.J.H.), London, UK; Biodonostia Research Institute (I.J.H.), San Sebastián, Spain; and Department of Basic and Clinical Neuroscience (R.D.S.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Alejandro Horga
- MRC Centre for Neuromuscular Diseases (E.B., O.V.P., A.M., A.H., J.L.H., H.H., M.G.H., R.D.S.P.), UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery; Department of Molecular Neuroscience (A.M., A.M.P., J.L.H., H.H., M.G.H.), Division of Neuropathology (J.L.H.), Department of Clinical Neuroscience (J.-W.T., A.S., I.J.H.), UCL Institute of Neurology; Neurometabolic Unit (I.H.), Neurogenetics Unit (C.E.W., M.G.S.), Department of Neuro-ophthalmology (G.T.P.), National Hospital for Neurology and Neurosurgery, London; Nuffield Department of Obstetrics and Gynaecology (J.P.), University of Oxford; MRC-Mitochondrial Biology Unit (M.Z.), Cambridge, UK; Unit of Molecular Neurogenetics (D.G.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Oxford Medical Genetics Laboratories (J.T., C.S., C.F.), Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, UK; Department of Neurology (M.A.K.), Nizam's Institute of Medical Sciences; CSIR-Centre for Cellular and Molecular Biology (A.P., K.T.), Hyderabad, Telangana, India; MRC Mill Hill Laboratory (I.J.H.), London, UK; Biodonostia Research Institute (I.J.H.), San Sebastián, Spain; and Department of Basic and Clinical Neuroscience (R.D.S.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Iain Hargreaves
- MRC Centre for Neuromuscular Diseases (E.B., O.V.P., A.M., A.H., J.L.H., H.H., M.G.H., R.D.S.P.), UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery; Department of Molecular Neuroscience (A.M., A.M.P., J.L.H., H.H., M.G.H.), Division of Neuropathology (J.L.H.), Department of Clinical Neuroscience (J.-W.T., A.S., I.J.H.), UCL Institute of Neurology; Neurometabolic Unit (I.H.), Neurogenetics Unit (C.E.W., M.G.S.), Department of Neuro-ophthalmology (G.T.P.), National Hospital for Neurology and Neurosurgery, London; Nuffield Department of Obstetrics and Gynaecology (J.P.), University of Oxford; MRC-Mitochondrial Biology Unit (M.Z.), Cambridge, UK; Unit of Molecular Neurogenetics (D.G.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Oxford Medical Genetics Laboratories (J.T., C.S., C.F.), Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, UK; Department of Neurology (M.A.K.), Nizam's Institute of Medical Sciences; CSIR-Centre for Cellular and Molecular Biology (A.P., K.T.), Hyderabad, Telangana, India; MRC Mill Hill Laboratory (I.J.H.), London, UK; Biodonostia Research Institute (I.J.H.), San Sebastián, Spain; and Department of Basic and Clinical Neuroscience (R.D.S.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Cathy E Woodward
- MRC Centre for Neuromuscular Diseases (E.B., O.V.P., A.M., A.H., J.L.H., H.H., M.G.H., R.D.S.P.), UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery; Department of Molecular Neuroscience (A.M., A.M.P., J.L.H., H.H., M.G.H.), Division of Neuropathology (J.L.H.), Department of Clinical Neuroscience (J.-W.T., A.S., I.J.H.), UCL Institute of Neurology; Neurometabolic Unit (I.H.), Neurogenetics Unit (C.E.W., M.G.S.), Department of Neuro-ophthalmology (G.T.P.), National Hospital for Neurology and Neurosurgery, London; Nuffield Department of Obstetrics and Gynaecology (J.P.), University of Oxford; MRC-Mitochondrial Biology Unit (M.Z.), Cambridge, UK; Unit of Molecular Neurogenetics (D.G.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Oxford Medical Genetics Laboratories (J.T., C.S., C.F.), Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, UK; Department of Neurology (M.A.K.), Nizam's Institute of Medical Sciences; CSIR-Centre for Cellular and Molecular Biology (A.P., K.T.), Hyderabad, Telangana, India; MRC Mill Hill Laboratory (I.J.H.), London, UK; Biodonostia Research Institute (I.J.H.), San Sebastián, Spain; and Department of Basic and Clinical Neuroscience (R.D.S.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Mary G Sweeney
- MRC Centre for Neuromuscular Diseases (E.B., O.V.P., A.M., A.H., J.L.H., H.H., M.G.H., R.D.S.P.), UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery; Department of Molecular Neuroscience (A.M., A.M.P., J.L.H., H.H., M.G.H.), Division of Neuropathology (J.L.H.), Department of Clinical Neuroscience (J.-W.T., A.S., I.J.H.), UCL Institute of Neurology; Neurometabolic Unit (I.H.), Neurogenetics Unit (C.E.W., M.G.S.), Department of Neuro-ophthalmology (G.T.P.), National Hospital for Neurology and Neurosurgery, London; Nuffield Department of Obstetrics and Gynaecology (J.P.), University of Oxford; MRC-Mitochondrial Biology Unit (M.Z.), Cambridge, UK; Unit of Molecular Neurogenetics (D.G.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Oxford Medical Genetics Laboratories (J.T., C.S., C.F.), Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, UK; Department of Neurology (M.A.K.), Nizam's Institute of Medical Sciences; CSIR-Centre for Cellular and Molecular Biology (A.P., K.T.), Hyderabad, Telangana, India; MRC Mill Hill Laboratory (I.J.H.), London, UK; Biodonostia Research Institute (I.J.H.), San Sebastián, Spain; and Department of Basic and Clinical Neuroscience (R.D.S.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Janice L Holton
- MRC Centre for Neuromuscular Diseases (E.B., O.V.P., A.M., A.H., J.L.H., H.H., M.G.H., R.D.S.P.), UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery; Department of Molecular Neuroscience (A.M., A.M.P., J.L.H., H.H., M.G.H.), Division of Neuropathology (J.L.H.), Department of Clinical Neuroscience (J.-W.T., A.S., I.J.H.), UCL Institute of Neurology; Neurometabolic Unit (I.H.), Neurogenetics Unit (C.E.W., M.G.S.), Department of Neuro-ophthalmology (G.T.P.), National Hospital for Neurology and Neurosurgery, London; Nuffield Department of Obstetrics and Gynaecology (J.P.), University of Oxford; MRC-Mitochondrial Biology Unit (M.Z.), Cambridge, UK; Unit of Molecular Neurogenetics (D.G.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Oxford Medical Genetics Laboratories (J.T., C.S., C.F.), Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, UK; Department of Neurology (M.A.K.), Nizam's Institute of Medical Sciences; CSIR-Centre for Cellular and Molecular Biology (A.P., K.T.), Hyderabad, Telangana, India; MRC Mill Hill Laboratory (I.J.H.), London, UK; Biodonostia Research Institute (I.J.H.), San Sebastián, Spain; and Department of Basic and Clinical Neuroscience (R.D.S.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Jan-Willem Taanman
- MRC Centre for Neuromuscular Diseases (E.B., O.V.P., A.M., A.H., J.L.H., H.H., M.G.H., R.D.S.P.), UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery; Department of Molecular Neuroscience (A.M., A.M.P., J.L.H., H.H., M.G.H.), Division of Neuropathology (J.L.H.), Department of Clinical Neuroscience (J.-W.T., A.S., I.J.H.), UCL Institute of Neurology; Neurometabolic Unit (I.H.), Neurogenetics Unit (C.E.W., M.G.S.), Department of Neuro-ophthalmology (G.T.P.), National Hospital for Neurology and Neurosurgery, London; Nuffield Department of Obstetrics and Gynaecology (J.P.), University of Oxford; MRC-Mitochondrial Biology Unit (M.Z.), Cambridge, UK; Unit of Molecular Neurogenetics (D.G.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Oxford Medical Genetics Laboratories (J.T., C.S., C.F.), Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, UK; Department of Neurology (M.A.K.), Nizam's Institute of Medical Sciences; CSIR-Centre for Cellular and Molecular Biology (A.P., K.T.), Hyderabad, Telangana, India; MRC Mill Hill Laboratory (I.J.H.), London, UK; Biodonostia Research Institute (I.J.H.), San Sebastián, Spain; and Department of Basic and Clinical Neuroscience (R.D.S.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Gordon T Plant
- MRC Centre for Neuromuscular Diseases (E.B., O.V.P., A.M., A.H., J.L.H., H.H., M.G.H., R.D.S.P.), UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery; Department of Molecular Neuroscience (A.M., A.M.P., J.L.H., H.H., M.G.H.), Division of Neuropathology (J.L.H.), Department of Clinical Neuroscience (J.-W.T., A.S., I.J.H.), UCL Institute of Neurology; Neurometabolic Unit (I.H.), Neurogenetics Unit (C.E.W., M.G.S.), Department of Neuro-ophthalmology (G.T.P.), National Hospital for Neurology and Neurosurgery, London; Nuffield Department of Obstetrics and Gynaecology (J.P.), University of Oxford; MRC-Mitochondrial Biology Unit (M.Z.), Cambridge, UK; Unit of Molecular Neurogenetics (D.G.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Oxford Medical Genetics Laboratories (J.T., C.S., C.F.), Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, UK; Department of Neurology (M.A.K.), Nizam's Institute of Medical Sciences; CSIR-Centre for Cellular and Molecular Biology (A.P., K.T.), Hyderabad, Telangana, India; MRC Mill Hill Laboratory (I.J.H.), London, UK; Biodonostia Research Institute (I.J.H.), San Sebastián, Spain; and Department of Basic and Clinical Neuroscience (R.D.S.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Joanna Poulton
- MRC Centre for Neuromuscular Diseases (E.B., O.V.P., A.M., A.H., J.L.H., H.H., M.G.H., R.D.S.P.), UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery; Department of Molecular Neuroscience (A.M., A.M.P., J.L.H., H.H., M.G.H.), Division of Neuropathology (J.L.H.), Department of Clinical Neuroscience (J.-W.T., A.S., I.J.H.), UCL Institute of Neurology; Neurometabolic Unit (I.H.), Neurogenetics Unit (C.E.W., M.G.S.), Department of Neuro-ophthalmology (G.T.P.), National Hospital for Neurology and Neurosurgery, London; Nuffield Department of Obstetrics and Gynaecology (J.P.), University of Oxford; MRC-Mitochondrial Biology Unit (M.Z.), Cambridge, UK; Unit of Molecular Neurogenetics (D.G.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Oxford Medical Genetics Laboratories (J.T., C.S., C.F.), Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, UK; Department of Neurology (M.A.K.), Nizam's Institute of Medical Sciences; CSIR-Centre for Cellular and Molecular Biology (A.P., K.T.), Hyderabad, Telangana, India; MRC Mill Hill Laboratory (I.J.H.), London, UK; Biodonostia Research Institute (I.J.H.), San Sebastián, Spain; and Department of Basic and Clinical Neuroscience (R.D.S.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Massimo Zeviani
- MRC Centre for Neuromuscular Diseases (E.B., O.V.P., A.M., A.H., J.L.H., H.H., M.G.H., R.D.S.P.), UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery; Department of Molecular Neuroscience (A.M., A.M.P., J.L.H., H.H., M.G.H.), Division of Neuropathology (J.L.H.), Department of Clinical Neuroscience (J.-W.T., A.S., I.J.H.), UCL Institute of Neurology; Neurometabolic Unit (I.H.), Neurogenetics Unit (C.E.W., M.G.S.), Department of Neuro-ophthalmology (G.T.P.), National Hospital for Neurology and Neurosurgery, London; Nuffield Department of Obstetrics and Gynaecology (J.P.), University of Oxford; MRC-Mitochondrial Biology Unit (M.Z.), Cambridge, UK; Unit of Molecular Neurogenetics (D.G.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Oxford Medical Genetics Laboratories (J.T., C.S., C.F.), Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, UK; Department of Neurology (M.A.K.), Nizam's Institute of Medical Sciences; CSIR-Centre for Cellular and Molecular Biology (A.P., K.T.), Hyderabad, Telangana, India; MRC Mill Hill Laboratory (I.J.H.), London, UK; Biodonostia Research Institute (I.J.H.), San Sebastián, Spain; and Department of Basic and Clinical Neuroscience (R.D.S.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Daniele Ghezzi
- MRC Centre for Neuromuscular Diseases (E.B., O.V.P., A.M., A.H., J.L.H., H.H., M.G.H., R.D.S.P.), UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery; Department of Molecular Neuroscience (A.M., A.M.P., J.L.H., H.H., M.G.H.), Division of Neuropathology (J.L.H.), Department of Clinical Neuroscience (J.-W.T., A.S., I.J.H.), UCL Institute of Neurology; Neurometabolic Unit (I.H.), Neurogenetics Unit (C.E.W., M.G.S.), Department of Neuro-ophthalmology (G.T.P.), National Hospital for Neurology and Neurosurgery, London; Nuffield Department of Obstetrics and Gynaecology (J.P.), University of Oxford; MRC-Mitochondrial Biology Unit (M.Z.), Cambridge, UK; Unit of Molecular Neurogenetics (D.G.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Oxford Medical Genetics Laboratories (J.T., C.S., C.F.), Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, UK; Department of Neurology (M.A.K.), Nizam's Institute of Medical Sciences; CSIR-Centre for Cellular and Molecular Biology (A.P., K.T.), Hyderabad, Telangana, India; MRC Mill Hill Laboratory (I.J.H.), London, UK; Biodonostia Research Institute (I.J.H.), San Sebastián, Spain; and Department of Basic and Clinical Neuroscience (R.D.S.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - John Taylor
- MRC Centre for Neuromuscular Diseases (E.B., O.V.P., A.M., A.H., J.L.H., H.H., M.G.H., R.D.S.P.), UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery; Department of Molecular Neuroscience (A.M., A.M.P., J.L.H., H.H., M.G.H.), Division of Neuropathology (J.L.H.), Department of Clinical Neuroscience (J.-W.T., A.S., I.J.H.), UCL Institute of Neurology; Neurometabolic Unit (I.H.), Neurogenetics Unit (C.E.W., M.G.S.), Department of Neuro-ophthalmology (G.T.P.), National Hospital for Neurology and Neurosurgery, London; Nuffield Department of Obstetrics and Gynaecology (J.P.), University of Oxford; MRC-Mitochondrial Biology Unit (M.Z.), Cambridge, UK; Unit of Molecular Neurogenetics (D.G.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Oxford Medical Genetics Laboratories (J.T., C.S., C.F.), Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, UK; Department of Neurology (M.A.K.), Nizam's Institute of Medical Sciences; CSIR-Centre for Cellular and Molecular Biology (A.P., K.T.), Hyderabad, Telangana, India; MRC Mill Hill Laboratory (I.J.H.), London, UK; Biodonostia Research Institute (I.J.H.), San Sebastián, Spain; and Department of Basic and Clinical Neuroscience (R.D.S.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Conrad Smith
- MRC Centre for Neuromuscular Diseases (E.B., O.V.P., A.M., A.H., J.L.H., H.H., M.G.H., R.D.S.P.), UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery; Department of Molecular Neuroscience (A.M., A.M.P., J.L.H., H.H., M.G.H.), Division of Neuropathology (J.L.H.), Department of Clinical Neuroscience (J.-W.T., A.S., I.J.H.), UCL Institute of Neurology; Neurometabolic Unit (I.H.), Neurogenetics Unit (C.E.W., M.G.S.), Department of Neuro-ophthalmology (G.T.P.), National Hospital for Neurology and Neurosurgery, London; Nuffield Department of Obstetrics and Gynaecology (J.P.), University of Oxford; MRC-Mitochondrial Biology Unit (M.Z.), Cambridge, UK; Unit of Molecular Neurogenetics (D.G.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Oxford Medical Genetics Laboratories (J.T., C.S., C.F.), Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, UK; Department of Neurology (M.A.K.), Nizam's Institute of Medical Sciences; CSIR-Centre for Cellular and Molecular Biology (A.P., K.T.), Hyderabad, Telangana, India; MRC Mill Hill Laboratory (I.J.H.), London, UK; Biodonostia Research Institute (I.J.H.), San Sebastián, Spain; and Department of Basic and Clinical Neuroscience (R.D.S.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Carl Fratter
- MRC Centre for Neuromuscular Diseases (E.B., O.V.P., A.M., A.H., J.L.H., H.H., M.G.H., R.D.S.P.), UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery; Department of Molecular Neuroscience (A.M., A.M.P., J.L.H., H.H., M.G.H.), Division of Neuropathology (J.L.H.), Department of Clinical Neuroscience (J.-W.T., A.S., I.J.H.), UCL Institute of Neurology; Neurometabolic Unit (I.H.), Neurogenetics Unit (C.E.W., M.G.S.), Department of Neuro-ophthalmology (G.T.P.), National Hospital for Neurology and Neurosurgery, London; Nuffield Department of Obstetrics and Gynaecology (J.P.), University of Oxford; MRC-Mitochondrial Biology Unit (M.Z.), Cambridge, UK; Unit of Molecular Neurogenetics (D.G.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Oxford Medical Genetics Laboratories (J.T., C.S., C.F.), Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, UK; Department of Neurology (M.A.K.), Nizam's Institute of Medical Sciences; CSIR-Centre for Cellular and Molecular Biology (A.P., K.T.), Hyderabad, Telangana, India; MRC Mill Hill Laboratory (I.J.H.), London, UK; Biodonostia Research Institute (I.J.H.), San Sebastián, Spain; and Department of Basic and Clinical Neuroscience (R.D.S.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Meena A Kanikannan
- MRC Centre for Neuromuscular Diseases (E.B., O.V.P., A.M., A.H., J.L.H., H.H., M.G.H., R.D.S.P.), UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery; Department of Molecular Neuroscience (A.M., A.M.P., J.L.H., H.H., M.G.H.), Division of Neuropathology (J.L.H.), Department of Clinical Neuroscience (J.-W.T., A.S., I.J.H.), UCL Institute of Neurology; Neurometabolic Unit (I.H.), Neurogenetics Unit (C.E.W., M.G.S.), Department of Neuro-ophthalmology (G.T.P.), National Hospital for Neurology and Neurosurgery, London; Nuffield Department of Obstetrics and Gynaecology (J.P.), University of Oxford; MRC-Mitochondrial Biology Unit (M.Z.), Cambridge, UK; Unit of Molecular Neurogenetics (D.G.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Oxford Medical Genetics Laboratories (J.T., C.S., C.F.), Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, UK; Department of Neurology (M.A.K.), Nizam's Institute of Medical Sciences; CSIR-Centre for Cellular and Molecular Biology (A.P., K.T.), Hyderabad, Telangana, India; MRC Mill Hill Laboratory (I.J.H.), London, UK; Biodonostia Research Institute (I.J.H.), San Sebastián, Spain; and Department of Basic and Clinical Neuroscience (R.D.S.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Arumugam Paramasivam
- MRC Centre for Neuromuscular Diseases (E.B., O.V.P., A.M., A.H., J.L.H., H.H., M.G.H., R.D.S.P.), UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery; Department of Molecular Neuroscience (A.M., A.M.P., J.L.H., H.H., M.G.H.), Division of Neuropathology (J.L.H.), Department of Clinical Neuroscience (J.-W.T., A.S., I.J.H.), UCL Institute of Neurology; Neurometabolic Unit (I.H.), Neurogenetics Unit (C.E.W., M.G.S.), Department of Neuro-ophthalmology (G.T.P.), National Hospital for Neurology and Neurosurgery, London; Nuffield Department of Obstetrics and Gynaecology (J.P.), University of Oxford; MRC-Mitochondrial Biology Unit (M.Z.), Cambridge, UK; Unit of Molecular Neurogenetics (D.G.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Oxford Medical Genetics Laboratories (J.T., C.S., C.F.), Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, UK; Department of Neurology (M.A.K.), Nizam's Institute of Medical Sciences; CSIR-Centre for Cellular and Molecular Biology (A.P., K.T.), Hyderabad, Telangana, India; MRC Mill Hill Laboratory (I.J.H.), London, UK; Biodonostia Research Institute (I.J.H.), San Sebastián, Spain; and Department of Basic and Clinical Neuroscience (R.D.S.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Kumarasamy Thangaraj
- MRC Centre for Neuromuscular Diseases (E.B., O.V.P., A.M., A.H., J.L.H., H.H., M.G.H., R.D.S.P.), UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery; Department of Molecular Neuroscience (A.M., A.M.P., J.L.H., H.H., M.G.H.), Division of Neuropathology (J.L.H.), Department of Clinical Neuroscience (J.-W.T., A.S., I.J.H.), UCL Institute of Neurology; Neurometabolic Unit (I.H.), Neurogenetics Unit (C.E.W., M.G.S.), Department of Neuro-ophthalmology (G.T.P.), National Hospital for Neurology and Neurosurgery, London; Nuffield Department of Obstetrics and Gynaecology (J.P.), University of Oxford; MRC-Mitochondrial Biology Unit (M.Z.), Cambridge, UK; Unit of Molecular Neurogenetics (D.G.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Oxford Medical Genetics Laboratories (J.T., C.S., C.F.), Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, UK; Department of Neurology (M.A.K.), Nizam's Institute of Medical Sciences; CSIR-Centre for Cellular and Molecular Biology (A.P., K.T.), Hyderabad, Telangana, India; MRC Mill Hill Laboratory (I.J.H.), London, UK; Biodonostia Research Institute (I.J.H.), San Sebastián, Spain; and Department of Basic and Clinical Neuroscience (R.D.S.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Antonella Spinazzola
- MRC Centre for Neuromuscular Diseases (E.B., O.V.P., A.M., A.H., J.L.H., H.H., M.G.H., R.D.S.P.), UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery; Department of Molecular Neuroscience (A.M., A.M.P., J.L.H., H.H., M.G.H.), Division of Neuropathology (J.L.H.), Department of Clinical Neuroscience (J.-W.T., A.S., I.J.H.), UCL Institute of Neurology; Neurometabolic Unit (I.H.), Neurogenetics Unit (C.E.W., M.G.S.), Department of Neuro-ophthalmology (G.T.P.), National Hospital for Neurology and Neurosurgery, London; Nuffield Department of Obstetrics and Gynaecology (J.P.), University of Oxford; MRC-Mitochondrial Biology Unit (M.Z.), Cambridge, UK; Unit of Molecular Neurogenetics (D.G.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Oxford Medical Genetics Laboratories (J.T., C.S., C.F.), Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, UK; Department of Neurology (M.A.K.), Nizam's Institute of Medical Sciences; CSIR-Centre for Cellular and Molecular Biology (A.P., K.T.), Hyderabad, Telangana, India; MRC Mill Hill Laboratory (I.J.H.), London, UK; Biodonostia Research Institute (I.J.H.), San Sebastián, Spain; and Department of Basic and Clinical Neuroscience (R.D.S.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Ian J Holt
- MRC Centre for Neuromuscular Diseases (E.B., O.V.P., A.M., A.H., J.L.H., H.H., M.G.H., R.D.S.P.), UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery; Department of Molecular Neuroscience (A.M., A.M.P., J.L.H., H.H., M.G.H.), Division of Neuropathology (J.L.H.), Department of Clinical Neuroscience (J.-W.T., A.S., I.J.H.), UCL Institute of Neurology; Neurometabolic Unit (I.H.), Neurogenetics Unit (C.E.W., M.G.S.), Department of Neuro-ophthalmology (G.T.P.), National Hospital for Neurology and Neurosurgery, London; Nuffield Department of Obstetrics and Gynaecology (J.P.), University of Oxford; MRC-Mitochondrial Biology Unit (M.Z.), Cambridge, UK; Unit of Molecular Neurogenetics (D.G.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Oxford Medical Genetics Laboratories (J.T., C.S., C.F.), Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, UK; Department of Neurology (M.A.K.), Nizam's Institute of Medical Sciences; CSIR-Centre for Cellular and Molecular Biology (A.P., K.T.), Hyderabad, Telangana, India; MRC Mill Hill Laboratory (I.J.H.), London, UK; Biodonostia Research Institute (I.J.H.), San Sebastián, Spain; and Department of Basic and Clinical Neuroscience (R.D.S.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases (E.B., O.V.P., A.M., A.H., J.L.H., H.H., M.G.H., R.D.S.P.), UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery; Department of Molecular Neuroscience (A.M., A.M.P., J.L.H., H.H., M.G.H.), Division of Neuropathology (J.L.H.), Department of Clinical Neuroscience (J.-W.T., A.S., I.J.H.), UCL Institute of Neurology; Neurometabolic Unit (I.H.), Neurogenetics Unit (C.E.W., M.G.S.), Department of Neuro-ophthalmology (G.T.P.), National Hospital for Neurology and Neurosurgery, London; Nuffield Department of Obstetrics and Gynaecology (J.P.), University of Oxford; MRC-Mitochondrial Biology Unit (M.Z.), Cambridge, UK; Unit of Molecular Neurogenetics (D.G.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Oxford Medical Genetics Laboratories (J.T., C.S., C.F.), Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, UK; Department of Neurology (M.A.K.), Nizam's Institute of Medical Sciences; CSIR-Centre for Cellular and Molecular Biology (A.P., K.T.), Hyderabad, Telangana, India; MRC Mill Hill Laboratory (I.J.H.), London, UK; Biodonostia Research Institute (I.J.H.), San Sebastián, Spain; and Department of Basic and Clinical Neuroscience (R.D.S.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases (E.B., O.V.P., A.M., A.H., J.L.H., H.H., M.G.H., R.D.S.P.), UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery; Department of Molecular Neuroscience (A.M., A.M.P., J.L.H., H.H., M.G.H.), Division of Neuropathology (J.L.H.), Department of Clinical Neuroscience (J.-W.T., A.S., I.J.H.), UCL Institute of Neurology; Neurometabolic Unit (I.H.), Neurogenetics Unit (C.E.W., M.G.S.), Department of Neuro-ophthalmology (G.T.P.), National Hospital for Neurology and Neurosurgery, London; Nuffield Department of Obstetrics and Gynaecology (J.P.), University of Oxford; MRC-Mitochondrial Biology Unit (M.Z.), Cambridge, UK; Unit of Molecular Neurogenetics (D.G.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Oxford Medical Genetics Laboratories (J.T., C.S., C.F.), Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, UK; Department of Neurology (M.A.K.), Nizam's Institute of Medical Sciences; CSIR-Centre for Cellular and Molecular Biology (A.P., K.T.), Hyderabad, Telangana, India; MRC Mill Hill Laboratory (I.J.H.), London, UK; Biodonostia Research Institute (I.J.H.), San Sebastián, Spain; and Department of Basic and Clinical Neuroscience (R.D.S.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Robert D S Pitceathly
- MRC Centre for Neuromuscular Diseases (E.B., O.V.P., A.M., A.H., J.L.H., H.H., M.G.H., R.D.S.P.), UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery; Department of Molecular Neuroscience (A.M., A.M.P., J.L.H., H.H., M.G.H.), Division of Neuropathology (J.L.H.), Department of Clinical Neuroscience (J.-W.T., A.S., I.J.H.), UCL Institute of Neurology; Neurometabolic Unit (I.H.), Neurogenetics Unit (C.E.W., M.G.S.), Department of Neuro-ophthalmology (G.T.P.), National Hospital for Neurology and Neurosurgery, London; Nuffield Department of Obstetrics and Gynaecology (J.P.), University of Oxford; MRC-Mitochondrial Biology Unit (M.Z.), Cambridge, UK; Unit of Molecular Neurogenetics (D.G.), Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy; Oxford Medical Genetics Laboratories (J.T., C.S., C.F.), Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, UK; Department of Neurology (M.A.K.), Nizam's Institute of Medical Sciences; CSIR-Centre for Cellular and Molecular Biology (A.P., K.T.), Hyderabad, Telangana, India; MRC Mill Hill Laboratory (I.J.H.), London, UK; Biodonostia Research Institute (I.J.H.), San Sebastián, Spain; and Department of Basic and Clinical Neuroscience (R.D.S.P.), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
41
|
Mitochondrial DNA replication: a PrimPol perspective. Biochem Soc Trans 2017; 45:513-529. [PMID: 28408491 PMCID: PMC5390496 DOI: 10.1042/bst20160162] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 12/20/2022]
Abstract
PrimPol, (primase-polymerase), the most recently identified eukaryotic polymerase, has roles in both nuclear and mitochondrial DNA maintenance. PrimPol is capable of acting as a DNA polymerase, with the ability to extend primers and also bypass a variety of oxidative and photolesions. In addition, PrimPol also functions as a primase, catalysing the preferential formation of DNA primers in a zinc finger-dependent manner. Although PrimPol's catalytic activities have been uncovered in vitro, we still know little about how and why it is targeted to the mitochondrion and what its key roles are in the maintenance of this multicopy DNA molecule. Unlike nuclear DNA, the mammalian mitochondrial genome is circular and the organelle has many unique proteins essential for its maintenance, presenting a differing environment within which PrimPol must function. Here, we discuss what is currently known about the mechanisms of DNA replication in the mitochondrion, the proteins that carry out these processes and how PrimPol is likely to be involved in assisting this vital cellular process.
Collapse
|
42
|
El-Hattab AW, Craigen WJ, Scaglia F. Mitochondrial DNA maintenance defects. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1539-1555. [PMID: 28215579 DOI: 10.1016/j.bbadis.2017.02.017] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/31/2017] [Accepted: 02/14/2017] [Indexed: 01/12/2023]
Abstract
The maintenance of mitochondrial DNA (mtDNA) depends on a number of nuclear gene-encoded proteins including a battery of enzymes forming the replisome needed to synthesize mtDNA. These enzymes need to be in balanced quantities to function properly that is in part achieved by exchanging intramitochondrial contents through mitochondrial fusion. In addition, mtDNA synthesis requires a balanced supply of nucleotides that is achieved by nucleotide recycling inside the mitochondria and import from the cytosol. Mitochondrial DNA maintenance defects (MDMDs) are a group of diseases caused by pathogenic variants in the nuclear genes involved in mtDNA maintenance resulting in impaired mtDNA synthesis leading to quantitative (mtDNA depletion) and qualitative (multiple mtDNA deletions) defects in mtDNA. Defective mtDNA leads to organ dysfunction due to insufficient mtDNA-encoded protein synthesis, resulting in an inadequate energy production to meet the needs of affected organs. MDMDs are inherited as autosomal recessive or dominant traits, and are associated with a broad phenotypic spectrum ranging from mild adult-onset ophthalmoplegia to severe infantile fatal hepatic failure. To date, pathogenic variants in 20 nuclear genes known to be crucial for mtDNA maintenance have been linked to MDMDs, including genes encoding enzymes of mtDNA replication machinery (POLG, POLG2, TWNK, TFAM, RNASEH1, MGME1, and DNA2), genes encoding proteins that function in maintaining a balanced mitochondrial nucleotide pool (TK2, DGUOK, SUCLG1, SUCLA2, ABAT, RRM2B, TYMP, SLC25A4, AGK, and MPV17), and genes encoding proteins involved in mitochondrial fusion (OPA1, MFN2, and FBXL4).
Collapse
Affiliation(s)
- Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Pediatrics Department, Tawam Hospital, Al-Ain, United Arab Emirates
| | - William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|