1
|
Xia W, Pei Z, Leng K, Zhu X. Research Progress in Rare Earth-Doped Perovskite Manganite Oxide Nanostructures. NANOSCALE RESEARCH LETTERS 2020; 15:9. [PMID: 31933031 PMCID: PMC6957627 DOI: 10.1186/s11671-019-3243-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/27/2019] [Indexed: 05/12/2023]
Abstract
Perovskite manganites exhibit a broad range of structural, electronic, and magnetic properties, which are widely investigated since the discovery of the colossal magnetoresistance effect in 1994. As compared to the parent perovskite manganite oxides, rare earth-doped perovskite manganite oxides with a chemical composition of LnxA1-xMnO3 (where Ln represents rare earth metal elements such as La, Pr, Nd, A is divalent alkaline earth metal elements such as Ca, Sr, Ba) exhibit much diverse electrical properties due to that the rare earth doping leads to a change of valence states of manganese which plays a core role in the transport properties. There is not only the technological importance but also the need to understand the fundamental mechanisms behind the unusual magnetic and transport properties that attract enormous attention. Nowadays, with the rapid development of electronic devices toward integration and miniaturization, the feature sizes of the microelectronic devices based on rare earth-doped perovskite manganite are down-scaled into nanoscale dimensions. At nanoscale, various finite size effects in rare earth-doped perovskite manganite oxide nanostructures will lead to more interesting novel properties of this system. In recent years, much progress has been achieved on the rare earth-doped perovskite manganite oxide nanostructures after considerable experimental and theoretical efforts. This paper gives an overview of the state of art in the studies on the fabrication, structural characterization, physical properties, and functional applications of rare earth-doped perovskite manganite oxide nanostructures. Our review first starts with the short introduction of the research histories and the remarkable discoveries in the rare earth-doped perovskite manganites. In the second part, different methods for fabricating rare earth-doped perovskite manganite oxide nanostructures are summarized. Next, structural characterization and multifunctional properties of the rare earth-doped perovskite manganite oxide nanostructures are in-depth reviewed. In the following, potential applications of rare earth-doped perovskite manganite oxide nanostructures in the fields of magnetic memory devices and magnetic sensors, spintronic devices, solid oxide fuel cells, magnetic refrigeration, biomedicine, and catalysts are highlighted. Finally, this review concludes with some perspectives and challenges for the future researches of rare earth-doped perovskite manganite oxide nanostructures.
Collapse
Affiliation(s)
- Weiren Xia
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093 China
| | - Zhipeng Pei
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093 China
| | - Kai Leng
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093 China
| | - Xinhua Zhu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093 China
| |
Collapse
|
2
|
Portehault D, Delacroix S, Gouget G, Grosjean R, Chan-Chang THC. Beyond the Compositional Threshold of Nanoparticle-Based Materials. Acc Chem Res 2018. [PMID: 29533580 DOI: 10.1021/acs.accounts.7b00429] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The design of inorganic nanoparticles relies strongly on the knowledge from solid-state chemistry not only for characterization techniques, but also and primarily for choosing the systems that will yield the desired properties. The range of inorganic solids reported and studied as nanoparticles is however strikingly narrow when compared to the solid-state chemistry portfolio of bulk materials. Efforts to enlarge the collection of inorganic particles are becoming increasingly important for three reasons. First, they can yield materials more performing than current ones for a range of fields including biomedicine, optics, catalysis, and energy. Second, looking outside the box of common compositions is a way to target original properties or to discover genuinely new behaviors. The third reason lies in the path followed to reach these novel nano-objects: exploration and setup of new synthetic approaches. Indeed, willingness to access original nanoparticles faces a synthetic challenge: how to reach nanoparticles of solids that originally belong to the realm of solid-state chemistry and its typical protocols at high temperature? To answer this question, alternative reaction pathways must be sought, which may in turn provide tracks for new, untargeted materials. The corresponding strategies require limiting particle growth by confinement at high temperatures or by decreasing the synthesis temperature. Both approaches, especially the latter, provide a nice playground to discover metastable solids never reported before. The aim of this Account is to raise attention to the topic of the design of new inorganic nanoparticles. To do so, we take the perspective of our own work in the field, by first describing synthetic challenges and how they are addressed by current protocols. We then use our achievements to highlight the possibilities offered by new nanomaterials and to introduce synthetic approaches that are not in the focus of recent literature but hold, in our opinion, great promise. We will span methods of low temperature "chimie douce" aqueous synthesis coupled to microwave heating, sol-gel chemistry and processing coupled to solid state reactions, and then molten salt synthesis. These protocols pave the way to metastable low valence oxyhydroxides, vanadates, perovskite oxides, boron carbon nitrides, and metal borides, all obtained at the nanoscale with structural and morphological features differing from "usual" nanomaterials. These nano-objects show original properties, from sensing, thermoelectricity, charge and spin transports, photoluminescence, and catalysis, which require advanced characterization of surface states. We then identify future trends of synthetic methodologies that will merit further attention in this burgeoning field, by emphasizing the importance of unveiling reaction mechanisms and coupling experiments with modeling.
Collapse
Affiliation(s)
- David Portehault
- Sorbonne
Université,
CNRS, Collège de France, Laboratoire Chimie de la Matière
Condensée de Paris, LCMCP, 4 Place Jussieu, F-75005 Paris, France
| | - Simon Delacroix
- Sorbonne
Université,
CNRS, Collège de France, Laboratoire Chimie de la Matière
Condensée de Paris, LCMCP, 4 Place Jussieu, F-75005 Paris, France
- Sorbonne Université,
CNRS, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux
et de Cosmochimie, IMPMC, 4 Place Jussieu, F-75005 Paris, France
| | - Guillaume Gouget
- Sorbonne
Université,
CNRS, Collège de France, Laboratoire Chimie de la Matière
Condensée de Paris, LCMCP, 4 Place Jussieu, F-75005 Paris, France
| | - Rémi Grosjean
- Sorbonne
Université,
CNRS, Collège de France, Laboratoire Chimie de la Matière
Condensée de Paris, LCMCP, 4 Place Jussieu, F-75005 Paris, France
- Sorbonne Université,
CNRS, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux
et de Cosmochimie, IMPMC, 4 Place Jussieu, F-75005 Paris, France
| | - Tsou-Hsi-Camille Chan-Chang
- Sorbonne
Université,
CNRS, Collège de France, Laboratoire Chimie de la Matière
Condensée de Paris, LCMCP, 4 Place Jussieu, F-75005 Paris, France
| |
Collapse
|
3
|
Thi N'Goc HL, Mouafo LDN, Etrillard C, Torres-Pardo A, Dayen JF, Rano S, Rousse G, Laberty-Robert C, Calbet JG, Drillon M, Sanchez C, Doudin B, Portehault D. Surface-Driven Magnetotransport in Perovskite Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1604745. [PMID: 28009460 DOI: 10.1002/adma.201604745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/19/2016] [Indexed: 06/06/2023]
Abstract
Unique insights into magnetotransport in 20 nm ligand-free La0.67 Sr0.33 MnO3 perovskite nanocrystals of nearly perfect crystalline quality reveal a chemically altered 0.8 nm thick surface layer that triggers exceptionally large magnetoresistance at low temperature, independently of the spin polarization of the ferromagnetic core. This discovery shows how the nanoscale impacts magnetotransport in a material widely spread as electrode in hybrid spintronic devices.
Collapse
Affiliation(s)
- Ha Le Thi N'Goc
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 11 place Marcelin Berthelot, F-75005, Paris, France
| | - Louis Donald Notemgnou Mouafo
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, 23 rue du Loess, BP 43, F-67034, Strasbourg, France
| | - Céline Etrillard
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, 23 rue du Loess, BP 43, F-67034, Strasbourg, France
| | - Almudena Torres-Pardo
- Departamento de Química Inorgánica I, Facultad de Químicas, Universidad Complutense CEI Moncloa, 28040, Madrid, Spain
| | - Jean-François Dayen
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, 23 rue du Loess, BP 43, F-67034, Strasbourg, France
| | - Simon Rano
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 11 place Marcelin Berthelot, F-75005, Paris, France
| | - Gwenaëlle Rousse
- Sorbonne Universités, UPMC Univ Paris 06, Chimie du Solide et de l'Energie, UMR 8260, Collège de France, 11 place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Christel Laberty-Robert
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 11 place Marcelin Berthelot, F-75005, Paris, France
| | - Jose Gonzales Calbet
- Departamento de Química Inorgánica I, Facultad de Químicas, Universidad Complutense CEI Moncloa, 28040, Madrid, Spain
- Centro Nacional de Microscopía Electrónica, Universidad Complutense, 28040, Madrid, Spain
| | - Marc Drillon
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, 23 rue du Loess, BP 43, F-67034, Strasbourg, France
| | - Clément Sanchez
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 11 place Marcelin Berthelot, F-75005, Paris, France
| | - Bernard Doudin
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, 23 rue du Loess, BP 43, F-67034, Strasbourg, France
| | - David Portehault
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 11 place Marcelin Berthelot, F-75005, Paris, France
| |
Collapse
|