1
|
Asmare N, Arifuzzman AKM, Wang N, Boya M, Liu R, Sarioglu AF. High throughput cell stiffness measurement via multiplexed impedance sensors. Biosens Bioelectron 2025; 273:117158. [PMID: 39848001 DOI: 10.1016/j.bios.2025.117158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 01/25/2025]
Abstract
Since physiological and pathological events change the mechanical properties of cells, tools that rapidly quantify such changes at the single-cell level can advance the utility of cell mechanics as a label-free biomarker. We demonstrate the capability to probe the population-level elastic modulus and fluidity of MDA-MB-231 cells at a throughput of up to 50 cell/second within a portable microchip. Our sensing scheme adapts a code multiplexing scheme to implement a distributed network of sensors throughout the microchip, thereby compressing all sensing events into a single electrical output. To validate our approach, we prepared cell samples whose stiffnesses were manipulated with chemical agents. We confirmed the expected effect of the chemicals agreed with the stiffness measurements reported by our microchip. Such a low-cost electronic assay that rapidly measures mechanical properties enables previously infeasible studies to advance the science of mechanobiology.
Collapse
Affiliation(s)
- Norh Asmare
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - A K M Arifuzzman
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Ningquan Wang
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Mert Boya
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Ruxiu Liu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - A Fatih Sarioglu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States; The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States; Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
2
|
Kim JH, Cetinkaya-Fisgin A, Zahn N, Sari MC, Hoke A, Barman I. Label-Free Visualization and Morphological Profiling of Neuronal Differentiation and Axonal Degeneration through Quantitative Phase Imaging. Adv Biol (Weinh) 2024; 8:e2400020. [PMID: 38548657 PMCID: PMC11090721 DOI: 10.1002/adbi.202400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Indexed: 05/15/2024]
Abstract
Understanding the intricate processes of neuronal growth, degeneration, and neurotoxicity is paramount for unraveling nervous system function and holds significant promise in improving patient outcomes, especially in the context of chemotherapy-induced peripheral neuropathy (CIPN). These processes are influenced by a broad range of entwined events facilitated by chemical, electrical, and mechanical signals. The progress of each process is inherently linked to phenotypic changes in cells. Currently, the primary means of demonstrating morphological changes rely on measurements of neurite outgrowth and axon length. However, conventional techniques for monitoring these processes often require extensive preparation to enable manual or semi-automated measurements. Here, a label-free and non-invasive approach is employed for monitoring neuronal differentiation and degeneration using quantitative phase imaging (QPI). Operating on unlabeled specimens and offering little to no phototoxicity and photobleaching, QPI delivers quantitative maps of optical path length delays that provide an objective measure of cellular morphology and dynamics. This approach enables the visualization and quantification of axon length and other physical properties of dorsal root ganglion (DRG) neuronal cells, allowing greater understanding of neuronal responses to stimuli simulating CIPN conditions. This research paves new avenues for the development of more effective strategies in the clinical management of neurotoxicity.
Collapse
Affiliation(s)
- Jeong Hee Kim
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Aysel Cetinkaya-Fisgin
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Noah Zahn
- Department Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Mehmet Can Sari
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ahmet Hoke
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Oncology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
3
|
Haputhanthri U, Herath K, Hettiarachchi R, Kariyawasam H, Ahmad A, Ahluwalia BS, Acharya G, Edussooriya CUS, Wadduwage DN. Towards ultrafast quantitative phase imaging via differentiable microscopy [Invited]. BIOMEDICAL OPTICS EXPRESS 2024; 15:1798-1812. [PMID: 38495703 PMCID: PMC10942716 DOI: 10.1364/boe.504954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/15/2023] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
With applications ranging from metabolomics to histopathology, quantitative phase microscopy (QPM) is a powerful label-free imaging modality. Despite significant advances in fast multiplexed imaging sensors and deep-learning-based inverse solvers, the throughput of QPM is currently limited by the pixel-rate of the image sensors. Complementarily, to improve throughput further, here we propose to acquire images in a compressed form so that more information can be transferred beyond the existing hardware bottleneck of the image sensor. To this end, we present a numerical simulation of a learnable optical compression-decompression framework that learns content-specific features. The proposed differentiable quantitative phase microscopy (∂-QPM) first uses learnable optical processors as image compressors. The intensity representations produced by these optical processors are then captured by the imaging sensor. Finally, a reconstruction network running on a computer decompresses the QPM images post aquisition. In numerical experiments, the proposed system achieves compression of × 64 while maintaining the SSIM of ∼0.90 and PSNR of ∼30 dB on cells. The results demonstrated by our experiments open up a new pathway to QPM systems that may provide unprecedented throughput improvements.
Collapse
Affiliation(s)
- Udith Haputhanthri
- Center for Advanced Imaging, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Electronic and Telecommunication Engineering, University of Moratuwa, Sri Lanka
| | - Kithmini Herath
- Center for Advanced Imaging, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Electronic and Telecommunication Engineering, University of Moratuwa, Sri Lanka
| | - Ramith Hettiarachchi
- Center for Advanced Imaging, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Electronic and Telecommunication Engineering, University of Moratuwa, Sri Lanka
| | - Hasindu Kariyawasam
- Center for Advanced Imaging, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Electronic and Telecommunication Engineering, University of Moratuwa, Sri Lanka
| | - Azeem Ahmad
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, 9037, Norway
| | - Balpreet S. Ahluwalia
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, 9037, Norway
| | - Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | | | - Dushan N. Wadduwage
- Center for Advanced Imaging, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
4
|
Serafini CE, Song H, Platt MO, Robles FE. Analysis of structural effects of sickle cell disease on brain vasculature of mice using three-dimensional quantitative phase imaging. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:096501. [PMID: 37692563 PMCID: PMC10491933 DOI: 10.1117/1.jbo.28.9.096501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/08/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Significance Although the molecular origins of sickle cell disease (SCD) have been extensively studied, the effects of SCD on the vasculature-which can influence blood clotting mechanisms, pain crises, and strokes-are not well understood. Improving this understanding can yield insight into the mechanisms and wide-ranging effects of this devastating disease. Aim We aim to demonstrate the ability of a label-free 3D quantitative phase imaging technology, called quantitative oblique back-illumination microscopy (qOBM), to provide insight into the effects of SCD on brain vasculature. Approach Using qOBM, we quantitatively analyze the vasculature of freshly excised, but otherwise unaltered, whole mouse brains. We use Townes sickle transgenic mice, which closely recapitulate the pathophysiology of human SCD, and sickle cell trait mice as controls. Two developmental time points are studied: 6-week-old mice and 20-week-old mice. Quantitative structural and biophysical parameters of the vessels (including the refractive index (RI), which is linearly proportional to dry mass) are extracted from the high-resolution images and analyzed. Results qOBM reveals structural differences in the brain blood vessel thickness (thinner for SCD in particular brain regions) and the RI of the vessel wall (higher and containing a larger variation throughout the brain for SCD). These changes were only significant in 20-week-old mice. Further, vessel breakages are observed in SCD mice at both time points. The vessel wall RI distribution near these breaks, up to 350 μ m away from the breaking point, shows an erratic behavior characterized by wide RI variations. Vessel diameter, tortuosity, texture within the vessel, and structural fractal patterns are found to not be statistically different. As with vessel breaks, we also observe blood vessel blockages only in mice brains with SCD. Conclusions qOBM provides insight into the biophysical and structural composition of brain blood vessels in mice with SCD. Data suggest that the RI may be an indirect indicator of vessel rigidity, vessel strength, and/or tensions, which change with SCD. Future ex vivo and in vivo studies with qOBM could improve our understanding of SCD.
Collapse
Affiliation(s)
- Caroline Elizabeth Serafini
- Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, Georgia, United States
| | - Hannah Song
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States
| | - Manu O. Platt
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States
| | - Francisco E. Robles
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| |
Collapse
|
5
|
Kang S, Zhou R, Brelen M, Mak HK, Lin Y, So PTC, Yaqoob Z. Mapping nanoscale topographic features in thick tissues with speckle diffraction tomography. LIGHT, SCIENCE & APPLICATIONS 2023; 12:200. [PMID: 37607903 PMCID: PMC10444882 DOI: 10.1038/s41377-023-01240-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 08/24/2023]
Abstract
Resolving three-dimensional morphological features in thick specimens remains a significant challenge for label-free imaging. We report a new speckle diffraction tomography (SDT) approach that can image thick biological specimens with ~500 nm lateral resolution and ~1 μm axial resolution in a reflection geometry. In SDT, multiple-scattering background is rejected through spatiotemporal gating provided by dynamic speckle-field interferometry, while depth-resolved refractive index maps are reconstructed by developing a comprehensive inverse-scattering model that also considers specimen-induced aberrations. Benefiting from the high-resolution and full-field quantitative imaging capabilities of SDT, we successfully imaged red blood cells and quantified their membrane fluctuations behind a turbid medium with a thickness of 2.8 scattering mean-free paths. Most importantly, we performed volumetric imaging of cornea inside an ex vivo rat eye and quantified its optical properties, including the mapping of nanoscale topographic features of Dua's and Descemet's membranes that had not been previously visualized.
Collapse
Affiliation(s)
- Sungsam Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Renjie Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Marten Brelen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Heather K Mak
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuechuan Lin
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Peter T C So
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zahid Yaqoob
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
6
|
The effect of pupil transmittance on axial resolution of reflection phase microscopy. Sci Rep 2021; 11:22774. [PMID: 34815473 PMCID: PMC8610988 DOI: 10.1038/s41598-021-02188-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/09/2021] [Indexed: 11/23/2022] Open
Abstract
A reflection phase microscope (RPM) can be equipped with the capability of depth selection by employing a gating mechanism. However, it is difficult to achieve an axial resolution close to the diffraction limit in real implementation. Here, we systematically investigated the uneven interference contrast produced by pupil transmittance of the objective lens and found that it was the main cause of the practical limit that prevents the axial resolution from reaching its diffraction limit. Then we modulated the power of illumination light to obtain a uniform interference contrast over the entire pupil. Consequently, we could achieve an axial resolution fairly close to the diffraction limit set by the experimental conditions.
Collapse
|
7
|
Paidi SK, Raj P, Bordett R, Zhang C, Karandikar SH, Pandey R, Barman I. Raman and quantitative phase imaging allow morpho-molecular recognition of malignancy and stages of B-cell acute lymphoblastic leukemia. Biosens Bioelectron 2021; 190:113403. [PMID: 34130086 PMCID: PMC8492164 DOI: 10.1016/j.bios.2021.113403] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 01/15/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is one of the most common malignancies that account for nearly one-third of all pediatric cancers. The current diagnostic assays are time-consuming, labor-intensive, and require expensive reagents. Here, we report a label-free approach featuring diffraction phase imaging and Raman microscopy that can retrieve both morphological and molecular attributes for label-free optical phenotyping of individual B cells. By investigating leukemia cell lines of early and late stages along with the healthy B cells, we show that phase images can capture subtle morphological differences among the healthy, early, and late stages of leukemic cells. By exploiting its biomolecular specificity, we demonstrate that Raman microscopy is capable of accurately identifying not only different stages of leukemia cells but also individual cell lines at each stage. Overall, our study provides a rationale for employing this hybrid modality to screen leukemia cells using the widefield QPI and using Raman microscopy for accurate differentiation of early and late-stage phenotypes. This contrast-free and rapid diagnostic tool exhibits great promise for clinical diagnosis and staging of leukemia in the near future.
Collapse
Affiliation(s)
- Santosh Kumar Paidi
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rosalie Bordett
- Connecticut Children's Innovation Center, University of Connecticut School of Medicine, Farmington, CT, 06032, USA
| | - Chi Zhang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sukrut H Karandikar
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Rishikesh Pandey
- Connecticut Children's Innovation Center, University of Connecticut School of Medicine, Farmington, CT, 06032, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Oncology, Johns Hopkins University, Baltimore, MD, 21287, USA.
| |
Collapse
|
8
|
Jia Z, Asiri S, Elsharif A, Alamoudi W, Al-Suhaimi E, Kim SG. Design of Inverted Nano-Cone Arrayed SERS Substrate for Rapid Detection of Pathogens. APPLIED SCIENCES 2021; 11:8067. [DOI: 10.3390/app11178067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Rapid detection of bacteria is a very critical and important part of infectious disease treatment. Sepsis kills more than 25 percent of its victims, resulting in as many as half of all deaths in hospitals before identifying the pathogen for patients to get the right treatment. Raman spectroscopy is a promising candidate in pathogen diagnosis given its fast and label-free nature, only if the concentration of the pathogen is high enough to provide reasonable sensitivity. This work reports a new design of surface-enhanced Raman spectroscopy (SERS) substrate which will provide high enough sensitivity and fast and close contact of the target structure to the optical hot spots for immunomagnetic capturing-based bacteria-concentrating technique. The substrate uses inverted nanocone structure arrays made of transparent PDMS (Polydimethylsiloxane) to funnel the light from the bottom to the top of the cones where plasmonic gold nanorods are located. A high reflective and low loss layer is deposited on the outer surface of the cone. Given the geometry of cones, photons are multi-reflected by the outer layer and thus the number density of photons at hotspots increases by an order of magnitude, which could be high enough to detect immunomagnetically densified bacteria.
Collapse
Affiliation(s)
- Zixun Jia
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Sarah Asiri
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Asma Elsharif
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Widyan Alamoudi
- Biophysics Research Epidemic Research Department, Institute for Medical and Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ebtesam Al-Suhaimi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Sang-Gook Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
9
|
Guo C, Hou X, Liu Y, Zhang Y, Xu H, Zhao F, Chen D. Novel Chinese Angelica Polysaccharide Biomimetic Nanomedicine to Curcumin Delivery for Hepatocellular Carcinoma Treatment and Immunomodulatory Effect. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153356. [PMID: 33039729 DOI: 10.1016/j.phymed.2020.153356] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Using natural polysaccharides from Traditional Chinese Medicine as nanodrug delivery systems have considerable potential for tumor diagnostics and therapeutics. PURPOSE On the basis of targeted therapy and combining the advantages of natural polysaccharides (angelica polysaccharide, APS) and natural Chinese medicine (curcumin, Cur) to design functionalized nanoparticles to improve the therapeutic through cell membrane encapsulation and immunotherapy. STUDY DESIGN AND METHODS Cur-loaded, glycyrrhetic acid (GA)-APS-disulfide bond (DTA)-Cur nanomicelle (GACS-Cur), which were prepared by the dialysis method. GACS-Cur was encapsulated with the membranes from red blood cells (RBCm) termed GACS-Cur@RBCm, which were prepared by the principle of extrusion using a miniature extruder. The developed formulations were subjected to various in vitro and in vivo evaluation tests. RESULTS The resulting APS nanocarriers supported a favorable drug-loading capacity, biocompatibility, and enhanced synergistic anti-hepatoma effects both in vitro and in vivo. After administration in mice, in vivo imaging results showed that the GACS-Cur and RBCm-coated groups had an obvious stronger tumor tissue targeting ability than the control treatment groups. Additionally, the immunomodulatory effect increased IL-12, TNF-α and IFN-γ expression and CD8+ T cell infiltration (1.9-fold) than that of the saline group. Notably, in comparison with hyaluronic acid (HA) nanocarriers, APS nanocarriers possess higher anti-hepatoma efficiency and targeting capabilities and, thus, should be further studied for a wide range of anti-cancer applications. CONCLUSION Our data demonstrated that APS nanocarriers encapsulated with erythrocyte membrane mighty be a promising clinical method in the development of efficacy, safety and targeting of liver cancer therapy.
Collapse
Affiliation(s)
- Chunjing Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Xiaoya Hou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China; Weifang Institute of Chinese Medical Sciences and Industrial Technology, Weifang 261100, P.R.China
| | - Yanhui Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles,Qingdao University, Qingdao, Shandong, 266071, P.R. China
| | - Yanchun Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230013, China; Weifang Institute of Chinese Medical Sciences and Industrial Technology, Weifang 261100, P.R.China
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China; Weifang Institute of Chinese Medical Sciences and Industrial Technology, Weifang 261100, P.R.China
| | - Feng Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China; Weifang Institute of Chinese Medical Sciences and Industrial Technology, Weifang 261100, P.R.China
| | - Daquan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China; State Key Laboratory of Bio-Fibers and Eco-Textiles,Qingdao University, Qingdao, Shandong, 266071, P.R. China; Weifang Institute of Chinese Medical Sciences and Industrial Technology, Weifang 261100, P.R.China.
| |
Collapse
|
10
|
Żabka A, Winnicki K, Polit JT, Bernasińska-Słomczewska J, Maszewski J. 5-Aminouracil and other inhibitors of DNA replication induce biphasic interphase-mitotic cells in apical root meristems of Allium cepa. PLANT CELL REPORTS 2020; 39:1013-1028. [PMID: 32328702 PMCID: PMC7359111 DOI: 10.1007/s00299-020-02545-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Induction of biphasic interphase-mitotic cells and PCC is connected with an increased level of metabolism in root meristem cells of Allium cepa. Previous experiments using primary roots of Allium cepa exposed to low concentrations of hydroxyurea have shown that long-term DNA replication stress (DRS) disrupts essential links of the S-M checkpoint mechanism, leading meristem cells either to premature chromosome condensation (PCC) or to a specific form of chromatin condensation, establishing biphasic organization of cell nuclei with both interphase and mitotic domains (IM cells). The present study supplements and extends these observations by describing general conditions under which both abnormal types of M-phase cells may occur. The analysis of root apical meristem (RAM) cell proliferation after prolonged mild DRS indicates that a broad spectrum of inhibitors is capable of generating PCC and IM organization of cell nuclei. These included: 5-aminouracil (5-AU, a thymine antagonist), characterized by the highest efficiency in creating cells with the IM phenotype, aphidicolin (APH), an inhibitor of DNA polymerase α, 5-fluorodeoxyuridine (FUdR), an inhibitor of thymidylate synthetase, methotrexate (MTX), a folic acid analog that inhibits purine and pyrimidine synthesis, and cytosine arabinoside (Ara-C), which inhibits DNA replication by forming cleavage complexes with topoisomerase I. As evidenced using fluorescence-based click chemistry assays, continuous treatment of onion RAM cells with 5-AU is associated with an accelerated dynamics of the DNA replication machinery and significantly enhanced levels of transcription and translation. Furthermore, DRS conditions bring about an intensified production of hydrogen peroxide (H2O2), depletion of reduced glutathione (GSH), and some increase in DNA fragmentation, associated with only a slight increase in apoptosis-like programmed cell death events.
Collapse
Affiliation(s)
- Aneta Żabka
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Konrad Winnicki
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Justyna Teresa Polit
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Joanna Bernasińska-Słomczewska
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Janusz Maszewski
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
11
|
Allosteric control of hemoglobin S fiber formation by oxygen and its relation to the pathophysiology of sickle cell disease. Proc Natl Acad Sci U S A 2020; 117:15018-15027. [PMID: 32527859 PMCID: PMC7334536 DOI: 10.1073/pnas.1922004117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The pathology of sickle cell disease is caused by polymerization of the abnormal hemoglobin S upon deoxygenation in the tissues to form fibers in red cells, causing them to deform and occlude the circulation. Drugs that allosterically shift the quaternary equilibrium from the polymerizing T quaternary structure to the nonpolymerizing R quaternary structure are now being developed. Here we update our understanding on the allosteric control of fiber formation at equilibrium by showing how the simplest extension of the classic quaternary two-state allosteric model of Monod, Wyman, and Changeux to include tertiary conformational changes provides a better quantitative description. We also show that if fiber formation is at equilibrium in vivo, the vast majority of cells in most tissues would contain fibers, indicating that it is unlikely that the disease would be survivable once the nonpolymerizing fetal hemoglobin has been replaced by adult hemoglobin S at about 1 y after birth. Calculations of sickling times, based on a recently discovered universal relation between the delay time prior to fiber formation and supersaturation, show that in vivo fiber formation is very far from equilibrium. Our analysis indicates that patients survive because the delay period allows the majority of cells to escape the small vessels of the tissues before fibers form. The enormous sensitivity of the duration of the delay period to intracellular hemoglobin composition also explains why sickle trait, the heterozygous condition, and the compound heterozygous condition of hemoglobin S with pancellular hereditary persistence of fetal hemoglobin are both relatively benign conditions.
Collapse
|
12
|
Ilyas S, Simonson AE, Asghar W. Emerging point-of-care technologies for sickle cell disease diagnostics. Clin Chim Acta 2019; 501:85-91. [PMID: 31678569 DOI: 10.1016/j.cca.2019.10.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 11/25/2022]
Abstract
Sickle cell disease (SCD) is a serious and life-threatening disorder. SCD is considered a public health issue affecting 25% of the population in Central and West Africa. Some countries in this region lack the necessary resources to treat and diagnose many diseases including SCD. Current methods for screening SCD are time-consuming and require expensive laboratory equipment and facilities. This leads to an inability to diagnose the disease early. Lack of early diagnosis and treatment can lead to childhood death. The number of childhood deaths is significantly higher in developing countries. There is unmet need to develop novel methods for diagnosing and monitoring SCD that are both cost effective and portable. The point-of-care (POC) platforms provide the cost effectiveness and portability that allows for the potential diagnosis of millions of people in countries with few resources. In this review, we summarized the important features, benefits, limitations and potential of POC devices. We conducted a comprehensive literature analysis to compare the sensitivity and specificity of several POC diagnostics developed for SCD with a focus on their usages in resource limited settings.
Collapse
Affiliation(s)
- Shazia Ilyas
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Andrew Evan Simonson
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Waseem Asghar
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA; Department of Biological Sciences (Courtesy Appointment), Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
13
|
Studying nucleic envelope and plasma membrane mechanics of eukaryotic cells using confocal reflectance interferometric microscopy. Nat Commun 2019; 10:3652. [PMID: 31409824 PMCID: PMC6692322 DOI: 10.1038/s41467-019-11645-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/29/2019] [Indexed: 12/18/2022] Open
Abstract
Mechanical stress on eukaryotic nucleus has been implicated in a diverse range of diseases including muscular dystrophy and cancer metastasis. Today, there are very few non-perturbative methods to quantify nuclear mechanical properties. Interferometric microscopy, also known as quantitative phase microscopy (QPM), is a powerful tool for studying red blood cell biomechanics. The existing QPM tools, however, have not been utilized to study biomechanics of complex eukaryotic cells either due to lack of depth sectioning, limited phase measurement sensitivity, or both. Here, we present depth-resolved confocal reflectance interferometric microscopy as the next generation QPM to study nuclear and plasma membrane biomechanics. The proposed system features multiple confocal scanning foci, affording 1.5 micron depth-resolution and millisecond frame rate. Furthermore, a near common-path interferometer enables quantifying nanometer-scale membrane fluctuations with better than 200 picometers sensitivity. Our results present accurate quantification of nucleic envelope and plasma membrane fluctuations in embryonic stem cells. Biomechanical studies of eukaryotic cells have been limited due to low sensitivity and axial resolution in interferometric imaging. Here, the authors present depth-resolved confocal reflectance interferometric microscopy with high sensitivity and temporal resolution, which enables quantification of nucleic envelope and plasma membrane fluctuations.
Collapse
|
14
|
Pandey R, Zhou R, Bordett R, Hunter C, Glunde K, Barman I, Valdez T, Finck C. Integration of diffraction phase microscopy and Raman imaging for label-free morpho-molecular assessment of live cells. JOURNAL OF BIOPHOTONICS 2019; 12:e201800291. [PMID: 30421505 PMCID: PMC6447451 DOI: 10.1002/jbio.201800291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/15/2018] [Accepted: 11/09/2018] [Indexed: 05/05/2023]
Abstract
Label-free quantitative imaging is highly desirable for studying live cells by extracting pathophysiological information without perturbing cell functions. Here, we demonstrate a novel label-free multimodal optical imaging system with the capability of providing comprehensive morphological and molecular attributes of live cells. Our morpho-molecular microscopy (3M) system draws on the combined strength of quantitative phase microscopy (QPM) and Raman microscopy to probe the morphological features and molecular fingerprinting characteristics of each cell under observation. While the commonr-path geometry of our QPM system allows for highly sensitive phase measurement, the Raman microscopy is equipped with dual excitation wavelengths and utilizes the same detection and dispersion system, making it a distinctive multi-wavelength system with a small footprint. We demonstrate the applicability of the 3M system by investigating nucleated and nonnucleated cells. This integrated label-free platform has a promising potential in preclinical research, as well as in clinical diagnosis in the near future.
Collapse
Affiliation(s)
- Rishikesh Pandey
- Connecticut Children's Innovation Center, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Renjie Zhou
- Department of Chemistry, Laser Biomedical Research Center, George R. Harrison Spectroscopy Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Laser Metrology and Biomedicine Lab, Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Rosalie Bordett
- Connecticut Children's Innovation Center, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Ciera Hunter
- Connecticut Children's Innovation Center, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Kristine Glunde
- The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Ishan Barman
- The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Tulio Valdez
- Department of Otolaryngology, Stanford University, Palo Alto, California
| | - Christine Finck
- Connecticut Children's Innovation Center, University of Connecticut School of Medicine, Farmington, Connecticut
- Department of Surgery, Connecticut Children's Medical Center, Harford, Connecticut
| |
Collapse
|
15
|
Karandikar SH, Zhang C, Meiyappan A, Barman I, Finck C, Srivastava PK, Pandey R. Reagent-Free and Rapid Assessment of T Cell Activation State Using Diffraction Phase Microscopy and Deep Learning. Anal Chem 2019; 91:3405-3411. [PMID: 30741527 PMCID: PMC6423970 DOI: 10.1021/acs.analchem.8b04895] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CD8+ T cells constitute an essential compartment of the adaptive immune system. During immune responses, naı̈ve T cells become functional, as they are primed with their cognate determinants by the antigen presenting cells. Current methods of identifying activated CD8+ T cells are laborious, time-consuming and expensive due to the extensive list of required reagents. Here, we demonstrate an optical imaging approach featuring quantitative phase imaging to distinguish activated CD8+ T cells from naı̈ve CD8+ T cells in a rapid and reagent-free manner. We measured the dry mass of live cells and employed transport-based morphometry to better understand their differential morphological attributes. Our results reveal that, upon activation, the dry cell mass of T cells increases significantly in comparison to that of unstimulated cells. By employing deep learning formalism, we are able to accurately predict the population ratios of unknown mixed population based on the acquired quantitative phase images. We envision that, with further refinement, this label-free method of T cell phenotyping will lead to a rapid and cost-effective platform for assaying T cell responses to candidate antigens in the near future.
Collapse
Affiliation(s)
- Sukrut Hemant Karandikar
- Department of Immunology, University of Connecticut School of Medicine, Farmington, Connecticut 06030, United States
| | - Chi Zhang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Akilan Meiyappan
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Christine Finck
- Department of Surgery, Connecticut Children’s Medical Center, Harford, Connecticut United States
- Connecticut Children’s Innovation Center, University of Connecticut School of Medicine, Farmington, Connecticut 06032, United States
| | - Pramod Kumar Srivastava
- Department of Immunology, University of Connecticut School of Medicine, Farmington, Connecticut 06030, United States
- Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut 06030, United States
| | - Rishikesh Pandey
- Connecticut Children’s Innovation Center, University of Connecticut School of Medicine, Farmington, Connecticut 06032, United States
| |
Collapse
|
16
|
Zhang L, Zhu J, Wilke KL, Xu Z, Zhao L, Lu Z, Goddard LL, Wang EN. Enhanced Environmental Scanning Electron Microscopy Using Phase Reconstruction and Its Application in Condensation. ACS NANO 2019; 13:1953-1960. [PMID: 30653292 DOI: 10.1021/acsnano.8b08389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Environmental scanning electron microscopy (ESEM) is a broadly utilized nanoscale inspection technique capable of imaging wet or insulating samples. It extends the application of conventional scanning electron microscopy (SEM) and has been extensively used to study the behavior of liquid, polymer, and biomaterials by allowing for a gaseous environment. However, the presence of gas in the chamber can severely degrade the image resolution and contrast. This typically limits the ESEM operating pressure below 1000 Pa. The dynamic interactions, which require even-higher sensitivity and resolution, are particularly challenging to resolve at high-pressure conditions. Here, we present an enhanced ESEM technique using phase reconstruction to extend the limits of the ESEM operating pressure while improving the image quality, which is useful for sensing weak scattering from transparent or nanoscale samples. We applied this method to investigate the dynamics of condensing droplets, as an example case, which is of fundamental importance and has many industrial applications. We visualized dynamic processes such as single-droplet growth and droplet coalescence where the operating pressure range was extended from 1000 to 2500 Pa. Moreover, we detected the distribution of nucleation sites on the nanostructured surfaces. Such nanoscale sensing has been challenging previously due to the limitation of resolution and sensitivity. Our work provides a simple approach for high-performance ESEM imaging at high-pressure conditions without changes to the hardware and can be widely applied to investigate a broad range of static and dynamic processes.
Collapse
Affiliation(s)
- Lenan Zhang
- Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Jinlong Zhu
- Department of Electrical and Computer Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Kyle L Wilke
- Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Zhenyuan Xu
- Institute of Refrigeration and Cryogenics , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Lin Zhao
- Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Zhengmao Lu
- Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Lynford L Goddard
- Department of Electrical and Computer Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Evelyn N Wang
- Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
17
|
Deng Y, Papageorgiou DP, Chang HY, Abidi SZ, Li X, Dao M, Karniadakis GE. Quantifying Shear-Induced Deformation and Detachment of Individual Adherent Sickle Red Blood Cells. Biophys J 2018; 116:360-371. [PMID: 30612714 DOI: 10.1016/j.bpj.2018.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/26/2018] [Accepted: 12/10/2018] [Indexed: 02/02/2023] Open
Abstract
Vaso-occlusive crisis, a common painful complication of sickle cell disease, is a complex process triggered by intercellular adhesive interactions among blood cells and the endothelium in all human organs (e.g., the oxygen-rich lung as well as hypoxic systems such as liver and kidneys). We present a combined experimental-computational study to quantify the adhesive characteristics of sickle mature erythrocytes (SMEs) and irreversibly sickled cells (ISCs) under flow conditions mimicking those in postcapillary venules. We employed an in vitro microfluidic cell adherence assay, which is coated uniformly with fibronectin. We investigated the adhesion dynamics of SMEs and ISCs in pulsatile flow under well-controlled hypoxic conditions, inferring the cell adhesion strength by increasing the flow rate (or wall shear stress (WSS)) until the onset of cell detachment. In parallel, we performed simulations of individual SMEs and ISCs under shear. We introduced two metrics to quantify the adhesion process, the cell aspect ratio (AR) as a function of WSS and its rate of change (the dynamic deformability index). We found that the AR of SMEs decreases significantly with the increase of WSS, consistent between the experiments and simulations. In contrast, the AR of ISCs remains constant in time and independent of the flow rate. The critical WSS value for detaching a single SME in oxygenated state is in the range of 3.9-5.5 Pa depending on the number of adhesion sites; the critical WSS value for ISCs is lower than that of SMEs. Our simulations show that the critical WSS value for SMEs in deoxygenated state is above 6.2 Pa (multiple adhesion sites), which is greater than their oxygenated counterparts. We investigated the effect of cell shear modulus on the detachment process; we found that for the same cell adhesion spring constant, the higher shear modulus leads to an earlier cell detachment from the functionalized surface. These findings may aid in the understanding of individual roles of sickle cell types in sickle cell disease vaso-occlusion.
Collapse
Affiliation(s)
- Yixiang Deng
- Division of Applied Mathematics, Brown University, Providence, Rhode Island; School of Engineering, Brown University, Providence, Rhode Island
| | - Dimitrios P Papageorgiou
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Hung-Yu Chang
- Division of Applied Mathematics, Brown University, Providence, Rhode Island
| | - Sabia Z Abidi
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Bioengineering, Rice University, Houston, Texas
| | - Xuejin Li
- Division of Applied Mathematics, Brown University, Providence, Rhode Island; Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China.
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | |
Collapse
|
18
|
Hosseinzadeh VA, Brugnara C, Holt RG. Shape oscillations of single blood drops: applications to human blood and sickle cell disease. Sci Rep 2018; 8:16794. [PMID: 30429489 PMCID: PMC6235873 DOI: 10.1038/s41598-018-34600-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/09/2018] [Indexed: 11/09/2022] Open
Abstract
Sickle cell disease (SCD) is an inherited blood disorder associated with severe anemia, vessel occlusion, poor oxygen transport and organ failure. The presence of stiff and often sickle-shaped red blood cells is the hallmark of SCD and is believed to contribute to impaired blood rheology and organ damage. Most existing measurement techniques of blood and red blood cell physical properties require sample contact and/or large sample volume, which is problematic for pediatric patients. Acoustic levitation allows rheological measurements in a single drop of blood, simultaneously eliminating the need for both contact containment and manipulation of samples. The technique shows that the shape oscillation of blood drops is able to assess blood viscosity in normal and SCD blood and demonstrates an abnormally increased viscosity in SCD when compared with normal controls. Furthermore, the technique is sensitive enough to detect viscosity changes induced by hydroxyurea treatment, and their dependence on the total fetal hemoglobin content of the sample. Thus this technique may hold promise as a monitoring tool for assessing changes in blood rheology in sickle cell and other hematological diseases.
Collapse
Affiliation(s)
| | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - R Glynn Holt
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
19
|
CHOI YOUNGWOON, HOSSEINI POORYA, KANG JEONWOONG, KANG SUNGSAM, YANG TAESEOKDANIEL, HYEON MINGYU, KIM BEOPMIN, SO PETERTC, YAQOOB ZAHID. Reflection phase microscopy using spatio-temporal coherence of light. OPTICA 2018; 5:1468-1473. [PMID: 31008154 PMCID: PMC6472928 DOI: 10.1364/optica.5.001468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/11/2018] [Indexed: 05/10/2023]
Abstract
Many disease states are associated with cellular biomechanical changes as markers. Label-free phase microscopes are used to quantify thermally driven interface fluctuations, which allow the deduction of important cellular rheological properties. Here, the spatio-temporal coherence of light was used to implement a high-speed reflection phase microscope with superior depth selectivity and higher phase sensitivity. Nanometric scale motion of cytoplasmic structures can be visualized with fine details and three-dimensional resolution. Specifically, the spontaneous fluctuation occurring on the nuclear membrane of a living cell was observed at video rate. By converting the reflection phase into displacement, the sensitivity in quantifying nuclear membrane fluctuation was found to be about one nanometer. A reflection phase microscope can potentially elucidate biomechanical mechanisms of pathological and physiological processes.
Collapse
Affiliation(s)
- YOUNGWOON CHOI
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, South Korea
| | - POORYA HOSSEINI
- Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - JEON WOONG KANG
- Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - SUNGSAM KANG
- Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - TAESEOK DANIEL YANG
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea
| | - MIN GYU HYEON
- Department of Biomicro System Technology, Korea University, Seoul 02841, South Korea
| | - BEOP-MIN KIM
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, South Korea
- Department of Biomicro System Technology, Korea University, Seoul 02841, South Korea
| | - PETER T. C. SO
- Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Mechanical and Biological Engineering Departments, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - ZAHID YAQOOB
- Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
20
|
Abstract
Patients with sickle cell disease (SCD) suffer from painful vasoocclusive crises. Polymerization of sickle hemoglobin (HbS) in RBCs is generally considered a major contributor to such crisis events. Here, we present the simultaneous and synergistic coupling of adhesion and HbS polymerization. We show that the age of RBCs in circulation plays an important role in mediating this synergistic effect on blood rheology and clinical symptoms. In particular, the youngest RBCs exhibit unique adhesion dynamics, whereby polymerized HbS fiber bundles grow from cell surfaces to serve as sites of cytoadherence. Our molecular-level simulations show how the attachment and dissociation of molecular bonds influence adhesion dynamics. These results provide a framework that could elucidate the mechanistic basis of SCD vasoocclusive pain crises. Polymerization and adhesion, dynamic processes that are hallmarks of sickle cell disease (SCD), have thus far been studied in vitro only separately. Here, we present quantitative results of the simultaneous and synergistic effects of adhesion and polymerization of deoxygenated sickle hemoglobin (HbS) in the human red blood cell (RBC) on the mechanisms underlying vasoocclusive pain crisis. For this purpose, we employ a specially developed hypoxic microfluidic platform, which is capable of inducing sickling and unsickling of RBCs in vitro, to test blood samples from eight patients with SCD. We supplemented these experimental results with detailed molecular-level computational simulations of cytoadherence and biorheology using dissipative particle dynamics. By recourse to image analysis techniques, we characterize sickle RBC maturation stages in the following order of the degree of adhesion susceptibility under hypoxia: sickle reticulocytes in circulation (SRs) → sickle mature erythrocytes (SMEs) → irreversibly sickled cells (ISCs). We show that (i) hypoxia significantly enhances sickle RBC adherence; (ii) HbS polymerization enhances sickle cell adherence in SRs and SMEs, but not in ISCs; (iii) SRs exhibit unique adhesion dynamics where HbS fiber projections growing outward from the cell surface create multiple sites of adhesion; and (iv) polymerization stimulates adhesion and vice versa, thereby establishing the bidirectional coupling between the two processes. These findings offer insights into possible mechanistic pathways leading to vasoocclusion crisis. They also elucidate the processes underlying the onset of occlusion that may involve circulating reticulocytes, which are more abundant in hemolytic anemias due to robust compensatory erythropoiesis.
Collapse
|
21
|
Li H, Papageorgiou DP, Chang HY, Lu L, Yang J, Deng Y. Synergistic Integration of Laboratory and Numerical Approaches in Studies of the Biomechanics of Diseased Red Blood Cells. BIOSENSORS 2018; 8:E76. [PMID: 30103419 PMCID: PMC6164935 DOI: 10.3390/bios8030076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/25/2022]
Abstract
In red blood cell (RBC) disorders, such as sickle cell disease, hereditary spherocytosis, and diabetes, alterations to the size and shape of RBCs due to either mutations of RBC proteins or changes to the extracellular environment, lead to compromised cell deformability, impaired cell stability, and increased propensity to aggregate. Numerous laboratory approaches have been implemented to elucidate the pathogenesis of RBC disorders. Concurrently, computational RBC models have been developed to simulate the dynamics of RBCs under physiological and pathological conditions. In this work, we review recent laboratory and computational studies of disordered RBCs. Distinguished from previous reviews, we emphasize how experimental techniques and computational modeling can be synergically integrated to improve the understanding of the pathophysiology of hematological disorders.
Collapse
Affiliation(s)
- He Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
| | - Dimitrios P Papageorgiou
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Hung-Yu Chang
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
| | - Lu Lu
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
| | - Jun Yang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Yixiang Deng
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
- School of Engineering, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
22
|
Jung J, Kim J, Seo MK, Park Y. Measurements of polarization-dependent angle-resolved light scattering from individual microscopic samples using Fourier transform light scattering. OPTICS EXPRESS 2018; 26:7701-7711. [PMID: 29609322 DOI: 10.1364/oe.26.007701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/24/2018] [Indexed: 05/27/2023]
Abstract
We present a method to measure the vector-field light scattering of individual microscopic objects. The polarization-dependent optical field images are measured with quantitative phase imaging at the sample plane, and then numerically propagated to the far-field plane. This approach allows the two-dimensional polarization-dependent angle-resolved light scattered patterns from individual object to be obtained with high precision and sensitivity. Using this method, we present the measurements of the polarization-dependent light scattering of a liquid crystal droplet and individual silver nanowires over scattering angles of 50°. In addition, the spectroscopic extension of the polarization-dependent angle-resolved light scattering is demonstrated using wavelength-scanning illumination.
Collapse
|
23
|
Hosseini P, Jin D, Yaqoob Z, So PTC. Single-shot dual-wavelength interferometric microscopy. Methods 2018; 136:35-39. [PMID: 29079485 PMCID: PMC5857408 DOI: 10.1016/j.ymeth.2017.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023] Open
Abstract
Interferometric microscopy (IM) can provide complex field information of the biological samples with high spatial and temporal resolution with virtually no photodamage. Measuring wavelength-dependent information in particular has a wide range of applications from cell and tissue refractometry to the cellular biophysical measurements. IM measurements at multiple wavelengths are typically associated with a loss in temporal resolution, field of view, stability, sensitivity, and may involve using expensive equipment such as tunable filters or spatial light modulators. Here, we present a novel and simple design for an interferometric microscope that provides single-shot off-axis interferometric measurements at two wavelengths by encoding the two spectral images at two orthogonal spatial frequencies that allows clean separation of information in the Fourier space with no resolution loss. We demonstrated accurate simultaneous quantification of polystyrene bead refractive indices at two wavelengths.
Collapse
Affiliation(s)
- Poorya Hosseini
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| | - Di Jin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Zahid Yaqoob
- Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Peter T C So
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
24
|
Jin D, Zhou R, Yaqoob Z, So PTC. Tomographic phase microscopy: principles and applications in bioimaging [Invited]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. B, OPTICAL PHYSICS 2018; 34:B64-B77. [PMID: 29386746 PMCID: PMC5788179 DOI: 10.1364/josab.34.000b64] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Tomographic phase microscopy (TPM) is an emerging optical microscopic technique for bioimaging. TPM uses digital holographic measurements of complex scattered fields to reconstruct three-dimensional refractive index (RI) maps of cells with diffraction-limited resolution by solving inverse scattering problems. In this paper, we review the developments of TPM from the fundamental physics to its applications in bioimaging. We first provide a comprehensive description of the tomographic reconstruction physical models used in TPM. The RI map reconstruction algorithms and various regularization methods are discussed. Selected TPM applications for cellular imaging, particularly in hematology, are reviewed. Finally, we examine the limitations of current TPM systems, propose future solutions, and envision promising directions in biomedical research.
Collapse
Affiliation(s)
- Di Jin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Renjie Zhou
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Zahid Yaqoob
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Peter T. C. So
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
25
|
Liu J, Qiang Y, Alvarez O, Du E. Electrical impedance microflow cytometry with oxygen control for detection of sickle cells. SENSORS AND ACTUATORS. B, CHEMICAL 2018; 255:2392-2398. [PMID: 29731543 PMCID: PMC5929988 DOI: 10.1016/j.snb.2017.08.163] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Polymerization of intracellular sickle hemoglobin induced by low oxygen tension has been recognized as a primary determinant of the pathophysiologic manifestations in sickle cell disease. Existing flow cytometry techniques for detection of sickle cells are typically based on fluorescence markers or cellular morphological analysis. Using microfluidics and electrical impedance spectroscopy, we develop a new, label-free flow cytometry for non-invasive measurement of single cells under controlled oxygen level. We demonstrate the capability of this new technique by determining the electrical impedance differential of normal red blood cells obtained from a healthy donor and sickle cells obtained from three sickle cell patients, under normoxic and hypoxic conditions and at three different electrical frequencies, 156 kHz, 500 kHz and 3 MHz. Under normoxia, normal cells and sickle cells can be separated completely using electrical impedance at 156 kHz and 500 kHz but not at 3 MHz. Sickle cells, intra-patient and inter-patient show significantly different electrical impedance between normoxia and hypoxia at all three frequencies. This study shows a proof of concept that electrical impedance signal can be used as an indicator of the disease state of a red blood cell as well as the cell sickling events in sickle cell disease. Electrical impedance-based microflow cytometry with oxygen control is a new method that can be potentially used for sickle cell disease diagnosis and monitoring.
Collapse
Affiliation(s)
- Jia Liu
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yuhao Qiang
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Ofelia Alvarez
- Division of Pediatric Hematology and Oncology, University of Miami, Miami, FL 33136, USA
| | - E Du
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
- Corresponding author at: Department of Ocean and Mechanical Engineering, 777 Glades Road, Bldg. 36-175, Boca Raton, FL 33431-0991, USA. (E. Du)
| |
Collapse
|
26
|
Lin YH, Huang SS, Wu SJ, Sung KB. Morphometric analysis of erythrocytes from patients with thalassemia using tomographic diffractive microscopy. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-11. [PMID: 29188659 DOI: 10.1117/1.jbo.22.11.116009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/13/2017] [Indexed: 05/23/2023]
Abstract
Complete blood count is the most common test to detect anemia, but it is unable to obtain the abnormal shape of erythrocytes, which highly correlates with the hematologic function. Tomographic diffractive microscopy (TDM) is an emerging technique capable of quantifying three-dimensional (3-D) refractive index (RI) distributions of erythrocytes without labeling. TDM was used to characterize optical and morphological properties of 172 erythrocytes from healthy volunteers and 419 erythrocytes from thalassemic patients. To efficiently extract and analyze the properties of erythrocytes, we developed an adaptive region-growing method for automatically delineating erythrocytes from 3-D RI maps. The thalassemic erythrocytes not only contained lower hemoglobin content but also showed doughnut shape and significantly lower volume, surface area, effective radius, and average thickness. A multi-indices prediction model achieved perfect accuracy of diagnosing thalassemia using four features, including the optical volume, surface-area-to-volume ratio, sphericity index, and surface area. The results demonstrate the ability of TDM to provide quantitative, hematologic measurements and to assess morphological features of erythrocytes to distinguish healthy and thalassemic erythrocytes.
Collapse
Affiliation(s)
- Yang-Hsien Lin
- National Taiwan University, Graduate Institute of Biomedical Electronics and Bioinformatics, Taiwan
| | - Shin-Shyang Huang
- National Taiwan University, Graduate Institute of Biomedical Electronics and Bioinformatics, Taiwan
| | - Shang-Ju Wu
- National Taiwan University Hospital, Department of Internal Medicines, Taiwan
| | - Kung-Bin Sung
- National Taiwan University, Graduate Institute of Biomedical Electronics and Bioinformatics, Taiwan
- National Taiwan University, Department of Electrical Engineering, Taiwan
- National Taiwan University, Molecular Imaging Center, Taiwan
| |
Collapse
|
27
|
Xu M, Papageorgiou DP, Abidi SZ, Dao M, Zhao H, Karniadakis GE. A deep convolutional neural network for classification of red blood cells in sickle cell anemia. PLoS Comput Biol 2017; 13:e1005746. [PMID: 29049291 PMCID: PMC5654260 DOI: 10.1371/journal.pcbi.1005746] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/29/2017] [Indexed: 11/18/2022] Open
Abstract
Sickle cell disease (SCD) is a hematological disorder leading to blood vessel occlusion accompanied by painful episodes and even death. Red blood cells (RBCs) of SCD patients have diverse shapes that reveal important biomechanical and bio-rheological characteristics, e.g. their density, fragility, adhesive properties, etc. Hence, having an objective and effective way of RBC shape quantification and classification will lead to better insights and eventual better prognosis of the disease. To this end, we have developed an automated, high-throughput, ex-vivo RBC shape classification framework that consists of three stages. First, we present an automatic hierarchical RBC extraction method to detect the RBC region (ROI) from the background, and then separate touching RBCs in the ROI images by applying an improved random walk method based on automatic seed generation. Second, we apply a mask-based RBC patch-size normalization method to normalize the variant size of segmented single RBC patches into uniform size. Third, we employ deep convolutional neural networks (CNNs) to realize RBC classification; the alternating convolution and pooling operations can deal with non-linear and complex patterns. Furthermore, we investigate the specific shape factor quantification for the classified RBC image data in order to develop a general multiscale shape analysis. We perform several experiments on raw microscopy image datasets from 8 SCD patients (over 7,000 single RBC images) through a 5-fold cross validation method both for oxygenated and deoxygenated RBCs. We demonstrate that the proposed framework can successfully classify sickle shape RBCs in an automated manner with high accuracy, and we also provide the corresponding shape factor analysis, which can be used synergistically with the CNN analysis for more robust predictions. Moreover, the trained deep CNN exhibits good performance even for a deoxygenated dataset and distinguishes the subtle differences in texture alteration inside the oxygenated and deoxygenated RBCs.
Collapse
Affiliation(s)
- Mengjia Xu
- Key Laboratory of Medical Image Computing of Ministry of Education, Northeastern University, Shenyang, China
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| | - Dimitrios P. Papageorgiou
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sabia Z. Abidi
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Hong Zhao
- Key Laboratory of Medical Image Computing of Ministry of Education, Northeastern University, Shenyang, China
| | - George Em Karniadakis
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
28
|
Yang SA, Yoon J, Kim K, Park Y. Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson's disease. Cytometry A 2017. [PMID: 28426150 DOI: 10.1101/080937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease. However, therapeutic methods of PD are still limited due to complex pathophysiology in PD. Here, optical measurements of individual neurons from in vitro PD model using optical diffraction tomography (ODT) are presented. By measuring 3D refractive index distribution of neurons, morphological and biophysical alterations in in-vitro PD model are quantitatively investigated. It was found that neurons show apoptotic features in early PD progression. The present approach will open up new opportunities for quantitative investigation of the pathophysiology of various neurodegenerative diseases. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Su-A Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- KAIST Institute Health Science and Technology, Daejeon, 34141, South Korea
| | - Jonghee Yoon
- KAIST Institute Health Science and Technology, Daejeon, 34141, South Korea
- Department of Physics, KAIST, Daejeon, 34141, South Korea
| | - Kyoohyun Kim
- KAIST Institute Health Science and Technology, Daejeon, 34141, South Korea
- Department of Physics, KAIST, Daejeon, 34141, South Korea
| | - YongKeun Park
- KAIST Institute Health Science and Technology, Daejeon, 34141, South Korea
- Department of Physics, KAIST, Daejeon, 34141, South Korea
- Tomocube, Inc, Daejeon, 34051, South Korea
| |
Collapse
|
29
|
Refractive index tomograms and dynamic membrane fluctuations of red blood cells from patients with diabetes mellitus. Sci Rep 2017; 7:1039. [PMID: 28432323 PMCID: PMC5430658 DOI: 10.1038/s41598-017-01036-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/22/2017] [Indexed: 02/05/2023] Open
Abstract
In this paper, we present the optical characterisations of diabetic red blood cells (RBCs) in a non-invasive manner employing three-dimensional (3-D) quantitative phase imaging. By measuring 3-D refractive index tomograms and 2-D time-series phase images, the morphological (volume, surface area and sphericity), biochemical (haemoglobin concentration and content) and mechanical (membrane fluctuation) parameters were quantitatively retrieved at the individual cell level. With simultaneous measurements of individual cell properties, systematic correlative analyses on retrieved RBC parameters were also performed. Our measurements show there exist no statistically significant alterations in morphological and biochemical parameters of diabetic RBCs, compared to those of healthy (non-diabetic) RBCs. In contrast, membrane deformability of diabetic RBCs is significantly lower than that of healthy, non-diabetic RBCs. Interestingly, non-diabetic RBCs exhibit strong correlations between the elevated glycated haemoglobin in RBC cytoplasm and decreased cell deformability, whereas diabetic RBCs do not show correlations. Our observations strongly support the idea that slow and irreversible glycation of haemoglobin and membrane proteins of RBCs by hyperglycaemia significantly compromises RBC deformability in diabetic patients.
Collapse
|
30
|
Yang SA, Yoon J, Kim K, Park Y. Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson's disease. Cytometry A 2017; 91:510-518. [DOI: 10.1002/cyto.a.23110] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Su-A Yang
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 South Korea
- KAIST Institute Health Science and Technology; Daejeon 34141 South Korea
| | - Jonghee Yoon
- KAIST Institute Health Science and Technology; Daejeon 34141 South Korea
- Department of Physics; KAIST; Daejeon 34141 South Korea
| | - Kyoohyun Kim
- KAIST Institute Health Science and Technology; Daejeon 34141 South Korea
- Department of Physics; KAIST; Daejeon 34141 South Korea
| | - YongKeun Park
- KAIST Institute Health Science and Technology; Daejeon 34141 South Korea
- Department of Physics; KAIST; Daejeon 34141 South Korea
- Tomocube, Inc; Daejeon 34051 South Korea
| |
Collapse
|
31
|
Patient-specific modeling of individual sickle cell behavior under transient hypoxia. PLoS Comput Biol 2017; 13:e1005426. [PMID: 28288152 PMCID: PMC5367819 DOI: 10.1371/journal.pcbi.1005426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 03/27/2017] [Accepted: 02/21/2017] [Indexed: 01/25/2023] Open
Abstract
Sickle cell disease (SCD) is a highly complex genetic blood disorder in which red blood cells (RBC) exhibit heterogeneous morphology changes and decreased deformability. We employ a kinetic model for cell morphological sickling that invokes parameters derived from patient-specific data. This model is used to investigate the dynamics of individual sickle cells in a capillary-like microenvironment in order to address various mechanisms associated with SCD. We show that all RBCs, both hypoxia-unaffected and hypoxia-affected ones, regularly pass through microgates under oxygenated state. However, the hypoxia-affected cells undergo sickling which significantly alters cell dynamics. In particular, the dense and rigid sickle RBCs are obstructed thereby clogging blood flow while the less dense and deformable ones are capable of circumnavigating dead (trapped) cells ahead of them by choosing a serpentine path. Informed by recent experiments involving microfluidics that provide in vitro quantitative information on cell dynamics under transient hypoxia conditions, we have performed detailed computational simulations of alterations to cell behavior in response to morphological changes and membrane stiffening. Our model reveals that SCD exhibits substantial heterogeneity even within a particular density-fractionated subpopulation. These findings provide unique insights into how individual sickle cells move through capillaries under transient hypoxic conditions, and offer novel possibilities for designing effective therapeutic interventions for SCD. Sickle cell disease is a genetic blood disease that causes vaso-occlusive pain crises. Here, we investigate the individual sickle cell behavior under controlled hypoxic conditions through patient-specific predictive computational simulations that are informed by companion microfluidic experiments. We identify the different dynamic behavior between individual sickle RBCs and normal ones in microfluidic flow, and analyze the hypoxia-induced alteration in individual cell behavior and single-cell capillary obstruction under physiological conditions.
Collapse
|