1
|
Yang B, Liu H, Jiang T, Yu S. Fluctuation in cortical excitation/inhibition modulates capability of attention across time scales ranging from hours to seconds. Cereb Cortex 2024; 34:bhae309. [PMID: 39076112 DOI: 10.1093/cercor/bhae309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024] Open
Abstract
Sustained attention, as the basis of general cognitive ability, naturally varies across different time scales, spanning from hours, e.g. from wakefulness to drowsiness state, to seconds, e.g. trial-by-trail fluctuation in a task session. Whether there is a unified mechanism underneath such trans-scale variability remains unclear. Here we show that fluctuation of cortical excitation/inhibition (E/I) is a strong modulator to sustained attention in humans across time scales. First, we observed the ability to attend varied across different brain states (wakefulness, postprandial somnolence, sleep deprived), as well as within any single state with larger swings. Second, regardless of the time scale involved, we found highly attentive state was always linked to more balanced cortical E/I characterized by electroencephalography (EEG) features, while deviations from the balanced state led to temporal decline in attention, suggesting the fluctuation of cortical E/I as a common mechanism underneath trans-scale attentional variability. Furthermore, we found the variations of both sustained attention and cortical E/I indices exhibited fractal structure in the temporal domain, exhibiting features of self-similarity. Taken together, these results demonstrate that sustained attention naturally varies across different time scales in a more complex way than previously appreciated, with the cortical E/I as a shared neurophysiological modulator.
Collapse
Affiliation(s)
- Binghao Yang
- Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, No. 95, Zhongguancun East Road, Haidian District, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, No. 19, Yuquan Road, Shijingshan District, Beijing 100049, China
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences, No. 230, Yueyang Road, Shanghai 200031, China
| | - Hao Liu
- Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, No. 95, Zhongguancun East Road, Haidian District, Beijing 100190, China
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences, No. 230, Yueyang Road, Shanghai 200031, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, No. 19, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Tianzi Jiang
- Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, No. 95, Zhongguancun East Road, Haidian District, Beijing 100190, China
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences, No. 230, Yueyang Road, Shanghai 200031, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, No. 19, Yuquan Road, Shijingshan District, Beijing 100049, China
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, No. 151, Xiaoshui West Road, Lingling District, Yongzhou 425000, Hunan Province, China
| | - Shan Yu
- Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, No. 95, Zhongguancun East Road, Haidian District, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, No. 19, Yuquan Road, Shijingshan District, Beijing 100049, China
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences, No. 230, Yueyang Road, Shanghai 200031, China
- Lead contact. Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, No. 95, Zhongguancun East Road, Haidian District, Beijing 100190, China
| |
Collapse
|
2
|
Jin H, Zhang W, Liu H, Bao Y. Genome-wide identification and characteristic analysis of ETS gene family in blood clam Tegillarca granosa. BMC Genomics 2023; 24:700. [PMID: 37990147 PMCID: PMC10664356 DOI: 10.1186/s12864-023-09731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND ETS transcription factors, known as the E26 transformation-specific factors, assume a critical role in the regulation of various vital biological processes in animals, including cell differentiation, the cell cycle, and cell apoptosis. However, their characterization in mollusks is currently lacking. RESULTS The current study focused on a comprehensive analysis of the ETS genes in blood clam Tegillarca granosa and other mollusk genomes. Our phylogenetic analysis revealed the absence of the SPI and ETV subfamilies in mollusks compared to humans. Additionally, several ETS genes in mollusks were found to lack the PNT domain, potentially resulting in a diminished ability of ETS proteins to bind target genes. Interestingly, the bivalve ETS1 genes exhibited significantly high expression levels during the multicellular proliferation stage and in gill tissues. Furthermore, qRT-PCR results showed that Tg-ETS-14 (ETS1) is upregulated in the high total hemocyte counts (THC) population of T. granosa, suggesting it plays a significant role in stimulating hemocyte proliferation. CONCLUSION Our study significantly contributes to the comprehension of the evolutionary aspects concerning the ETS gene family, while also providing valuable insights into its role in fostering hemocyte proliferation across mollusks.
Collapse
Affiliation(s)
- Hongyu Jin
- School of Marine Sciences, Ningbo University, Ningbo, 315000, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Zhejiang, 315100, China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315000, China
| | - Hongxing Liu
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Zhejiang, 315100, China.
| | - Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Zhejiang, 315100, China.
| |
Collapse
|
3
|
Yang B, Zhang H, Jiang T, Yu S. Natural brain state change with E/I balance shifting toward inhibition is associated with vigilance impairment. iScience 2023; 26:107963. [PMID: 37822500 PMCID: PMC10562778 DOI: 10.1016/j.isci.2023.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/25/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023] Open
Abstract
The delicate balance between cortical excitation and inhibition (E/I) plays a pivotal role in brain state changes. While previous studies have associated cortical hyperexcitability with brain state changes induced by sleep deprivation, whether cortical hypoexcitability is also linked to brain state changes and, if so, how it could affect cognitive performance remain unknown. Here, we address these questions by examining the brain state change occurring after meals, i.e., postprandial somnolence, and comparing it with that induced by sleep deprivation. By analyzing features representing network excitability based on electroencephalogram (EEG) signals, we confirmed cortical hyperexcitability under sleep deprivation but revealed hypoexcitability under postprandial somnolence. In addition, we found that both sleep deprivation and postprandial somnolence adversely affected the level of vigilance. These results indicate that cortical E/I balance toward inhibition is associated with brain state changes, and deviation from the balanced state, regardless of its direction, could impair cognitive performance.
Collapse
Affiliation(s)
- Binghao Yang
- Brainnetome Center, Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Haoran Zhang
- Brainnetome Center, Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Tianzi Jiang
- Brainnetome Center, Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 101408, China
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311121, China
| | - Shan Yu
- Brainnetome Center, Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
4
|
Godini R, Pocock R. Characterization of the Doublesex/MAB-3 transcription factor DMD-9 in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2023; 13:jkac305. [PMID: 36454093 PMCID: PMC9911054 DOI: 10.1093/g3journal/jkac305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 09/30/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022]
Abstract
DMD-9 is a Caenorhabditis elegans Doublesex/MAB-3 Domain transcription factor (TF) of unknown function. Single-cell transcriptomics has revealed that dmd-9 is highly expressed in specific head sensory neurons, with lower levels detected in non-neuronal tissues (uterine cells and sperm). Here, we characterized endogenous dmd-9 expression and function in hermaphrodites and males to identify potential sexually dimorphic roles. In addition, we dissected the trans- and cis-regulatory mechanisms that control DMD-9 expression in neurons. Our results show that of the 22 neuronal cell fate reporters we assessed in DMD-9-expressing neurons, only the neuropeptide-encoding flp-19 gene is cell-autonomously regulated by DMD-9. Further, we did not identify defects in behaviors mediated by DMD-9 expressing neurons in dmd-9 mutants. We found that dmd-9 expression in neurons is regulated by 4 neuronal fate regulatory TFs: ETS-5, EGL-13, CHE-1, and TTX-1. In conclusion, our study characterized the DMD-9 expression pattern and regulatory logic for its control. The lack of detectable phenotypes in dmd-9 mutant animals suggests that other proteins compensate for its loss.
Collapse
Affiliation(s)
- Rasoul Godini
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
5
|
Ouyang J, Peng Y, Gong Y. New Perspectives on Sleep Regulation by Tea: Harmonizing Pathological Sleep and Energy Balance under Stress. Foods 2022; 11:3930. [PMID: 36496738 PMCID: PMC9738644 DOI: 10.3390/foods11233930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/09/2022] Open
Abstract
Sleep, a conservative evolutionary behavior of organisms to adapt to changes in the external environment, is divided into natural sleep, in a healthy state, and sickness sleep, which occurs in stressful environments or during illness. Sickness sleep plays an important role in maintaining energy homeostasis under an injury and promoting physical recovery. Tea, a popular phytochemical-rich beverage, has multiple health benefits, including lowering stress and regulating energy metabolism and natural sleep. However, the role of tea in regulating sickness sleep has received little attention. The mechanism underlying tea regulation of sickness sleep and its association with the maintenance of energy homeostasis in injured organisms remains to be elucidated. This review examines the current research on the effect of tea on sleep regulation, focusing on the function of tea in modulating energy homeostasis through sickness sleep, energy metabolism, and damage repair in model organisms. The potential mechanisms underlying tea in regulating sickness sleep are further suggested. Based on the biohomology of sleep regulation, this review provides novel insights into the role of tea in sleep regulation and a new perspective on the potential role of tea in restoring homeostasis from diseases.
Collapse
Affiliation(s)
- Jin Ouyang
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Yuxuan Peng
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
- College of Physical Education, Hunan City University, Yiyang 413002, China
| | - Yushun Gong
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
6
|
Aoki I, Jurado P, Nawa K, Kondo R, Yamashiro R, Matsuyama HJ, Ferrer I, Nakano S, Mori I. OLA-1, an Obg-like ATPase, integrates hunger with temperature information in sensory neurons in C. elegans. PLoS Genet 2022; 18:e1010219. [PMID: 35675262 PMCID: PMC9176836 DOI: 10.1371/journal.pgen.1010219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Animals detect changes in both their environment and their internal state and modify their behavior accordingly. Yet, it remains largely to be clarified how information of environment and internal state is integrated and how such integrated information modifies behavior. Well-fed C. elegans migrates to past cultivation temperature on a thermal gradient, which is disrupted when animals are starved. We recently reported that the neuronal activities synchronize between a thermosensory neuron AFD and an interneuron AIY, which is directly downstream of AFD, in well-fed animals, while this synchrony is disrupted in starved animals. However, it remained to be determined whether the disruption of the synchrony is derived from modulation of the transmitter release from AFD or from the modification of reception or signal transduction in AIY. By performing forward genetics on a transition of thermotaxis behavior along starvation, we revealed that OLA-1, an Obg-like ATPase, functions in AFD to promote disruption of AFD-AIY synchrony and behavioral transition. Our results suggest that the information of hunger is delivered to the AFD thermosensory neuron and gates transmitter release from AFD to disrupt thermotaxis, thereby shedding light onto a mechanism for the integration of environmental and internal state to modulate behavior.
Collapse
Affiliation(s)
- Ichiro Aoki
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Paola Jurado
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Cancer Area, Institut d’Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | - Kanji Nawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Rumi Kondo
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Riku Yamashiro
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Hironori J. Matsuyama
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Isidre Ferrer
- Neuroscience Area, Institut d’Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | - Shunji Nakano
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Ikue Mori
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
7
|
Flavell SW, Gordus A. Dynamic functional connectivity in the static connectome of Caenorhabditis elegans. Curr Opin Neurobiol 2022; 73:102515. [PMID: 35183877 PMCID: PMC9621599 DOI: 10.1016/j.conb.2021.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 01/01/2023]
Abstract
A hallmark of adaptive behavior is the ability to flexibly respond to sensory cues. To understand how neural circuits implement this flexibility, it is critical to resolve how a static anatomical connectome can be modulated such that functional connectivity in the network can be dynamically regulated. Here, we review recent work in the roundworm Caenorhabditis elegans on this topic. EM studies have mapped anatomical connectomes of many C. elegans animals, highlighting the level of stereotypy in the anatomical network. Brain-wide calcium imaging and studies of specified neural circuits have uncovered striking flexibility in the functional coupling of neurons. The coupling between neurons is controlled by neuromodulators that act over long timescales. This gives rise to persistent behavioral states that animals switch between, allowing them to generate adaptive behavioral responses across environmental conditions. Thus, the dynamic coupling of neurons enables multiple behavioral states to be encoded in a physically stereotyped connectome.
Collapse
Affiliation(s)
- Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Andrew Gordus
- Department of Biology, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
8
|
Aprison EZ, Ruvinsky I. ODR-1 acts in AWB neurons to determine the sexual identity of C. elegans pheromone blends. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000507. [PMID: 35047764 PMCID: PMC8758999 DOI: 10.17912/micropub.biology.000507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/03/2022]
Abstract
Valence of animal pheromone blends can vary due to differences in relative abundance of individual components. For example, in C. elegans, whether a pheromone blend is perceived as "male" or "hermaphrodite" is determined by the ratio of concentrations of ascr#10 and ascr#3. The neuronal mechanisms that evaluate this ratio are not currently understood. We present data that suggest that the function of guanylyl cyclase ODR-1 in AWB neurons is required for the effect of ascr#3 that counteracts the activity of ascr#10. This finding defines a new module in the neuronal mechanism that determines the sexual identity of C. elegans pheromone.
Collapse
Affiliation(s)
- Erin Z. Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
9
|
Schiffer JA, Stumbur SV, Seyedolmohadesin M, Xu Y, Serkin WT, McGowan NG, Banjo O, Torkashvand M, Lin A, Hosea CN, Assié A, Samuel BS, O’Donnell MP, Venkatachalam V, Apfeld J. Modulation of sensory perception by hydrogen peroxide enables Caenorhabditis elegans to find a niche that provides both food and protection from hydrogen peroxide. PLoS Pathog 2021; 17:e1010112. [PMID: 34941962 PMCID: PMC8699984 DOI: 10.1371/journal.ppat.1010112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/14/2021] [Indexed: 02/07/2023] Open
Abstract
Hydrogen peroxide (H2O2) is the most common chemical threat that organisms face. Here, we show that H2O2 alters the bacterial food preference of Caenorhabditis elegans, enabling the nematodes to find a safe environment with food. H2O2 induces the nematodes to leave food patches of laboratory and microbiome bacteria when those bacterial communities have insufficient H2O2-degrading capacity. The nematode's behavior is directed by H2O2-sensing neurons that promote escape from H2O2 and by bacteria-sensing neurons that promote attraction to bacteria. However, the input for H2O2-sensing neurons is removed by bacterial H2O2-degrading enzymes and the bacteria-sensing neurons' perception of bacteria is prevented by H2O2. The resulting cross-attenuation provides a general mechanism that ensures the nematode's behavior is faithful to the lethal threat of hydrogen peroxide, increasing the nematode's chances of finding a niche that provides both food and protection from hydrogen peroxide.
Collapse
Affiliation(s)
- Jodie A. Schiffer
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Stephanie V. Stumbur
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Maedeh Seyedolmohadesin
- Physics Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Yuyan Xu
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - William T. Serkin
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Natalie G. McGowan
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Oluwatosin Banjo
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Mahdi Torkashvand
- Physics Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Albert Lin
- Department of Physics, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Ciara N. Hosea
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Adrien Assié
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Buck S. Samuel
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael P. O’Donnell
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Vivek Venkatachalam
- Physics Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Javier Apfeld
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
- Bioengineering Department, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
10
|
Godini R, Handley A, Pocock R. Transcription Factors That Control Behavior-Lessons From C. elegans. Front Neurosci 2021; 15:745376. [PMID: 34646119 PMCID: PMC8503520 DOI: 10.3389/fnins.2021.745376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/02/2021] [Indexed: 11/15/2022] Open
Abstract
Behavior encompasses the physical and chemical response to external and internal stimuli. Neurons, each with their own specific molecular identities, act in concert to perceive and relay these stimuli to drive behavior. Generating behavioral responses requires neurons that have the correct morphological, synaptic, and molecular identities. Transcription factors drive the specific gene expression patterns that define these identities, controlling almost every phenomenon in a cell from development to homeostasis. Therefore, transcription factors play an important role in generating and regulating behavior. Here, we describe the transcription factors, the pathways they regulate, and the neurons that drive chemosensation, mechanosensation, thermosensation, osmolarity sensing, complex, and sex-specific behaviors in the animal model Caenorhabditis elegans. We also discuss the current limitations in our knowledge, particularly our minimal understanding of how transcription factors contribute to the adaptive behavioral responses that are necessary for organismal survival.
Collapse
|
11
|
Abstract
Caenorhabditis elegans' behavioral states, like those of other animals, are shaped by its immediate environment, its past experiences, and by internal factors. We here review the literature on C. elegans behavioral states and their regulation. We discuss dwelling and roaming, local and global search, mate finding, sleep, and the interaction between internal metabolic states and behavior.
Collapse
Affiliation(s)
- Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - David M Raizen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Young-Jai You
- Division of Biological Science, Graduate School of Science, Nagoya University, 464-8602, Japan
| |
Collapse
|
12
|
Abstract
Microbes are ubiquitous in the natural environment of Caenorhabditis elegans. Bacteria serve as a food source for C. elegans but may also cause infection in the nematode host. The sensory nervous system of C. elegans detects diverse microbial molecules, ranging from metabolites produced by broad classes of bacteria to molecules synthesized by specific strains of bacteria. Innate recognition through chemosensation of bacterial metabolites or mechanosensation of bacteria can induce immediate behavioral responses. The ingestion of nutritive or pathogenic bacteria can modulate internal states that underlie long-lasting behavioral changes. Ingestion of nutritive bacteria leads to learned attraction and exploitation of the bacterial food source. Infection, which is accompanied by activation of innate immunity, stress responses, and host damage, leads to the development of aversive behavior. The integration of a multitude of microbial sensory cues in the environment is shaped by experience and context. Genetic, chemical, and neuronal studies of C. elegans behavior in the presence of bacteria have defined neural circuits and neuromodulatory systems that shape innate and learned behavioral responses to microbial cues. These studies have revealed the profound influence that host-microbe interactions have in governing the behavior of this simple animal host.
Collapse
Affiliation(s)
- Dennis H Kim
- Division of Infectious Diseases, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Steven W Flavell
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
13
|
Abay-Nørgaard S, Attianese B, Boreggio L, Salcini AE. Regulators of H3K4 methylation mutated in neurodevelopmental disorders control axon guidance in Caenorhabditis elegans. Development 2020; 147:dev.190637. [PMID: 32675280 PMCID: PMC7420840 DOI: 10.1242/dev.190637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Abstract
Post-translational histone modifications regulate chromatin compaction and gene expression to control many aspects of development. Mutations in genes encoding regulators of H3K4 methylation are causally associated with neurodevelopmental disorders characterized by intellectual disability and deficits in motor functions. However, it remains unclear how H3K4 methylation influences nervous system development and contributes to the aetiology of disease. Here, we show that the catalytic activity of set-2, the Caenorhabditis elegans homologue of the H3K4 methyltransferase KMT2F/G (SETD1A/B) genes, controls embryonic transcription of neuronal genes and is required for establishing proper axon guidance, and for neuronal functions related to locomotion and learning. Moreover, we uncover a striking correlation between components of the H3K4 regulatory machinery mutated in neurodevelopmental disorders and the process of axon guidance in C. elegans. Thus, our study supports an epigenetic-based model for the aetiology of neurodevelopmental disorders, based on an aberrant axon guidance process originating from deregulated H3K4 methylation. Summary: Analysis of mutants lacking many known H3K4 regulators reveals the role of H3K4 methylation in C. elegans neuronal functions and suggests that aberrant axon guidance is a shared trait in neurodevelopmental diseases.
Collapse
Affiliation(s)
- Steffen Abay-Nørgaard
- BRIC, University of Copenhagen, Biotech Research and Innovation Centre, Ole Maaloes vej 5, 2200, Copenhagen, Denmark
| | - Benedetta Attianese
- BRIC, University of Copenhagen, Biotech Research and Innovation Centre, Ole Maaloes vej 5, 2200, Copenhagen, Denmark
| | - Laura Boreggio
- BRIC, University of Copenhagen, Biotech Research and Innovation Centre, Ole Maaloes vej 5, 2200, Copenhagen, Denmark
| | - Anna Elisabetta Salcini
- BRIC, University of Copenhagen, Biotech Research and Innovation Centre, Ole Maaloes vej 5, 2200, Copenhagen, Denmark
| |
Collapse
|
14
|
Dixit A, Sandhu A, Modi S, Shashikanth M, Koushika SP, Watts JL, Singh V. Neuronal control of lipid metabolism by STR-2 G protein-coupled receptor promotes longevity in Caenorhabditis elegans. Aging Cell 2020; 19:e13160. [PMID: 32432390 PMCID: PMC7294788 DOI: 10.1111/acel.13160] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 01/03/2023] Open
Abstract
The G protein-coupled receptor (GPCR) encoding family of genes constitutes more than 6% of genes in Caenorhabditis elegans genome. GPCRs control behavior, innate immunity, chemotaxis, and food search behavior. Here, we show that C. elegans longevity is regulated by a chemosensory GPCR STR-2, expressed in AWC and ASI amphid sensory neurons. STR-2 function is required at temperatures of 20°C and higher on standard Escherichia coli OP50 diet. Under these conditions, this neuronal receptor also controls health span parameters and lipid droplet (LD) homeostasis in the intestine. We show that STR-2 regulates expression of delta-9 desaturases, fat-5, fat-6 and fat-7, and of diacylglycerol acyltransferase dgat-2. Rescue of the STR-2 function in either AWC and ASI, or ASI sensory neurons alone, restores expression of fat-5, dgat-2 and restores LD stores and longevity. Rescue of stored fat levels of GPCR mutant animals to wild-type levels, with low concentration of glucose, rescues its lifespan phenotype. In all, we show that neuronal STR-2 GPCR facilitates control of neutral lipid levels and longevity in C. elegans.
Collapse
Affiliation(s)
- Anubhuti Dixit
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangaloreIndia
- Present address:
Amity Institute of Neuropsychology and NeurosciencesAmity UniversityNoidaIndia
| | - Anjali Sandhu
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangaloreIndia
| | - Souvik Modi
- Department of Biological SciencesTata Institute of Fundamental ResearchMumbaiIndia
| | - Meghana Shashikanth
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangaloreIndia
| | - Sandhya P. Koushika
- Department of Biological SciencesTata Institute of Fundamental ResearchMumbaiIndia
| | - Jennifer L. Watts
- School of Molecular BiosciencesWashington State UniversityPullmanWAUSA
| | - Varsha Singh
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
15
|
Schiffer JA, Servello FA, Heath WR, Amrit FRG, Stumbur SV, Eder M, Martin OMF, Johnsen SB, Stanley JA, Tam H, Brennan SJ, McGowan NG, Vogelaar AL, Xu Y, Serkin WT, Ghazi A, Stroustrup N, Apfeld J. Caenorhabditis elegans processes sensory information to choose between freeloading and self-defense strategies. eLife 2020; 9:e56186. [PMID: 32367802 PMCID: PMC7213980 DOI: 10.7554/elife.56186] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
Hydrogen peroxide is the preeminent chemical weapon that organisms use for combat. Individual cells rely on conserved defenses to prevent and repair peroxide-induced damage, but whether similar defenses might be coordinated across cells in animals remains poorly understood. Here, we identify a neuronal circuit in the nematode Caenorhabditis elegans that processes information perceived by two sensory neurons to control the induction of hydrogen peroxide defenses in the organism. We found that catalases produced by Escherichia coli, the nematode's food source, can deplete hydrogen peroxide from the local environment and thereby protect the nematodes. In the presence of E. coli, the nematode's neurons signal via TGFβ-insulin/IGF1 relay to target tissues to repress expression of catalases and other hydrogen peroxide defenses. This adaptive strategy is the first example of a multicellular organism modulating its defenses when it expects to freeload from the protection provided by molecularly orthologous defenses from another species.
Collapse
Affiliation(s)
| | | | - William R Heath
- Biology Department, Northeastern UniversityBostonUnited States
| | | | | | - Matthias Eder
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Olivier MF Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Sean B Johnsen
- Biology Department, Northeastern UniversityBostonUnited States
| | | | - Hannah Tam
- Biology Department, Northeastern UniversityBostonUnited States
| | - Sarah J Brennan
- Biology Department, Northeastern UniversityBostonUnited States
| | | | | | - Yuyan Xu
- Biology Department, Northeastern UniversityBostonUnited States
| | | | - Arjumand Ghazi
- Department of Pediatrics, University of Pittsburgh School of MedicinePittsburghUnited States
- Departments of Developmental Biology and Cell Biology and Physiology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Nicholas Stroustrup
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Javier Apfeld
- Biology Department, Northeastern UniversityBostonUnited States
| |
Collapse
|
16
|
Neuromedin U signaling regulates retrieval of learned salt avoidance in a C. elegans gustatory circuit. Nat Commun 2020; 11:2076. [PMID: 32350283 PMCID: PMC7190830 DOI: 10.1038/s41467-020-15964-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 04/06/2020] [Indexed: 01/07/2023] Open
Abstract
Learning and memory are regulated by neuromodulatory pathways, but the contribution and temporal requirement of most neuromodulators in a learning circuit are unknown. Here we identify the evolutionarily conserved neuromedin U (NMU) neuropeptide family as a regulator of C. elegans gustatory aversive learning. The NMU homolog CAPA-1 and its receptor NMUR-1 are required for the retrieval of learned salt avoidance. Gustatory aversive learning requires the release of CAPA-1 neuropeptides from sensory ASG neurons that respond to salt stimuli in an experience-dependent manner. Optogenetic silencing of CAPA-1 neurons blocks the expression, but not the acquisition, of learned salt avoidance. CAPA-1 signals through NMUR-1 in AFD sensory neurons to modulate two navigational strategies for salt chemotaxis. Aversive conditioning thus recruits NMU signaling to modulate locomotor programs for expressing learned avoidance behavior. Because NMU signaling is conserved across bilaterian animals, our findings incite further research into its function in other learning circuits.
Collapse
|
17
|
Godini R, Langebeck-Jensen K, Pocock R. A single amino acid change in the EGL-46 transcription factor causes defects in BAG neuron specification. MICROPUBLICATION BIOLOGY 2020; 2020. [PMID: 32550488 PMCID: PMC7252269 DOI: 10.17912/micropub.biology.000224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rasoul Godini
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Kasper Langebeck-Jensen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, Denmark
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
18
|
Aprison EZ, Ruvinsky I. Coordinated Behavioral and Physiological Responses to a Social Signal Are Regulated by a Shared Neuronal Circuit. Curr Biol 2019; 29:4108-4115.e4. [PMID: 31708394 DOI: 10.1016/j.cub.2019.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/30/2019] [Accepted: 10/09/2019] [Indexed: 12/21/2022]
Abstract
Successful reproduction in animals requires orchestration of behavior and physiological processes. Pheromones can induce both "releaser" (behavioral) and "priming" (physiological) effects [1] in vertebrates [2, 3] and invertebrates [4, 5]. Therefore, understanding the mechanisms underlying pheromone responses could reveal how reproduction-related behaviors and physiology are coordinated. Here, we describe a neuronal circuit that couples the reproductive system and behavior in adult Caenorhabditis elegans hermaphrodites. We found that the response of the oogenic germline to the male pheromone requires serotonin signal from NSM and HSN neurons that acts via the mod-1 receptor in AIY and RIF interneurons and is antagonized by pigment-dispersing factor (PDF). Surprisingly, the same neurons and pathways have been previously implicated in regulation of exploratory behavior in the absence of male-produced signals [6]. We demonstrate that male pheromone acts via this circuit in hermaphrodites to reduce exploration and decrease mating latency, thereby tuning multiple fitness-proximal processes. Our results demonstrate how a single circuit could coordinate behavioral and physiological responses to the environment, even those that unfold on different timescales. Our findings suggest the existence of a centralized regulatory mechanism that balances organismal resources between reproductive investment and somatic maintenance.
Collapse
Affiliation(s)
- Erin Z Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
19
|
Abstract
Carbon dioxide (CO2) is an important sensory cue for many animals, including both parasitic and free-living nematodes. Many nematodes show context-dependent, experience-dependent and/or life-stage-dependent behavioural responses to CO2, suggesting that CO2 plays crucial roles throughout the nematode life cycle in multiple ethological contexts. Nematodes also show a wide range of physiological responses to CO2. Here, we review the diverse responses of parasitic and free-living nematodes to CO2. We also discuss the molecular, cellular and neural circuit mechanisms that mediate CO2 detection in nematodes, and that drive context-dependent and experience-dependent responses of nematodes to CO2.
Collapse
|
20
|
Wray JR, Davies A, Sefton C, Allen TJ, Adamson A, Chapman P, Lam BYH, Yeo GSH, Coll AP, Harno E, White A. Global transcriptomic analysis of the arcuate nucleus following chronic glucocorticoid treatment. Mol Metab 2019; 26:5-17. [PMID: 31176677 PMCID: PMC6667392 DOI: 10.1016/j.molmet.2019.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/03/2019] [Accepted: 05/16/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Glucocorticoids (GCs) are widely prescribed medications that are well recognized to cause adverse metabolic effects including hyperphagia, obesity, and hyperglycemia. These effects have been recapitulated in a murine model of GC excess, and we hypothesize that they are mediated, in part, through central mechanisms. This study aimed to identify genes in the hypothalamic arcuate nucleus (ARC) that are altered with GC treatment and evaluate their contribution to GC-induced metabolic abnormalities. METHODS Corticosterone (Cort; 75 μg/ml) was administered in the drinking water to male C57Bl/6J mice for 2 days or 4 weeks. Phenotypic analysis of each group was undertaken and central and peripheral tissues were collected for biochemical and mRNA analyses. Arcuate nuclei were isolated by laser capture microdissection and tissue analyzed by RNA-seq. RESULTS RNA-seq analysis of ARC tissue from 4 week Cort treated mice revealed 21 upregulated and 22 downregulated genes at a time when mice had increased food intake, expansion of adipose tissue mass, and insulin resistance. In comparison, after 2 days Cort treatment, when the main phenotypic change was increased food intake, RNA-seq identified 30 upregulated and 16 downregulated genes. Within the genes altered at 2 days were a range of novel genes but also those known to be regulated by GCs, including Fkbp5, Mt2, Fam107a, as well as some involved in the control of energy balance, such as Agrp, Sepp1, Dio2, and Nmb. Of the candidate genes identified by RNA-seq, type-II iodothyronine deiodinase (Dio2) was chosen for further investigation as it was increased (2-fold) with Cort, and has been implicated in the control of energy balance via the modulation of hypothalamic thyroid hormone availability. Targeted knockdown of Dio2 in the MBH using AAV-mediated CRISPR-Cas9 produced a mild attenuation in GC-induced brown adipose tissue weight gain, as well as a 56% reduction in the GC-induced increase in Agrp. However, this conferred no protection from GC-induced hyperphagia, obesity, or hyperglycemia. CONCLUSIONS This study identified a comprehensive set of genes altered by GCs in the ARC and enabled the selection of key candidate genes. Targeted knockdown of hypothalamic Dio2 revealed that it did not mediate the chronic GC effects on hyperphagia and hyperglycemia.
Collapse
Affiliation(s)
- Jonathan R Wray
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9PT, UK
| | - Alison Davies
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9PT, UK
| | - Charlotte Sefton
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9PT, UK
| | - Tiffany-Jayne Allen
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9PT, UK
| | - Antony Adamson
- Manchester Transgenic Unit, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9PT, UK
| | | | - Brian Y H Lam
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Giles S H Yeo
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Anthony P Coll
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Erika Harno
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9PT, UK.
| | - Anne White
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9PT, UK.
| |
Collapse
|
21
|
Gorelick S, Buckley G, Gervinskas G, Johnson TK, Handley A, Caggiano MP, Whisstock JC, Pocock R, de Marco A. PIE-scope, integrated cryo-correlative light and FIB/SEM microscopy. eLife 2019; 8:e45919. [PMID: 31259689 PMCID: PMC6609333 DOI: 10.7554/elife.45919] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/26/2019] [Indexed: 11/14/2022] Open
Abstract
Cryo-electron tomography (cryo-ET) is emerging as a revolutionary method for resolving the structure of macromolecular complexes in situ. However, sample preparation for in situ Cryo-ET is labour-intensive and can require both cryo-lamella preparation through cryo-focused ion beam (FIB) milling and correlative light microscopy to ensure that the event of interest is present in the lamella. Here, we present an integrated cryo-FIB and light microscope setup called the Photon Ion Electron microscope (PIE-scope) that enables direct and rapid isolation of cellular regions containing protein complexes of interest. Specifically, we demonstrate the versatility of PIE-scope by preparing targeted cryo-lamellae from subcellular compartments of neurons from transgenic Caenorhabditis elegans and Drosophila melanogaster expressing fluorescent proteins. We designed PIE-scope to enable retrofitting of existing microscopes, which will increase the throughput and accuracy on projects requiring correlative microscopy to target protein complexes. This new approach will make cryo-correlative workflow safer and more accessible.
Collapse
Affiliation(s)
- Sergey Gorelick
- ARC Centre of Excellence in Advanced Molecular ImagingMonash UniversityClaytonAustralia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonAustralia
| | - Genevieve Buckley
- ARC Centre of Excellence in Advanced Molecular ImagingMonash UniversityClaytonAustralia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonAustralia
| | | | | | - Ava Handley
- Department of Anatomy and Developmental Biology, Biomedicine Discovery InstituteMonash UniversityClaytonAustralia
| | - Monica Pia Caggiano
- ARC Centre of Excellence in Advanced Molecular ImagingMonash UniversityClaytonAustralia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonAustralia
| | - James C Whisstock
- ARC Centre of Excellence in Advanced Molecular ImagingMonash UniversityClaytonAustralia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonAustralia
- University of WarwickCoventryUnited Kingdom
- EMBL AustraliaClaytonAustralia
| | - Roger Pocock
- Department of Anatomy and Developmental Biology, Biomedicine Discovery InstituteMonash UniversityClaytonAustralia
| | - Alex de Marco
- ARC Centre of Excellence in Advanced Molecular ImagingMonash UniversityClaytonAustralia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonAustralia
- University of WarwickCoventryUnited Kingdom
| |
Collapse
|
22
|
mir-234 controls neuropeptide release at the Caenorhabditis elegans neuromuscular junction. Mol Cell Neurosci 2019; 98:70-81. [PMID: 31200102 DOI: 10.1016/j.mcn.2019.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 01/16/2023] Open
Abstract
miR-137 is a highly conserved microRNA (miRNA) that is associated with the control of brain function and the etiology of psychiatric disorders including schizophrenia and bipolar disorder. The Caenorhabditis elegans genome encodes a single miR-137 ortholog called mir-234, the function of which is unknown. Here we show that mir-234 is expressed in a subset of sensory, motor and interneurons in C. elegans. Using a mir-234 deletion strain, we systematically examined the development and function of these neurons in addition to global C. elegans behaviors. We were however unable to detect phenotypes associated with loss of mir-234, possibly due to genetic redundancy. To circumvent this issue, we overexpressed mir-234 in mir-234-expressing neurons to uncover possible phenotypes. We found that mir-234-overexpression endows resistance to the acetylcholinesterase inhibitor aldicarb, suggesting modification of neuromuscular junction (NMJ) function. Further analysis revealed that mir-234 controls neuropeptide levels, therefore positing a cause of NMJ dysfunction. Together, our data suggest that mir-234 functions to control the expression of target genes that are important for neuropeptide maturation and/or transport in C. elegans. SIGNIFICANCE STATEMENT: The miR-137 family of miRNAs is linked to the control of brain function in humans. Defective regulation of miR-137 is associated with psychiatric disorders that include schizophrenia and bipolar disorder. Previous studies have revealed that miR-137 is required for the development of dendrites and for controlling the release of fast-acting neurotransmitters. Here, we analyzed the function a miR-137 family member (called mir-234) in the nematode animal model using anatomical, behavioral, electrophysiological and neuropeptide analysis. We reveal for the first time that mir-234/miR-137 is required for the release of slow-acting neuropeptides, which may also be of relevance for controlling human brain function.
Collapse
|
23
|
Byrne JJ, Soh MS, Chandhok G, Vijayaraghavan T, Teoh JS, Crawford S, Cobham AE, Yapa NMB, Mirth CK, Neumann B. Disruption of mitochondrial dynamics affects behaviour and lifespan in Caenorhabditis elegans. Cell Mol Life Sci 2019; 76:1967-1985. [PMID: 30840087 PMCID: PMC6478650 DOI: 10.1007/s00018-019-03024-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 01/29/2023]
Abstract
Mitochondria are essential components of eukaryotic cells, carrying out critical physiological processes that include energy production and calcium buffering. Consequently, mitochondrial dysfunction is associated with a range of human diseases. Fundamental to their function is the ability to transition through fission and fusion states, which is regulated by several GTPases. Here, we have developed new methods for the non-subjective quantification of mitochondrial morphology in muscle and neuronal cells of Caenorhabditis elegans. Using these techniques, we uncover surprising tissue-specific differences in mitochondrial morphology when fusion or fission proteins are absent. From ultrastructural analysis, we reveal a novel role for the fusion protein FZO-1/mitofusin 2 in regulating the structure of the inner mitochondrial membrane. Moreover, we have determined the influence of the individual mitochondrial fission (DRP-1/DRP1) and fusion (FZO-1/mitofusin 1,2; EAT-3/OPA1) proteins on animal behaviour and lifespan. We show that loss of these mitochondrial fusion or fission regulators induced age-dependent and progressive deficits in animal movement, as well as in muscle and neuronal function. Our results reveal that disruption of fusion induces more profound defects than lack of fission on animal behaviour and tissue function, and imply that while fusion is required throughout life, fission is more important later in life likely to combat ageing-associated stressors. Furthermore, our data demonstrate that mitochondrial function is not strictly dependent on morphology, with no correlation found between morphological changes and behavioural defects. Surprisingly, we find that disruption of either mitochondrial fission or fusion significantly reduces median lifespan, but maximal lifespan is unchanged, demonstrating that mitochondrial dynamics play an important role in limiting variance in longevity across isogenic populations. Overall, our study provides important new insights into the central role of mitochondrial dynamics in maintaining organismal health.
Collapse
Affiliation(s)
- Joseph J Byrne
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Ming S Soh
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Gursimran Chandhok
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Tarika Vijayaraghavan
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Jean-Sébastien Teoh
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Simon Crawford
- Monash Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Melbourne, VIC, 3800, Australia
| | - Ansa E Cobham
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Nethmi M B Yapa
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Brent Neumann
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
24
|
Doshi S, Price E, Landis J, Barot U, Sabatella M, Lans H, Kalb RG. Neuropeptide signaling regulates the susceptibility of developing C. elegans to anoxia. Free Radic Biol Med 2019; 131:197-208. [PMID: 30529384 DOI: 10.1016/j.freeradbiomed.2018.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 02/04/2023]
Abstract
Inadequate delivery of oxygen to organisms during development can lead to cell dysfunction/death and life-long disabilities. Although the susceptibility of developing cells to low oxygen conditions changes with maturation, the cellular and molecular pathways that govern responses to low oxygen are incompletely understood. Here we show that developing Caenorhabditis elegans are substantially more sensitive to anoxia than adult animals and that this sensitivity is controlled by nervous system generated hormones (e.g., neuropeptides). A screen of neuropeptide genes identified and validated nlp-40 and its receptor aex-2 as a key regulator of anoxic survival in developing worms. The survival-promoting action of impaired neuropeptide signaling does not rely on five known stress resistance pathways and is specific to anoxic insult. Together, these data highlight a novel cell non-autonomous pathway that regulates the susceptibility of developing organisms to anoxia.
Collapse
Affiliation(s)
- Shachee Doshi
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Emma Price
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Justin Landis
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Urva Barot
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mariangela Sabatella
- Department of Molecular Genetics, Erasmus Medical Centre, Oncode Institute, Cancer Genomics Netherlands, Rotterdam 3015 CN, the Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus Medical Centre, Oncode Institute, Cancer Genomics Netherlands, Rotterdam 3015 CN, the Netherlands
| | - Robert G Kalb
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
25
|
A novel gene-diet pair modulates C. elegans aging. PLoS Genet 2018; 14:e1007608. [PMID: 30125273 PMCID: PMC6117094 DOI: 10.1371/journal.pgen.1007608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 08/30/2018] [Accepted: 08/02/2018] [Indexed: 12/26/2022] Open
Abstract
Diet profoundly affects metabolism and incidences of age-related diseases. Animals adapt their physiology to different food-types, modulating complex life-history traits like aging. The molecular mechanisms linking adaptive capacity to diet with aging are less known. We identify FLR-4 kinase as a novel modulator of aging in C. elegans, depending on bacterial diet. FLR-4 functions to prevent differential activation of the p38MAPK pathway in response to diverse food-types, thereby maintaining normal life span. In a kinase-dead flr-4 mutant, E. coli HT115 (K12 strain), but not the standard diet OP50 (B strain), is able to activate p38MAPK, elevate expression of cytoprotective genes through the nuclear hormone receptor NHR-8 and enhance life span. Interestingly, flr-4 and dietary restriction utilize similar pathways for longevity assurance, suggesting cross-talks between cellular modules that respond to diet quality and quantity. Together, our study discovers a new C. elegans gene-diet pair that controls the plasticity of aging. For animals living in the wild, being able to utilize a wide range of diet is evolutionarily advantageous as they can survive even when their optimal diet is depleted. Since diet is known to influence the rate of aging, animals seem to have evolved intricate mechanisms to maintain homeostasis and normal life span, but the molecular mechanisms are less understood. Using a small nematode, C. elegans as a model, we show that the adaptive capacity to different diet is maintained by a kinase gene. When this gene is mutated, worms start living longer on one strain of bacterial diet but not on the other. We identify the molecular cascade required for this food-type-dependent longevity. We show that this cascade of events significantly overlaps with the pathway that determine food quantity-dependent life span enhancement. Our study thus elucidates a part of the molecular monitoring system that regulates longevity dependent on the available quality and quantity of diet.
Collapse
|
26
|
Handley A, Pocock R. Transcriptional control of satiety in Caenorhabditis elegans. Commun Integr Biol 2017. [PMCID: PMC5501193 DOI: 10.1080/19420889.2017.1325978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Obesity is an enormous worldwide health concern. Chronic illnesses associated with obesity include type-2 diabetes, hypertension, atherosclerosis and certain cancers. Communication between fat storage organs and the brain is essential for regulating feeding, metabolism and organismal activity—and hence obesity control. Model organism research provides opportunities to decipher conserved molecular mechanisms that regulate fat storage and activity levels, which is fundamental to understanding this disorder. We recently identified a transcription factor (ETS-5) that acts in specific neurons of the nematode Caenorhabditis elegans to control intestinal fat levels. Furthermore, we discovered a feedback mechanism where intestinal fat controls feeding and motor programs, similar to humans, where a sated stomach can inhibit feeding and induce lethargy. The precise molecular signals and neuronal circuitry underpinning brain-intestinal communication in C. elegans are however yet to be discovered. As most animals store surplus energy as fat, communication mechanisms that relay external information regarding food availability and quality, and internal energy reserves are likely conserved. Therefore, our identification of a neuronally-expressed transcriptional regulator that controls intestinal fat levels opens up new avenues of investigation for the control of metabolic disease and obesity.
Collapse
Affiliation(s)
- Ava Handley
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|