1
|
Bell D, Bell AH, Weber RS, Hanna EY. Intestinal-Type Adenocarcinoma in Head and Neck: Dissecting Oncogenic Gene Alterations Through Whole Transcriptome and Exome Analysis. Mod Pathol 2024; 37:100372. [PMID: 37914089 DOI: 10.1016/j.modpat.2023.100372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023]
Abstract
Adenocarcinomas of the nasal/paranasal sinuses are uncommon, but intestinal-type adenocarcinomas (ITACs) are important. Due to the rarity of these tumors, their molecular profile is not well known. To further investigate the molecular profile and find potential oncogenic drivers, we compared the whole transcriptome and exome of ITACs at different anatomic locations in the head and neck. Twenty-one head and neck adenocarcinomas were used in this study, divided into 10 sinonasal adenocarcinomas (SNT) and 11 extrasinonasal (T) head and neck adenocarcinomas according to anatomic location and histology. Tumor samples along with normal mucosa were microdissected from formalin-fixed, paraffin-embedded samples, and RNA and DNA were subjected to whole-transcriptome and -exome shotgun sequencing. Analysis of ITACs at sinonasal locations showed 410 subtype-specific differentially expressed (DE) genes and noncoding transcripts compared with the group of other anatomic locations, with 2909 subtype-specific DE genes. The groups shared 872 genes, with 17 highly different or opposing DE genes. Whole-exome mutation analysis revealed the gene MLL3 (KMT2C) to be exhibiting the most frequent loss-of-function mutations in all adenocarcinomas investigated. The results suggest that the head and neck ITACs investigated were mainly caused by loss-of-function mutations in MLL3 that disabled chromatin methylation and remodeling of all MLL3-targeted enhancers in the tumors. This changed the activity of multiple genes/gene clusters, supporting oncogenicity mostly via pathways of signaling, dedifferentiation, proliferation, migration, and immune and inflammatory deregulation, indicating a truly epigenetic event as the root cause for the heterogenous diversity of these enteric types of cancer. The data of this study form the basis for understanding cell fate determination and cellular homeostasis in the normal respiratory mucosa at different anatomic sites and show the contribution of different mucosal components to the etiology/molecular pathology of ITAC.
Collapse
Affiliation(s)
- Diana Bell
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, California.
| | - Achim H Bell
- Departments of Pathology Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Randal S Weber
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ehab Y Hanna
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
2
|
Abstract
Long non-coding RNAs (lncRNAs) represent a major fraction of the transcriptome in multicellular organisms. Although a handful of well-studied lncRNAs are broadly recognized as biologically meaningful, the fraction of such transcripts out of the entire collection of lncRNAs remains a subject of vigorous debate. Here we review the evidence for and against biological functionalities of lncRNAs and attempt to arrive at potential modes of lncRNA functionality that would reconcile the contradictory conclusions. Finally, we discuss different strategies of phenotypic analyses that could be used to investigate such modes of lncRNA functionality.
Collapse
Affiliation(s)
- Fan Gao
- Institute of Genomics, School of Biomedical Sciences, Huaqiao University, 201 Pan-Chinese S & T Building, 668 Jimei Road, Xiamen, 361021, China
| | - Ye Cai
- Institute of Genomics, School of Biomedical Sciences, Huaqiao University, 201 Pan-Chinese S & T Building, 668 Jimei Road, Xiamen, 361021, China
| | - Philipp Kapranov
- Institute of Genomics, School of Biomedical Sciences, Huaqiao University, 201 Pan-Chinese S & T Building, 668 Jimei Road, Xiamen, 361021, China.
| | - Dongyang Xu
- Institute of Genomics, School of Biomedical Sciences, Huaqiao University, 201 Pan-Chinese S & T Building, 668 Jimei Road, Xiamen, 361021, China.
| |
Collapse
|
3
|
Yan N, Sun Y, Fang Y, Deng J, Mu L, Xu K, Mymryk JS, Zhang Z. A Universal Surrogate Reporter for Efficient Enrichment of CRISPR/Cas9-Mediated Homology-Directed Repair in Mammalian Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:775-789. [PMID: 31955009 PMCID: PMC6970138 DOI: 10.1016/j.omtn.2019.12.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/30/2022]
Abstract
CRISPR/Cas9-mediated homology-directed repair (HDR) can be leveraged to precisely engineer mammalian genomes. However, the inherently low efficiency of HDR often hampers to identify the desired modified cells. Here, we developed a novel universal surrogate reporter system that efficiently enriches for genetically modified cells arising from CRISPR/Cas9-induced HDR events (namely, the "HDR-USR" system). This episomally based reporter can be self-cleaved and self-repaired via HDR to create a functional puromycin selection cassette without compromising genome integrity. Co-transfection of the HDR-USR system into host cells and transient puromycin selection efficiently achieves enrichment of HDR-modified cells. We tested the system for precision point mutation at 16 loci in different human cell lines and one locus in two rodent cell lines. This system exhibited dramatic improvements in HDR efficiency at a single locus (up to 20.7-fold) and two loci at once (42% editing efficiency compared to zero in the control), as well as greatly improved knockin efficiency (8.9-fold) and biallelic deletion (35.9-fold) at test loci. Further increases were achieved by co-expression of yeast Rad52 and linear single-/double-stranded DNA donors. Taken together, our HDR-USR system provides a simple, robust and efficient surrogate reporter for the enrichment of CRISPR/Cas9-induced HDR-based precision genome editing across various targeting loci in different cell lines.
Collapse
Affiliation(s)
- Nana Yan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongsen Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanyuan Fang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingrong Deng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu Mu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kun Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Joe S Mymryk
- Department of Microbiology & Immunology, Oncology and Otolaryngology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Zhiying Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Yang J, Meng X, Pan J, Jiang N, Zhou C, Wu Z, Gong Z. CRISPR/Cas9-mediated noncoding RNA editing in human cancers. RNA Biol 2018; 15:35-43. [PMID: 29028415 PMCID: PMC5785983 DOI: 10.1080/15476286.2017.1391443] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/26/2017] [Accepted: 10/08/2017] [Indexed: 01/26/2023] Open
Abstract
Cancer is characterized by multiple genetic and epigenetic alterations, including a higher prevalence of mutations of oncogenes and/or tumor suppressors. Mounting evidences have shown that noncoding RNAs (ncRNAs) are involved in the epigenetic regulation of cancer genes and their associated pathways. The clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 (CRISPR/Cas9) system, a revolutionary genome-editing technology, has shed light on ncRNA-based cancer therapy. Here, we briefly introduce the classifications and mechanisms of CRISPR/Cas9 system. Importantly, we mainly focused on the applications of CRISPR/Cas9 system as a molecular tool for ncRNA (microRNA, long noncoding RNA and circular RNA, etc.) editing in human cancers, and the novel techniques that are based on CRISPR/Cas9 system. Additionally, the off-target effects and the corresponding solutions as well as the challenges toward CRISPR/Cas9 were also evaluated and discussed. Long- and short-ncRNAs have been employed as targets in precision oncology, and CRISPR/Cas9-mediated ncRNA editing may provide an excellent way to cure cancer.
Collapse
Affiliation(s)
- Jie Yang
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Xiaodan Meng
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Jinchang Pan
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Nan Jiang
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Chengwei Zhou
- Department of Thoracic Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Zhenhua Wu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Ningbo Medical Center Lihuili Eastern Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Zhaohui Gong
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|