1
|
Schlenker N, Lee WG, Reichgelt T, Ohlemüller R. Do modern climatic niches distinguish extinct and extant plant genera in New Zealand? Ecol Evol 2024; 14:e70133. [PMID: 39234162 PMCID: PMC11371663 DOI: 10.1002/ece3.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 06/25/2024] [Accepted: 07/24/2024] [Indexed: 09/06/2024] Open
Abstract
Past climate changes have had large impacts on modern ecological patterns. Understanding if legacies are distinguishable in the climatic niches of extant and locally extinct taxa can provide insight into the importance of climate in extinction events. To better understand mid- to late-Cenozoic New Zealand plant extinctions, which are often attributed to Cenozoic climate cooling, we identify 13 con-familial extinct and extant New Zealand genus pairs, which have modern distributions in Australia. Using climatic niches derived from current geographic distributions in Australia, we compared (i) total niche breadth, (ii) niche overlap, and (iii) individual climate parameters, to investigate potential climate drivers of intrafamilial extinction and persistence patterns in New Zealand. A majority of New Zealand extinct genera (9 out of 13 pairs) do not indicate climate niche legacies consistent with susceptibility to extinction from changing climates, while the remaining four extinct/extant pairs show slight climatic niche legacies. Three extinct genera have warmer niches than their extant counterpart, which is consistent with extinction reflecting intolerance of cooling Cenozoic climates. The other genus pair with a climatic niche legacy has an extinct genus that is distinguished by a niche with smaller precipitation seasonality than its extant counterpart, suggesting that climate metrics other than temperature may also be important extinction drivers in some taxa. Our results show that the mechanisms of Cenozoic extinctions of New Zealand genera are likely more complex than taxa reaching environmental tolerances due to cooling climates. Comparisons of current climatic niches between extant and extinct sister taxa can provide useful insights into large-scale, long-term climatic legacies but more analyses, including trait and phylogeographic patterns, would lead to additional insights into alternative pathways of extinction.
Collapse
Affiliation(s)
- Nora Schlenker
- Department of Geography University of Wisconsin-Madison Madison Wisconsin USA
| | - William G Lee
- Manaaki Whenua - Landcare Research Dunedin New Zealand
| | - Tammo Reichgelt
- Department of Earth Sciences University of Connecticut Storrs Connecticut USA
| | | |
Collapse
|
2
|
Jin CS, Xu D, Li M, Hu P, Jiang Z, Liu J, Miao Y, Wu F, Liang W, Zhang Q, Su B, Liu Q, Zhang R, Sun J. Tectonic and orbital forcing of the South Asian monsoon in central Tibet during the late Oligocene. Proc Natl Acad Sci U S A 2023; 120:e2214558120. [PMID: 37011203 PMCID: PMC10104490 DOI: 10.1073/pnas.2214558120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/28/2022] [Indexed: 04/05/2023] Open
Abstract
The modern pattern of the Asian monsoon is thought to have formed around the Oligocene/Miocene transition and is generally attributed to Himalaya-Tibetan Plateau (H-TP) uplift. However, the timing of the ancient Asian monsoon over the TP and its response to astronomical forcing and TP uplift remains poorly known because of the paucity of well-dated high-resolution geological records from the TP interior. Here, we present a precession-scale cyclostratigraphic sedimentary section of 27.32 to 23.24 million years ago (Ma) during the late Oligocene epoch from the Nima Basin to show that the South Asian monsoon (SAM) had already advanced to the central TP (32°N) at least by 27.3 Ma, which is indicated by cyclic arid-humid fluctuations based on environmental magnetism proxies. A shift of lithology and astronomically orbital periods and amplified amplitude of proxy measurements as well as a hydroclimate transition around 25.8 Ma suggest that the SAM intensified at ~25.8 Ma and that the TP reached a paleoelevation threshold for enhancing the coupling between the uplifted plateau and the SAM. Orbital short eccentricity-paced precipitation variability is argued to be mainly driven by orbital eccentricity-modulated low-latitude summer insolation rather than glacial-interglacial Antarctic ice sheet fluctuations. The monsoon data from the TP interior provide key evidence to link the greatly enhanced tropical SAM at 25.8 Ma with TP uplift rather than global climate change and suggest that SAM's northward expansion to the boreal subtropics was dominated by a combination of tectonic and astronomical forcing at multiple timescales in the late Oligocene epoch.
Collapse
Affiliation(s)
- Chun-Sheng Jin
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
| | - Deke Xu
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
| | - Mingsong Li
- School of Earth and Space Sciences,Peking University, Beijing 100871, China
| | - Pengxiang Hu
- Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia
| | - Zhaoxia Jiang
- College of Marine Geosciences, Ocean University of China, Qingdao 266100, China
| | - Jianxing Liu
- Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Yunfa Miao
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Fuli Wu
- Key Laboratory of Continental Collision and Plateau uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Wentian Liang
- State Key Laboratory of Continental Dynamics, Northwest University, Xi’an 710069, China
| | - Qiang Zhang
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Bai Su
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Qingsong Liu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ran Zhang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Jimin Sun
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
3
|
Zhou L, Hou F, Wang L, Zhang L, Wang Y, Yin Y, Pei J, Peng C, Qin X, Gao J. The genome of Magnolia hypoleuca provides a new insight into cold tolerance and the evolutionary position of magnoliids. FRONTIERS IN PLANT SCIENCE 2023; 14:1108701. [PMID: 36844093 PMCID: PMC9950645 DOI: 10.3389/fpls.2023.1108701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Magnolia hypoleuca Sieb. & Zucc, a member of the Magnoliaceae of magnoliids, is one of the most economically valuable, phylogenetic and ornamental tree species in Eastern China. Here, the 1.64 Gb chromosome-level assembly covers 96.64% of the genome which is anchored to 19 chromosomes, with a contig N50 value of 1.71 Mb and 33,873 protein-coding genes was predicted. Phylogenetic analyses between M. hypoleuca and other 10 representative angiosperms suggested that magnoliids were placed as a sister group to the eudicots, rather than sister to monocots or both monocots and eudicots. In addition, the relative timing of the whole-genome duplication (WGD) events about 115.32 Mya for magnoliid plants. M. hypoleuca was found to have a common ancestor with M. officinalis approximately 23.4 MYA, and the climate change of OMT (Oligocene-Miocene transition) is the main reason for the divergence of M. hypoleuca and M. officinalis, which was along with the division of Japanese islands. Moreover, the TPS gene expansion observed in M. hypoleuca might contribute to the enhancement of flower fragrance. Tandem and proximal duplicates of younger age that have been preserved have experienced more rapid sequence divergence and a more clustered distribution on chromosomes contributing to fragrance accumulation, especially phenylpropanoid, monoterpenes and sesquiterpenes and cold tolerance. The stronger selective pressure drived the evolution of tandem and proximal duplicates toward plant self-defense and adaptation. The reference M. hypoleuca genome will provide insights into the evolutionary process of M. hypoleuca and the relationships between the magnoliids with monocots and eudicots, and enable us to delve into the fragrance and cold tolerance produced by M. hypoleuca and provide more robust and deep insight of how the Magnoliales evolved and diversified.
Collapse
Affiliation(s)
- Luojing Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feixia Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wang
- Sichuan Academy of Forestry Sciences, Chengdu, China
| | - Lingyu Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yalan Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanpeng Yin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Qin
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Jihai Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Herbert TD, Dalton CA, Liu Z, Salazar A, Si W, Wilson DS. Tectonic degassing drove global temperature trends since 20 Ma. Science 2022; 377:116-119. [PMID: 35771904 DOI: 10.1126/science.abl4353] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Miocene Climatic Optimum (MCO) from ~17 to 14 million years ago (Ma) represents an enigmatic reversal in Cenozoic cooling. A synthesis of marine paleotemperature records shows that the MCO was a local maximum in global sea surface temperature superimposed on a period from at least 19 Ma to 10 Ma, during which global temperatures were on the order of 10°C warmer than at present. Our high-resolution global reconstruction of ocean crustal production, a proxy for tectonic degassing of carbon, suggests that crustal production rates were ~35% higher than modern rates until ~14 Ma, when production began to decline steeply along with global temperatures. The magnitude and timing of the inferred changes in tectonic degassing can account for the majority of long-term ice sheet and global temperature evolution since 20 Ma.
Collapse
Affiliation(s)
| | | | - Zhonghui Liu
- Department of Earth Sciences, University of Hong Kong, Hong Kong, China
| | - Andrea Salazar
- Department of Earth and Planetary Science, Harvard University, Cambridge, MA, USA
| | - Weimin Si
- DEEPS, Brown University, Providence, RI 02912, USA
| | - Douglas S Wilson
- Department of Earth Science, University of California, Santa Barbara, CA, USA
| |
Collapse
|
5
|
Ao H, Liebrand D, Dekkers MJ, Zhang P, Song Y, Liu Q, Jonell TN, Sun Q, Li X, Li X, Qiang X, An Z. Eccentricity-paced monsoon variability on the northeastern Tibetan Plateau in the Late Oligocene high CO 2 world. SCIENCE ADVANCES 2021; 7:eabk2318. [PMID: 34910508 PMCID: PMC8673770 DOI: 10.1126/sciadv.abk2318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
Constraining monsoon variability and dynamics in the warm unipolar icehouse world of the Late Oligocene can provide important clues to future climate responses to global warming. Here, we present a ~4-thousand year (ka) resolution rubidium-to-strontium ratio and magnetic susceptibility records between 28.1 and 24.1 million years ago from a distal alluvial sedimentary sequence in the Lanzhou Basin (China) on the northeastern Tibetan Plateau margin. These Asian monsoon precipitation records exhibit prominent short (~110-ka) and long (405-ka) eccentricity cycles throughout the Late Oligocene, with a weak expression of obliquity (41-ka) and precession (19-ka and 23-ka) cycles. We conclude that a combination of eccentricity-modulated low-latitude summer insolation and glacial-interglacial Antarctic Ice Sheet fluctuations drove the eccentricity-paced precipitation variability on the northeastern Tibetan Plateau in the Late Oligocene high CO2 world by governing regional temperatures, water vapor loading in the western Pacific and Indian Oceans, and the Asian monsoon intensity and displacement.
Collapse
Affiliation(s)
- Hong Ao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China
- Open Studio for Oceanic-Continental Climate and Environment Changes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Diederik Liebrand
- National Oceanography Centre, European Way, SO14 3ZH Southampton, UK
- PalaeoClimate.Science, 27 Granby Grove, SO17 3RY, Southampton, UK
| | - Mark J. Dekkers
- Paleomagnetic Laboratory Fort Hoofddijk, Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Peng Zhang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China
- Open Studio for Oceanic-Continental Climate and Environment Changes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Yougui Song
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China
- Open Studio for Oceanic-Continental Climate and Environment Changes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Qingsong Liu
- Centre for Marine Magnetism (CM2), Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Tara N. Jonell
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, UK
| | - Qiang Sun
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, China
| | - Xinzhou Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China
- Open Studio for Oceanic-Continental Climate and Environment Changes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Xinxia Li
- School of Earth Sciences, China University of Geosciences (Wuhan), Wuhan, China
| | - Xiaoke Qiang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China
| | - Zhisheng An
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China
- Open Studio for Oceanic-Continental Climate and Environment Changes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
6
|
Rasmussen JA, Thibault N, Mac Ørum Rasmussen C. Middle Ordovician astrochronology decouples asteroid breakup from glacially-induced biotic radiations. Nat Commun 2021; 12:6430. [PMID: 34741034 PMCID: PMC8571325 DOI: 10.1038/s41467-021-26396-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 09/23/2021] [Indexed: 11/12/2022] Open
Abstract
Meso-Cenozoic evidence suggests links between changes in the expression of orbital changes and millennia-scale climatic- and biotic variations, but proof for such shifts in orbital cyclicity farther back in geological time is lacking. Here, we report a 469-million-year-old Palaeozoic energy transfer from precession to 405 kyr eccentricity cycles that coincides with the start of the Great Ordovician Biodiversification Event (GOBE). Based on an early Middle Ordovician astronomically calibrated cyclostratigraphic framework we find this orbital change to succeed the onset of icehouse conditions by 200,000 years, suggesting a climatic origin. Recently, this icehouse was postulated to be facilitated by extra-terrestrial dust associated with an asteroid breakup. Our timescale, however, shows the meteor bombardment to post-date the icehouse by 800,000 years, instead pausing the GOBE 600,000 years after its initiation. Resolving Milankovitch cyclicity in deep time thus suggests universal orbital control in modulating climate, and maybe even biodiversity accumulation, through geological time. The Middle Ordovician icehouse has been suggested to be sparked by extra-terrestrial dust associated with an asteroid break-up. Here, the authors use an astronomically calibrated timescale to decouple millennia-scale climate and biodiversity change from the meteorite shower 468.4 million years ago.
Collapse
Affiliation(s)
- Jan Audun Rasmussen
- Museum Mors, Skarrehagevej 8, DK-7900, Nykøbing Mors, Denmark.,Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350, Copenhagen K, Denmark
| | - Nicolas Thibault
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen K, Denmark.
| | | |
Collapse
|
7
|
Arnscheidt CW, Rothman DH. Asymmetry of extreme Cenozoic climate-carbon cycle events. SCIENCE ADVANCES 2021; 7:7/33/eabg6864. [PMID: 34380621 PMCID: PMC8357229 DOI: 10.1126/sciadv.abg6864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/23/2021] [Indexed: 05/22/2023]
Abstract
The history of Earth's climate and carbon cycle is preserved in deep-sea foraminiferal carbon and oxygen isotope records. Here, we show that the sub-million-year fluctuations in both records have exhibited negatively skewed non-Gaussian tails throughout much of the Cenozoic era (66 Ma to present), suggesting an intrinsic asymmetry that favors "hyperthermal-like" extreme events of abrupt global warming and oxidation of organic carbon. We show that this asymmetry is quantitatively consistent with a general mechanism of self-amplification that can be modeled using stochastic multiplicative noise. A numerical climate-carbon cycle model in which the amplitude of random biogeochemical fluctuations increases at higher temperatures reproduces the data well and can further explain the apparent pacing of past extreme warming events by changes in orbital parameters. Our results also suggest that, as anthropogenic warming continues, Earth's climate may become more susceptible to extreme warming events on time scales of tens of thousands of years.
Collapse
Affiliation(s)
- Constantin W Arnscheidt
- Lorenz Center, Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Daniel H Rothman
- Lorenz Center, Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
8
|
Weppe R, Orliac MJ, Guinot G, Condamine FL. Evolutionary drivers, morphological evolution and diversity dynamics of a surviving mammal clade: cainotherioids at the Eocene-Oligocene transition. Proc Biol Sci 2021; 288:20210173. [PMID: 34074121 PMCID: PMC8170207 DOI: 10.1098/rspb.2021.0173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/10/2021] [Indexed: 11/12/2022] Open
Abstract
The Eocene-Oligocene transition (EOT) represents a period of global environmental changes particularly marked in Europe and coincides with a dramatic biotic turnover. Here, using an exceptional fossil preservation, we document and analyse the diversity dynamics of a mammal clade, Cainotherioidea (Artiodactyla), that survived the EOT and radiated rapidly immediately after. We infer their diversification history from Quercy Konzentrat-Lagerstätte (south-west France) at the species level using Bayesian birth-death models. We show that cainotherioid diversity fluctuated through time, with extinction events at the EOT and in the late Oligocene, and a major speciation burst in the early Oligocene. The latter is in line with our finding that cainotherioids had a high morphological adaptability following environmental changes throughout the EOT, which probably played a key role in the survival and evolutionary success of this clade in the aftermath. Speciation is positively associated with temperature and continental fragmentation in a time-continuous way, while extinction seems to synchronize with environmental change in a punctuated way. Within-clade interactions negatively affected the cainotherioid diversification, while inter-clade competition might explain their final decline during the late Oligocene. Our results provide a detailed dynamic picture of the evolutionary history of a mammal clade in a context of global change.
Collapse
Affiliation(s)
- R. Weppe
- Institut des Sciences de l’évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - M. J. Orliac
- Institut des Sciences de l’évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - G. Guinot
- Institut des Sciences de l’évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - F. L. Condamine
- Institut des Sciences de l’évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
9
|
Abstract
During the Eocene, high-latitude regions were much warmer than today and substantial polar ice sheets were lacking. Indeed, the initiation of significant polar ice sheets near the end of the Eocene has been closely linked to global cooling. Here, we examine the relationship between global temperatures and continental-scale polar ice sheets following the establishment of ice sheets on Antarctica ∼34 million years ago, using records of surface temperatures from around the world. We find that high-latitude temperatures were almost as warm after the initiation of Antarctic glaciation as before, challenging our basic understanding of how climate works, and of the development of climate and ice volume through time. Falling atmospheric CO2 levels led to cooling through the Eocene and the expansion of Antarctic ice sheets close to their modern size near the beginning of the Oligocene, a period of poorly documented climate. Here, we present a record of climate evolution across the entire Oligocene (33.9 to 23.0 Ma) based on TEX86 sea surface temperature (SST) estimates from southwestern Atlantic Deep Sea Drilling Project Site 516 (paleolatitude ∼36°S) and western equatorial Atlantic Ocean Drilling Project Site 929 (paleolatitude ∼0°), combined with a compilation of existing SST records and climate modeling. In this relatively low CO2 Oligocene world (∼300 to 700 ppm), warm climates similar to those of the late Eocene continued with only brief interruptions, while the Antarctic ice sheet waxed and waned. SSTs are spatially heterogenous, but generally support late Oligocene warming coincident with declining atmospheric CO2. This Oligocene warmth, especially at high latitudes, belies a simple relationship between climate and atmospheric CO2 and/or ocean gateways, and is only partially explained by current climate models. Although the dominant climate drivers of this enigmatic Oligocene world remain unclear, our results help fill a gap in understanding past Cenozoic climates and the way long-term climate sensitivity responded to varying background climate states.
Collapse
|
10
|
Opposite response modes of NADW dynamics to obliquity forcing during the late Paleogene. Sci Rep 2020; 10:13194. [PMID: 32764595 PMCID: PMC7413374 DOI: 10.1038/s41598-020-70020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/17/2020] [Indexed: 12/03/2022] Open
Abstract
Although the responses of North Atlantic Deep Water (NADW) is deeply connected to orbital rhythms, those under different tectonic and atmospheric boundary conditions remain unknown. Here, we report suborbitally resolved benthic foraminiferal stable isotope data from J-anomaly Ridge in the North Atlantic from ca. 26.4–26.0 Ma. Our results indicate that the formation of NADW during that time interval was increased during the obliquity-paced interglacial periods, similar to in the Plio-Pleistocene. During the late Oligocene, the interglacial poleward shifts of the stronger westerlies in the southern hemisphere, which occurred due to the higher thermal contrasts near the upper limit of the troposphere, reinforced the Antarctic Circumpolar Current (ACC) and, in turn, the Atlantic meridional overturning circulation (AMOC). However, such a response mode in deep ocean circulation did not occur during the middle Eocene because of different tectonic boundary conditions and the immature states of the ACC. Instead, the middle Eocene interglacial conditions weakened the formation of the proto-type NADW due to less heat loss rate in high-latitude regions of the North Atlantic during high obliquity periods. Our findings highlight the different responses of deep ocean circulation to orbital forcing and show that climate feedbacks can be largely sensitive to boundary conditions.
Collapse
|
11
|
Yan Y, Uotila P, Huang K, Gu W. Variability of sea ice area in the Bohai Sea from 1958 to 2015. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136164. [PMID: 31927431 DOI: 10.1016/j.scitotenv.2019.136164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/30/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
With the backdrop of continuous global change, it is beneficial to create consistent long-term records of sea ice area on regional scales for ice disaster prevention and risk mitigation. In this study, a piecewise multiple nonlinear regression model was developed to reconstruct long-term daily sea ice area dataset in the Bohai Sea from 1958 to 2015 by linking the related meteorological data and the satellite-derived ice area. The validation analysis show that related meteorological status corresponding to physical process had stable skill of predictive ability, which was able to account for 81% of the observational variance under consideration of sea ice state, freezing and melting phases. The reconstructed daily sea ice area dataset was further used to study the interannual and seasonal variability of sea ice area. The annual maximum ice area (AMIA) and the annual average ice area (AAIA) in the Bohai Sea exhibited a decreasing trend with fluctuation of -0.33 ± 0.18% yr-1 and -0.51 ± 0.16% yr-1 over the period of 1958-2015, respectively. The most obvious change of the Bohai Sea ice area occurred in time scale of ~30 years. The whole study period could be divided into slight increasing stage (1958-1980), significant decreasing stage (1980-1995), and moderate increasing stage (1995-2015). In most years, the annual changes of sea ice area showed an unimodal variation and the freezing period (~65 days) was longer than the melting phase (~40 days) due to the relatively higher freezing rate. In addition, high correlations between AAIA and Arctic Oscillation (AO) index (r = -0.60, p < .01) and North Atlantic Oscillation (NAO) index (r = -0.69, p < .01) from 1958 to 2015 suggested AO and NAO are the primary large-scale climate factors driving the sea ice variability in the Bohai Sea.
Collapse
Affiliation(s)
- Yu Yan
- Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing 100875, China; Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, 00014 Helsinki, Finland; Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Petteri Uotila
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Kaiyue Huang
- Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing 100875, China; Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Wei Gu
- Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing 100875, China; Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
12
|
Boulila S. Coupling between Grand cycles and Events in Earth's climate during the past 115 million years. Sci Rep 2019; 9:327. [PMID: 30674928 PMCID: PMC6344641 DOI: 10.1038/s41598-018-36509-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/20/2018] [Indexed: 11/21/2022] Open
Abstract
Geological sediment archives document a rich periodic series of astronomically driven climate, but record also abrupt, severe climatic changes called events, the multi-Myr boundary conditions of which have generally been ascribed to acyclic processes from Earth’s interior dynamics. These events have rarely been considered together within extended time series for potential correlation with long-term (multi-million year, Myr) cycling. Here I show a coupling between events and multi-Myr cycles in a temperature and ice-volume climatic proxy of the geological past 115 Myr. I use Cenozoic through middle Cretaceous climatic variations, as recorded in benthic foraminifera δ18O, to highlight prominent ~9 and ~36 Myr cyclicities. These cyclicities were previously attributed either to astronomical or tectonic variations. In particular, I point out that most of the well-known events during the past 115 Myr geological interval occur during extremes in the ~9 and ~36 Myr cycling. One exception is the early Cenozoic hyperthermal events including the salient Paleocene-Eocene Thermal Maximum (~56 Ma), which do not match extremes in long-period cyclicities, but to inflection point of these cycles. Specific focus on climatic events, as inferred from δ18O proxy, suggest that some “events”, marked by gradual trends within the ~9 and ~36 Myr cycle extremes, would principally be paced by long-term cycling, while “events”, recorded as abrupt δ18O changes nearby cycle extremes, would be rather induced by acyclic processes. The connection between cyclic and acyclic processes, as triggers or feedbacks, is very likely. Such link between cycling and events in Earth’s past climate provides insight into celestial dynamics governing perturbations in Earth’s surface systems, but also the potential connection between external and Earth’s interior processes.
Collapse
Affiliation(s)
- Slah Boulila
- Sorbonne Université, CNRS, Institut des Sciences de la Terre Paris, ISTeP, F-75005, Paris, France. .,ASD/IMCCE, CNRS-UMR8028, Observatoire de Paris, PSL University, Sorbonne Université, 77 Avenue Denfert-Rochereau, 75014, Paris, France.
| |
Collapse
|
13
|
Halanych KM, Mahon AR. Challenging Dogma Concerning Biogeographic Patterns of Antarctica and the Southern Ocean. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-121415-032139] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antarctica is enormous, cold, remote, and particularly sensitive to climate change. Most biological research below 60°S has focused on the isolated nature of the biota and how organisms have adapted to the cold and ice. However, biogeographic patterns in Antarctica and the Southern Ocean, and the processes explaining how those patterns came about, still await adequate explanation. Both terrestrial and marine organisms have been influenced by climatic change (e.g., glaciation), physical phenomena (e.g., oceanic currents), and/or potential barriers to gene flow (e.g., steep thermal gradients). Whereas the Antarctic region contains diverse and complex marine communities, terrestrial systems tend to be comparatively simple with limited diversity. Here, we challenge the current dogma used to explain the diversity and biogeographic patterns present in the Antarctic. We assert that relatively modern processes within the last few million years, rather than geo-logical events that occurred in the Eocene and Miocene, account for present patterns of biodiversity in the region. Additionally, reproductive life history stages appear to have little influence in structuring genetic patterns in the Antarctic, as currents and glacial patterns are noted to be more important drivers of organismal patterns of distribution. Finally, we highlight the need for additional sampling, high-throughput genomic approaches, and broad, multinational cooperation for addressing outstanding questions of Antarctic biogeography and biodiversity.
Collapse
Affiliation(s)
- Kenneth M. Halanych
- Molette Biology Laboratory for Environmental and Climate Change Studies, Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Andrew R. Mahon
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| |
Collapse
|
14
|
Liebrand D, Raffi I, Fraguas Á, Laxenaire R, Bosmans JHC, Hilgen FJ, Wilson PA, Batenburg SJ, Beddow HM, Bohaty SM, Bown PR, Crocker AJ, Huck CE, Lourens LJ, Sabia L. Orbitally Forced Hyperstratification of the Oligocene South Atlantic Ocean. PALEOCEANOGRAPHY AND PALEOCLIMATOLOGY 2018; 33:511-529. [PMID: 31058259 PMCID: PMC6485903 DOI: 10.1002/2017pa003222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 06/09/2023]
Abstract
Pelagic sediments from the subtropical South Atlantic Ocean contain geographically extensive Oligocene ooze and chalk layers that consist almost entirely of the calcareous nannofossil Braarudosphaera. Poor recovery and the lack of precise dating of these horizons in previous studies has limited the understanding of the number of acmes, their timing and durations, and therefore their likely cause. Here we present a high-resolution, astronomically tuned stratigraphy of Braarudosphaera oozes (29.5-27.9 Ma) from Ocean Drilling Program Site 1264 in the southeastern Atlantic Ocean. We identify seven episodes with highly abundant Braarudosphaera. Four of these acme events coincide with maxima and three with minima in the ~110 and 405-kyr paced eccentricity cycles. The longest lasting acme event corresponds to a pronounced minimum in the ~2.4-Myr eccentricity cycle. In the modern ocean, Braarudosphaera occurrences are limited to shallow marine and neritic settings, and the calcified coccospheres of Braarudosphaera are probably produced during a resting stage in the algal life cycle. Therefore, we hypothesize that the Oligocene acmes point to extensive and episodic (hyper) stratified surface water conditions, with a shallow pycnocline that may have served as a virtual seafloor and (partially/temporarily) prevented the coccospheres from sinking in the pelagic realm. We speculate that hyperstratification was either extended across large areas of the South Atlantic basin, through the formation of relatively hyposaline surface waters, or eddy contained through strong isopycnals at the base of eddies. Astronomical forcing of atmospheric and/or oceanic circulation could have triggered these conditions through either sustained rainfall over the open ocean and adjacent land masses or increased Agulhas Leakage.
Collapse
Affiliation(s)
- Diederik Liebrand
- National Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
- MARUM ‐ Center for Marine Environmental ScienceUniversity of BremenBremenGermany
| | - Isabella Raffi
- Dipartimento di Ingegneria e Geologia (InGeo)Università degli Studi “G. d'Annunzio” di Chieti–PescaraChieti ScaloItaly
| | - Ángela Fraguas
- Paleontology DepartmentUniversity Complutense of MadridMadridSpain
| | - Rémi Laxenaire
- Laboratoire de Météorologie Dynamique, École Polytechnique, ENS, CNRSParisFrance
| | - Joyce H. C. Bosmans
- Department of Physical Geography, Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands
| | - Frederik J. Hilgen
- Department of Earth Sciences, Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands
| | - Paul A. Wilson
- National Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
| | | | - Helen M. Beddow
- Department of Earth Sciences, Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands
| | - Steven M. Bohaty
- National Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
| | - Paul R. Bown
- Department of Earth SciencesUniversity College LondonLondonUK
| | - Anya J. Crocker
- National Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
- Department of Animal and Plant ScienceUniversity of SheffieldSheffieldUK
| | - Claire E. Huck
- National Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
| | - Lucas J. Lourens
- Department of Earth Sciences, Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands
| | - Luciana Sabia
- Department of Science and TechnologiesUniversity of Naples “Parthenope”NaplesItaly
| |
Collapse
|
15
|
Initiation and long-term instability of the East Antarctic Ice Sheet. Nature 2017; 552:225-229. [DOI: 10.1038/nature25026] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/06/2017] [Indexed: 11/08/2022]
|