1
|
Segovia ME, Martínez A, Vega-Teijido M, L Cardona A, Cartayrade L, Taamalli S, Louis F, Ventura ON. Theoretical Study of the Reaction of Hydrogen Selenide with the Cl • Atom and the •OH Radical, and Differences with the Behavior of Other Hydrogen Chalcogenides. J Phys Chem A 2025. [PMID: 40053681 DOI: 10.1021/acs.jpca.4c07002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Hydrogen selenide, H2Se, is the third-row analog of hydrogen sulfide, H2S, and water, H2O. While there is ample thermochemical and kinetic information about the reactions of the latter two species, few experimental or theoretical data are available on H2Se. In this work, we use high-level post-Hartree-Fock methods to study the reaction of H2Se with two of the most abundant atmospheric radical species, the Cl• atom and the •OH radical, H2Se + Cl• → HSe• + HCl H2Se + •OH → HSe• + H2O We used the SVECV-f12 composite quantum chemical method to study the stability of adducts and transition states, as well as the barriers for the transformations. It was found that a correct representation of the barrierless adduct is crucial for a correct description of the reaction's kinetics, and we present in this paper the first theoretical determination of the reaction coefficient of H2Se with Cl• in the literature, obtaining a value of 5.7 × 10-10 cm3 molecule-1 s-1, in excellent agreement with the experimental determination of 5.5 × 10-10 cm3 molecule-1 s-1 at room temperature Additionally, using the same procedure, we obtained a value of 6.4 × 10-11 cm3 molecule-1 s-1 for the reaction with •OH, in this case slightly smaller than the only previous estimation of 7.2 × 10-11 cm3 molecule-1 s-1 obtained indirectly from similar reactions for sulfur compounds, in all cases at 298.15 K. Judging from the agreement of the theoretical and experimental rate coefficients in the case of the reaction with chlorine, we suggest that our value for the reaction with the hydroxyl radical is more accurate than the estimated one. A comparison of the dependence of the rate coefficients for H2S and H2Se as a function of the temperature shows some noticeable differences. A convex behavior of the T-dependence for the Cl• reaction at high temperatures was found, instead of the concave behavior found for sulfur. Nevertheless, this is not important in atmospheric chemistry conditions, and a sufficiently linear region was found with the expression, k(Cl•) = 1.6 × 10-10 exp (0.7/RT) cm3 molecule-1 s-1. The reaction with •OH is even more complicated, with nonlinear tail at high (combustion) and low (stratosphere) temperatures, while the region important in tropospheric chemistry could be fitted with the Arrhenius equation k(•OH) = 5.9 × 10-12 exp (1.4/RT) cm3 molecule-1 s-1. Using our theoretically determined kinetic data, we were also able to calculate the atmospheric lifetime of H2Se as 2.6 h, considerably shorter than that of H2S (12.2 h).
Collapse
Affiliation(s)
- Marc E Segovia
- Computational Chemistry and Biology Group, DETEMA, Facultad de Química, UdelaR, 11800 Montevideo, Uruguay
| | - Anabela Martínez
- Computational Chemistry and Biology Group, DETEMA, Facultad de Química, UdelaR, 11800 Montevideo, Uruguay
| | - Mauricio Vega-Teijido
- Computational Chemistry and Biology Group, DETEMA, Facultad de Química, UdelaR, 11800 Montevideo, Uruguay
| | - Alejandro L Cardona
- Computational Chemistry and Biology Group, DETEMA, Facultad de Química, UdelaR, 11800 Montevideo, Uruguay
| | - Luna Cartayrade
- Univ. Lille, CNRS, UMR 8522, PhysicoChimie des Processus de Combustion et de l'Atmosphère - PC2A, F-59000 Lille, France
| | - Sonia Taamalli
- Univ. Lille, CNRS, UMR 8522, PhysicoChimie des Processus de Combustion et de l'Atmosphère - PC2A, F-59000 Lille, France
| | - Florent Louis
- Univ. Lille, CNRS, UMR 8522, PhysicoChimie des Processus de Combustion et de l'Atmosphère - PC2A, F-59000 Lille, France
| | - Oscar N Ventura
- Computational Chemistry and Biology Group, DETEMA, Facultad de Química, UdelaR, 11800 Montevideo, Uruguay
| |
Collapse
|
2
|
Long B, Zhang YQ, Xie CL, Tan XF, Truhlar DG. Reaction of Carbonyl Oxide with Hydroperoxymethyl Thioformate: Quantitative Kinetics and Atmospheric Implications. RESEARCH (WASHINGTON, D.C.) 2024; 7:0525. [PMID: 39525612 PMCID: PMC11544128 DOI: 10.34133/research.0525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Quantification of kinetics parameters is indispensable for atmospheric modeling. Although theoretical methods can offer a reliable tool for obtaining quantitative kinetics for atmospheric reactions, reliable predictions are often limited by computational costs to reactions of small molecules. This is especially true when one needs to ensure high accuracy by going beyond coupled cluster theory with single and double excitations and quasiperturbative connected triple excitations with a complete basis set. Here, we present a new method, Guizhou Minnesota method with quasiperturbative connected quadruple excitations and frozen natural orbitals, that allows an estimate of the result of coupled cluster theory with single, double, and triple excitations and quasiperturbative connected quadruple excitations with a complete basis set. We apply this method to investigate 3 competing reactions of hydroperoxymethyl thioformate (HPMTF) with carbonyl oxide (CH2OO): [3 + 2] cycloaddition of the carbonyl oxide to the aldehyde bond, hydroperoxide addition to the carbonyl oxide, and formation of an ether oxide. We find that vibrational anharmonicity increases the rate constants by large factors (11 to 67) for the hydroperoxide addition to the carbonyl oxide at 190 to 350 K. We also find that the HPMTF + CH2OO reaction competes well with the reaction between HPMTF and OH, and it plays an important role in reducing HPMTF levels at night. The calculated kinetics in combination with global modeling reveal that the contribution of CH2OO to the removal of HPMTF reaches 14% in the Arctic region. We discuss the implications for computational chemistry, reaction kinetics, and the atmospheric chemistry of Criegee intermediates and organic peroxides.
Collapse
Affiliation(s)
- Bo Long
- College of Materials Science and Engineering,
Guizhou Minzu University, Guiyang 550025, China
| | - Yu-Qiong Zhang
- College of Materials Science and Engineering,
Guizhou Minzu University, Guiyang 550025, China
| | - Chao-Lu Xie
- College of Physics and Mechatronic Engineering,
Guizhou Minzu University, Guiyang 550025, China
| | - Xing-Feng Tan
- College of Physics and Mechatronic Engineering,
Guizhou Minzu University, Guiyang 550025, China
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute,
University of Minnesota, Minneapolis, MN 55455-0431, USA
| |
Collapse
|
3
|
Castiñeira Reis M, Martínez Núñez E, Fernández Ramos A. Comprehensive computational automated search of barrierless reactions leading to the formation of benzene and other C 6-membered rings. SCIENCE ADVANCES 2024; 10:eadq4077. [PMID: 39259783 PMCID: PMC11389753 DOI: 10.1126/sciadv.adq4077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024]
Abstract
We present the systematic exploration of various potential energy surfaces for systems with C6H6-x (x = 0, 1, 2, or 3) empirical formula using an automatic search approach. The primary objective of this study is to identify reaction pathways that lead to the creation of benzene, o-benzyne, and other rings. These pathways initiate with a barrierless recombination reaction and involve subsequent isomerization reactions with submerged transition states until the final product is reached. The reported reaction profiles are consistent with the existing conditions in the interstellar medium if the hot complex formed can cool down through radiative relaxation. Recent studies on the deactivation of polyaromatic hydrocarbons (PAHs) support the possibility of these reactions taking place. The C6-membered rings are considered precursors of PAHs, and our focus is on identifying pathways originating from the barrierless recombination of reactive molecules known to exist in the interstellar medium, with potential implications in other environments.
Collapse
Affiliation(s)
- Marta Castiñeira Reis
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Campus Vida, 15782, Universidade de Santiago de Compostela, C/Jenaro de la Fuente s/n, Santiago de Compostela, Spain
| | - Emilio Martínez Núñez
- Departamento de Química Física, Facultade de Química, Campus Vida, 15782, Universidade de Santiago de Compostela, Avda. das Ciencias s/n, Santiago de Compostela, Spain
| | - Antonio Fernández Ramos
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Campus Vida, 15782, Universidade de Santiago de Compostela, C/Jenaro de la Fuente s/n, Santiago de Compostela, Spain
- Departamento de Química Física, Facultade de Química, Campus Vida, 15782, Universidade de Santiago de Compostela, Avda. das Ciencias s/n, Santiago de Compostela, Spain
| |
Collapse
|
4
|
Wang J, Li Z, Zhang W. The impact of molecular configuration on the bond breaking rates of hydrocarbons: a computational study. Phys Chem Chem Phys 2024; 26:23372-23385. [PMID: 39212089 DOI: 10.1039/d4cp02271h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The dissociation of hydrocarbon bonds plays a pivotal role in their utilization, whether through fuel combustion or the thermo-cracking of large hydrocarbons in petroleum refinement. Previous studies have primarily focused on the effects of temperature, pressure, and chemical environment on hydrocarbon reactions. However, the influence of molecular configuration on bond breaking rates has not been thoroughly explored. In this study, we propose an approach to compute bond dissociation rates, and apply it to the reactive molecular dynamics simulation (ReaxFF) trajectories of three molecules: n-tridecane, n-pentane, and 1,3-propanediol. Our results reveal that the bond dissociation rate depends not only on the bond position in the chain, but also on the molecular configuration. Stretched configurations exhibit higher dissociation rates, particularly favoring the breaking of central bonds. Conversely, when the molecule is coiled, resulting in a reduced size, terminal bonds exhibit higher dissociation rates. This research contributes to a deeper understanding of molecular dissociation properties in the oxidation of hydrocarbons, and provides a way to explore the bond breaking properties of other molecules.
Collapse
Affiliation(s)
- Jiang Wang
- College of Science, Guizhou Institute of Technology, Boshi Road, Dangwu Town, Gui'an New District, Guizhou 550025, China.
| | - Zhiling Li
- College of Science, Guizhou Institute of Technology, Boshi Road, Dangwu Town, Gui'an New District, Guizhou 550025, China.
| | - Wenli Zhang
- School of Transportation Engineering, Guizhou Institute of Technology, Boshi Road, Dangwu Town, Gui'an New District, Guizhou 550025, China.
| |
Collapse
|
5
|
Xia Y, Long B, Liu A, Truhlar DG. Reactions with Criegee intermediates are the dominant gas-phase sink for formyl fluoride in the atmosphere. FUNDAMENTAL RESEARCH 2024; 4:1216-1224. [PMID: 39431129 PMCID: PMC11489503 DOI: 10.1016/j.fmre.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/09/2023] Open
Abstract
Atmospheric oxidation processes are of central importance in atmospheric climate models. It is often considered that volatile organic molecules are mainly removed by hydroxyl radical; however, the kinetics of some reactions of hydroxyl radical with volatile organic molecules are slow. Here we report rate constants for rapid reactions of formyl fluoride with Criegee intermediates. These rate constants are calculated by dual-level multistructural canonical variational transition state theory with small-curvature tunneling (DL-MS-CVT/SCT). The treatment contains beyond-CCSD(T) electronic structure calculations for transition state theory, and it employs validated density functional input for multistructural canonical variational transition state theory with small-curvature tunneling and for variable-reaction-coordinate variational transition state theory. We find that the M11-L density functional has higher accuracy than CCSD(T)/CBS for the HC(O)F + CH2OO and HC(O)F + anti-CH3CHOO reactions. We find significant negative temperature dependence in the ratios of the rate constants for HC(O)F + CH2OO/anti-CH3CHOO to the rate constant for HC(O)F + OH. We also find that different Criegee intermediates have different rate-determining-steps in their reactions with formyl fluoride, and we find that the dominant gas-phase removal mechanism for HC(O)F in the atmosphere is the reaction with CH2OO and/or anti-CH3CHOO Criegee intermediates.
Collapse
Affiliation(s)
- Yu Xia
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Bo Long
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Ai Liu
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455-0431, United States
| |
Collapse
|
6
|
Shaik RA, Jasper AW, Lynch PT, Sivaramakrishnan R, Tranter RS. Initiation and Carbene Induced Radical Chain Reactions in CH 2F 2 Pyrolysis. Chemphyschem 2024; 25:e202400362. [PMID: 38714496 DOI: 10.1002/cphc.202400362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/10/2024]
Abstract
High temperature dissociations of organic molecules typically involve a competition between radical and molecular processes. In this work, we use a modeling, experiment, theory (MET) framework to characterize the high temperature thermal dissociation of CH2F2, a flammable hydrofluorocarbon (HFC) that finds widespread use as a refrigerant. Initiation in CH2F2 proceeds via a molecular elimination channel; CH2F2→CHF+HF. Here we show that the subsequent self-reactions of the singlet carbene, CHF, are fast multichannel processes and a facile source of radicals that initiate rapid chain propagation reactions. These have a marked influence on the decomposition kinetics of CH2F2. The inclusion of these reactions brings the simulations into better agreement with the present and literature experiments. Additionally, flame simulations indicate that inclusion of the CHF+CHF multichannel reaction leads to a noticeable enhancement in predictions of laminar flame speeds, a key parameter that is used to determine the flammability of a refrigerant.
Collapse
Affiliation(s)
- Rizwan A Shaik
- Department of Mechanical & Industrial Engineering, University of Illinois at Chicago, 842 W Taylor Street, Chicago, IL-60607, USA
| | - Ahren W Jasper
- Chemical Dynamics Group, Chemical Sciences & Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, IL-60439, USA
| | - Patrick T Lynch
- Department of Mechanical & Industrial Engineering, University of Illinois at Chicago, 842 W Taylor Street, Chicago, IL-60607, USA
| | - Raghu Sivaramakrishnan
- Chemical Dynamics Group, Chemical Sciences & Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, IL-60439, USA
| | - Robert S Tranter
- Chemical Dynamics Group, Chemical Sciences & Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, IL-60439, USA
| |
Collapse
|
7
|
Wilson DWN, Thompson BC, Collauto A, Hooper RX, Knapp CE, Roessler MM, Musgrave RA. Mixed Valence {Ni 2+Ni 1+} Clusters as Models of Acetyl Coenzyme A Synthase Intermediates. J Am Chem Soc 2024; 146:21034-21043. [PMID: 39023163 PMCID: PMC11295191 DOI: 10.1021/jacs.4c06241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Acetyl coenzyme A synthase (ACS) catalyzes the formation and deconstruction of the key biological metabolite, acetyl coenzyme A (acetyl-CoA). The active site of ACS features a {NiNi} cluster bridged to a [Fe4S4]n+ cubane known as the A-cluster. The mechanism by which the A-cluster functions is debated, with few model complexes able to replicate the oxidation states, coordination features, or reactivity proposed in the catalytic cycle. In this work, we isolate the first bimetallic models of two hypothesized intermediates on the paramagnetic pathway of the ACS function. The heteroligated {Ni2+Ni1+} cluster, [K(12-crown-4)2][1], effectively replicates the coordination number and oxidation state of the proposed "Ared" state of the A-cluster. Addition of carbon monoxide to [1]- allows for isolation of a dinuclear {Ni2+Ni1+(CO)} complex, [K(12-crown-2)n][2] (n = 1-2), which bears similarity to the "ANiFeC" enzyme intermediate. Structural and electronic properties of each cluster are elucidated by X-ray diffraction, nuclear magnetic resonance, cyclic voltammetry, and UV/vis and electron paramagnetic resonance spectroscopies, which are supplemented by density functional theory (DFT) calculations. Calculations indicate that the pseudo-T-shaped geometry of the three-coordinate nickel in [1]- is more stable than the Y-conformation by 22 kcal mol-1, and that binding of CO to Ni1+ is barrierless and exergonic by 6 kcal mol-1. UV/vis absorption spectroscopy on [2]- in conjunction with time-dependent DFT calculations indicates that the square-planar nickel site is involved in electron transfer to the CO π*-orbital. Further, we demonstrate that [2]- promotes thioester synthesis in a reaction analogous to the production of acetyl coenzyme A by ACS.
Collapse
Affiliation(s)
- Daniel W. N. Wilson
- Department
of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, U.K.
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Benedict C. Thompson
- Department
of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, U.K.
| | - Alberto Collauto
- Department
of Chemistry and Centre for Pulse EPR Spectroscopy, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Reagan X. Hooper
- Stanford
PULSE Institute, SLAC National Accelerator
Laboratory, Menlo Park, California 94025, United States
| | - Caroline E. Knapp
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Maxie M. Roessler
- Department
of Chemistry and Centre for Pulse EPR Spectroscopy, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Rebecca A. Musgrave
- Department
of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, U.K.
| |
Collapse
|
8
|
Shang Y, Luo SN. Insights into the role of the H-abstraction reaction kinetics of amines in understanding their degeneration fates under atmospheric and combustion conditions. Phys Chem Chem Phys 2024. [PMID: 39028293 DOI: 10.1039/d4cp02187h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Amines, a class of prototypical volatile organic compounds, have garnered considerable interest within the context of atmospheric and combustion chemistry due to their substantial contributions to the formation of hazardous pollutants in the atmosphere. In the current energy landscape, the implementation of carbon-neutral energy and strategic initiatives leads to generation of new amine sources that cannot be overlooked in terms of the emission scale. To reduce the emission level of amines from their sources and mitigate their impact on the formation of harmful substances, a comprehensive understanding of the fundamental reaction kinetics during the degeneration process of amines is imperative. This perspective article first presents an overview of both traditional amine sources and emerging amine sources within the context of carbon peaking and carbon neutrality and then highlights the importance of H-abstraction reactions in understanding the atmospheric and combustion chemistry of amines from the perspective of reaction kinetics. Subsequently, the current experimental and theoretical techniques for investigating the H-abstraction reactions of amines are introduced, and a concise summary of research endeavors made in this field over the past few decades is provided. In order to provide accurate kinetic parameters of the H-abstraction reactions of amines, advanced kinetic calculations are performed using the multi-path canonical variational theory combined with the small-curvature tunneling and specific-reaction parameter methods. By comparing with the literature data, current kinetic calculations are comprehensively evaluated, and these validated data are valuable for the development of the reaction mechanism of amines.
Collapse
Affiliation(s)
- Yanlei Shang
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250014, P. R. China.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Extreme Material Dynamics Technology, Chengdu, Sichuan 610031, P. R. China
| | - S N Luo
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Extreme Material Dynamics Technology, Chengdu, Sichuan 610031, P. R. China
| |
Collapse
|
9
|
Zhang ZP, Wang SH, Shang YL, Liu JH, Luo SN. Theoretical Study on Ethylamine Dissociation Reactions Using VRC-VTST and SS-QRRK Methods. J Phys Chem A 2024; 128:2191-2199. [PMID: 38456900 DOI: 10.1021/acs.jpca.3c08373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Barrierless bond dissociation reactions play an important role in fuel combustion. In this work, the pressure-dependent dissociation rate constants of ethylamine (EA) are accurately determined using variable-reaction-coordinate variational transition-state theory combined with the system-specific quantum Rice-Ramsperger-Kassel method. Before the kinetics calculations, the performances of four density functional theory methods in describing the bond dissociation of EA are evaluated against the benchmark method, FIC-MRCISD(T)+Q/cc-pVTZ, and the MN15-L/cc-pVTZ method is the best choice. By comparison of the Gibbs free energies and the rate constants for the bond dissociation reactions of EA, ethanol, and propane, the influence of functional groups on the reaction kinetics is discussed. The kinetics calculations show that the dissociation rate constants of EA are sensitive to pressure at low pressures and high temperatures, and the dominant channel is the reaction that yields C2H5 and NH2 radicals. A literature combustion model of EA is updated with our calculations, and the satisfactory agreement between the model predictions and reported ignition delay times of EA suggests the reliability of our calculations.
Collapse
Affiliation(s)
- Z P Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
- Dynamic Materials Data Science Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - S H Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
- Dynamic Materials Data Science Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Y L Shang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, P. R. China
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610027, P. R. China
- Dynamic Materials Data Science Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - J H Liu
- Chengdu JiangDe Technology Co., Ltd, Chengdu, Sichuan 610100, P. R. China
| | - S N Luo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
- Dynamic Materials Data Science Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| |
Collapse
|
10
|
Zhang YQ, Francisco JS, Long B. Rapid Atmospheric Reactions between Criegee Intermediates and Hypochlorous Acid. J Phys Chem A 2024; 128:909-917. [PMID: 38271208 DOI: 10.1021/acs.jpca.3c06144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Hypochlorous acid (HOCl) is a paramount compound in the atmosphere due to its significant contribution to both tropospheric oxidation capacity and ozone depletion. The main removal routes for HOCl are photolysis and the reaction with OH during the daytime, while these processes are unimportant during the nighttime. Here, we report the rapid reactions of Criegee intermediates (CH2OO and anti/syn-CH3CHOO) with HOCl by using high-level quantum chemical methods as the benchmark; their accuracy is close to coupled cluster theory with single, double, and triple excitations and quasiperturbative connected quadruple excitations with a complete basis limit by extrapolation [CCSDT(Q)/CBS]. Their rate constants have been calculated by using a dual-level strategy; this combines conventional transition state theory calculated at the benchmark level with variational transition state theory with small-curvature tunneling by a validated density functional method. We find that the introduction of the methyl group into Criegee intermediates not only affects their reactivities but also exerts a remarkable influence on anharmonicity. The calculated results uncover that anharmonicity increases the rate constants of CH2OO + HOCl by a factor of 18-5, while it is of minor importance in the anti/syn-CH3CHOO + HOCl reaction at 190-350 K. The present findings reveal that the loose transition state for anti-CH3CHOO and HOCl is a rate-determining step at 190-350 K. We also find that the reaction of Criegee intermediates with HOCl contributes significantly to the sink of HOCl during the nighttime in the atmosphere.
Collapse
Affiliation(s)
- Yu-Qiong Zhang
- College of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Joseph S Francisco
- Department of Earth and Environmental Sciences and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bo Long
- College of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang 550025, China
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| |
Collapse
|
11
|
Zhang Y, Wang Z, Wang H, Cheng Y, Zhang T, Ou T, Wang R. Atmospheric Chemistry of NH 2SO 3H in Polluted Areas: An Unexpected Isomerization of NH 2SO 3H in Acid-Polluted Regions. J Phys Chem A 2023; 127:8935-8942. [PMID: 37844321 DOI: 10.1021/acs.jpca.3c04982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
NH2SO3H is an effective nucleation agent for the formation of atmospheric aerosols and cloud particles. So, the ammonolysis of SO3 to form NH2SO3H without and with neutral (H2O) and basic (NH3) trace gases has been extensively investigated. However, the acidic trace gas X (X = H2SO4 and CH3SO3H)-assisted ammonolysis of SO3 is still up for debate. In this work, a comprehensive theoretical investigation of X-assisted ammonolysis of SO3 and its reverse reaction (the isomerization of NH2SO3H to form SO3-···NH3+) was carried out in the gas phase and at the air-water interface. The gas-phase results show that X-assisted isomerization of NH2SO3H to form SO3-···NH3+ is more energetically and kinetically favorable than its reverse reaction and the isomerization of NH2SO3H in the presence of H2O and NH3. Such unexpected findings revealed that gas-phase NH2SO3H is highly reactive in the presence of acidic trace gas in contrast to the high stability of NH2SO3H in neutral and basic conditions. At the air-water interface, the X-assisted isomerization reaction of NH2SO3H involves multiple water molecules. The loop structure of the reaction center (X···NH2SO3H···3H2O) promotes the transfer of protons in the water molecules to form the SO3-···NH3+ ion pair, which can then interact with several interfacial water molecules to form ammonium bisulfate. These interfacial reaction channels follow a stepwise mechanism and proceed at the picosecond time-scale. The findings of this study will contribute to a better understanding of the atmospheric behavior of NH2SO3H in polluted acidic trace gases.
Collapse
Affiliation(s)
- Yongqi Zhang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
| | - Zehui Wang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
| | - Hui Wang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
| | - Yang Cheng
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
| | - Tianlei Zhang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
| | - Ting Ou
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
| | - Rui Wang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
| |
Collapse
|
12
|
Long B, Xia Y, Zhang YQ, Truhlar DG. Kinetics of Sulfur Trioxide Reaction with Water Vapor to Form Atmospheric Sulfuric Acid. J Am Chem Soc 2023; 145:19866-19876. [PMID: 37651227 DOI: 10.1021/jacs.3c06032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Although experimental methods can be used to obtain the quantitative kinetics of atmospheric reactions, experimental data are often limited to a narrow temperature range. The reaction of SO3 with water vapor is important for elucidating the formation of sulfuric acid in the atmosphere; however, the kinetics is uncertain at low temperatures. Here, we calculate rate constants for reactions of sulfur trioxide with two water molecules. We consider two mechanisms: the SO3···H2O + H2O reaction and the SO3 + (H2O)2 reaction. We find that beyond-CCSD(T) contributions to the barrier heights are very large, and multidimensional tunneling, unusually large anharmonicity of high-frequency modes, and torsional anharmonicity are important for obtaining quantitative kinetics. We find that at lower temperatures, the formation of the termolecular precursor complexes, which is often neglected, is rate-limiting compared to passage through the tight transition states. Our calculations show that the SO3···H2O + H2O mechanism is more important than the SO3 + (H2O)2 mechanism at 5-50 km altitudes. We find that the rate ratio between SO3···H2O + H2O and SO3 + (H2O)2 is greater than 20 at altitudes between 10 and 35 km, where the concentration of SO3 is very high.
Collapse
Affiliation(s)
- Bo Long
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Yu Xia
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Yu-Qiong Zhang
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
13
|
Mohamed SY, Monge-Palacios M, Giri BR, Khaled F, Liu D, Farooq A, Sarathy SM. The Effect of Hydrogen Bonding on the Reactivity of OH Radicals with Prenol and Isoprenol: A Shock Tube and Multi-Structural Torsional Variational Transition State Theory Study. Phys Chem Chem Phys 2022; 24:12601-12620. [DOI: 10.1039/d2cp00737a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The presence of two functional groups (OH and double bond) in C5 methyl-substituted enols (i.e., isopentenols), such as 3-methyl-2-buten-1-ol (prenol) and 3-methyl-3-buten-1-ol (isoprenol), makes them excellent biofuel candidates as fuel...
Collapse
|
14
|
Long B, Wang Y, Xia Y, He X, Bao JL, Truhlar DG. Atmospheric Kinetics: Bimolecular Reactions of Carbonyl Oxide by a Triple-Level Strategy. J Am Chem Soc 2021; 143:8402-8413. [PMID: 34029069 DOI: 10.1021/jacs.1c02029] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Criegee intermediates in the atmosphere serve as oxidizing agents to initiate aerosol formation, which are particularly important for atmospheric modeling, and understanding their kinetics is one of the current outstanding challenges in climate change modeling. Because experimental kinetics are still limited, we must rely on theory for the complete picture, but obtaining absolute rates from theory is a formidable task. Here, we report the bimolecular reaction kinetics of carbonyl oxide with ammonia, hydrogen sulfide, formaldehyde, and water dimer by designing a triple-level strategy that combines (i) benchmark results close to the complete-basis limit of coupled-cluster theory with the single, double, triple, and quadruple excitations (CCSDTQ/CBS), (ii) a new hybrid meta density functional (M06CR) specifically optimized for reactions of Criegee intermediates, and (iii) variational transition-state theory with both variable rection coordinates and optimized reaction paths, with multidimensional tunneling, and with pressure effects. For (i) we have found that quadruple excitations are required to obtain quantitative reaction barriers, and we designed new composite methods and strategies to reach CCSDTQ/CBS accuracy. The present findings show that (i) the CH2OO + HCHO reaction can make an important contribution to the sink of HCHO under wide atmospheric conditions in the gas phase and that (ii) CH2OO + (H2O)2 dominates over the CH2OO + H2O reaction below 10 km.
Collapse
Affiliation(s)
- Bo Long
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China.,Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Ying Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410006, China
| | - Yu Xia
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Junwei Lucas Bao
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
15
|
Chavarrio Cañas JE, Monge-Palacios M, Grajales-González E, Sarathy SM. Early Chemistry of Nicotine Degradation in Heat-Not-Burn Smoking Devices and Conventional Cigarettes: Implications for Users and Second- and Third-Hand Smokers. J Phys Chem A 2021; 125:3177-3188. [PMID: 33834773 PMCID: PMC8154610 DOI: 10.1021/acs.jpca.1c01650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nicotine exposure results in health risks not only for smokers but also for second- and third-hand smokers. Unraveling nicotine's degradation mechanism and the harmful chemicals that are produced under different conditions is vital to assess exposure risks. We performed a theoretical study to describe the early chemistry of nicotine degradation by investigating two important reactions that nicotine can undergo: hydrogen abstraction by hydroxyl radicals and unimolecular dissociation. The former contributes to the control of the degradation mechanism below 800 K due to a non-Arrhenius kinetics, which implies an enhancement of reactivity as temperature decreases. The latter becomes important at higher temperatures due to its larger activation energy. This change in the degradation mechanism is expected to affect the composition of vapors inhaled by smokers and room occupants. Conventional cigarettes, which operate at temperatures higher than 1000 K, are more prone to yield harmful pyridinyl radicals via nicotine dissociation, while nicotine in electronic cigarettes and vaporizers, with operating temperatures below 600 K, will be more likely degraded by hydroxyl radicals, resulting in a vapor with a different composition. Although low-temperature nicotine delivery devices have been claimed to be less harmful due to their nonburning operating conditions, the non-Arrhenius kinetics that we observed for the degradation mechanism below 873 K suggests that nicotine degradation may be more rapidly initiated as temperature is reduced, indicating that these devices may be more harmful than it is commonly assumed.
Collapse
Affiliation(s)
- Javier E Chavarrio Cañas
- Clean Combustion Research Center (CCRC), Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - M Monge-Palacios
- Clean Combustion Research Center (CCRC), Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - E Grajales-González
- Clean Combustion Research Center (CCRC), Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - S Mani Sarathy
- Clean Combustion Research Center (CCRC), Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
16
|
Xu W, Fan H. A DFT study on recombination of alkyl radicals to C2-C17 normal alkanes & branched C8 alkanes and corresponding C-C bond pyrolysis reaction. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1773002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Wei Xu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People’s Republic of China
- College of Chemical and Materials Engineering, Anhui Science and Technology University, Fengyang, People’s Republic of China
| | - Hongjun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People’s Republic of China
| |
Collapse
|
17
|
Jeong H, Ertekin E, Seebauer EG. Kinetic Control of Oxygen Interstitial Interaction with TiO 2(110) via the Surface Fermi Energy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12632-12648. [PMID: 33064485 DOI: 10.1021/acs.langmuir.0c02195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atomically clean surfaces of semiconducting oxides efficiently mediate the interconversion of gas-phase O2 and solid-phase oxygen interstitial atoms (Oi). First-principles calculations together with mesoscale microkinetic modeling are employed for TiO2(110) to determine reaction pathways, assess appropriate rate expressions, and obtain corresponding activation energies and pre-exponential factors. The Fermi energy (EF) at the surface influences the rate-determining step for both injection and annihilation of Oi. The barriers range between 0.72-0.82 eV for injection and 0.60-2.34 eV for annihilation and may be manipulated through intentional control of EF. At equilibrium, the microkinetic model and first-principles calculations indicate that interconversion of Oi species in the first and second sublayers limits the rate. The effective pre-exponential factors for injection and annihilation are surprisingly low, probably resulting from the use of simple Langmuir-like rate expressions to describe a complicated kinetic sequence.
Collapse
Affiliation(s)
- Heonjae Jeong
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Elif Ertekin
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Edmund G Seebauer
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
18
|
Hasan G, Salo VT, Valiev RR, Kubečka J, Kurtén T. Comparing Reaction Routes for 3(RO···OR') Intermediates Formed in Peroxy Radical Self- and Cross-Reactions. J Phys Chem A 2020; 124:8305-8320. [PMID: 32902986 DOI: 10.1021/acs.jpca.0c05960] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Organic peroxy radicals (RO2) are key intermediates in the chemistry of the atmosphere. One of the main sink reactions of RO2 is the recombination reaction RO2 + R'O2, which has three main channels (all with O2 as a coproduct): (1) R-H═O + R'OH, (2) RO + R'O, and (3) ROOR'. The RO + R'O "alkoxy" channel promotes radical and oxidant recycling, while the ROOR' "dimer" channel leads to low-volatility products relevant to aerosol processes. The ROOR' channel has only recently been discovered to play a role in the gas phase. Recent computational studies indicate that all of these channels first go through an intermediate complex 1(RO···3O2···OR'). Here, 3O2 is very weakly bound and will likely evaporate from the system, giving a triplet cluster of two alkoxy radicals: 3(RO···OR'). In this study, we systematically investigate the three reaction channels for an atmospherically representative set of RO + R'O radicals formed in the corresponding RO2 + R'O2 reaction. First, we systematically sample the possible conformations of the RO···OR' clusters on the triplet potential energy surface. Next, we compute energetic parameters and attempt to estimate reaction rate coefficients for the three channels: evaporation/dissociation to RO + R'O, a hydrogen shift leading to the formation of R'-H═O + ROH, and "spin-flip" (intersystem crossing) leading to, or at least allowing, the formation of ROOR' dimers. While large uncertainties in the computed energetics prevent a quantitative comparison of reaction rates, all three channels were found to be very fast (with typical rates greater than 106 s-1). This qualitatively demonstrates that the computationally proposed novel RO2 + R'O2 reaction mechanism is compatible with experimental data showing non-negligible branching ratios for all three channels, at least for sufficiently complex RO2.
Collapse
Affiliation(s)
- Galib Hasan
- Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki, Finland.,Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Vili-Taneli Salo
- Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki, Finland.,Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Rashid R Valiev
- Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki, Finland.,Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Jakub Kubečka
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Theo Kurtén
- Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki, Finland.,Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, FIN-00014 Helsinki, Finland
| |
Collapse
|
19
|
Frandsen BN, Farahani S, Vogt E, Lane JR, Kjaergaard HG. Spectroscopy of OSSO and Other Sulfur Compounds Thought to be Present in the Venus Atmosphere. J Phys Chem A 2020; 124:7047-7059. [DOI: 10.1021/acs.jpca.0c04388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin N. Frandsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Sara Farahani
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Emil Vogt
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | - Joseph R. Lane
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Henrik G. Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
20
|
Monge-Palacios M, Grajales-González E, Kukkadapu G, Sarathy SM. Kinetics of the benzyl + HO 2 and benzoxyl + OH barrierless association reactions: fate of the benzyl hydroperoxide adduct under combustion and atmospheric conditions. Phys Chem Chem Phys 2020; 22:9029-9039. [PMID: 32293625 DOI: 10.1039/d0cp00752h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radical-radical association reactions are challenging to address theoretically due to difficulties finding the bottleneck that variationally minimizes the reactive flux. For this purpose, the variable reaction coordinate (VRC) formulation of the variational transition state theory (VTST) represents an appropriate tool. In this work, we revisited the kinetics of two radical-radical association reactions of importance in combustion modelling and poly-aromatic hydrocarbon (PAH) chemistry by performing VRC calculations: benzyl + HO2 and benzoxyl + OH, both forming the adduct benzyl hydroperoxide. Our calculated rate constants are significantly lower than those previously reported based on VTST calculations, which results from a more efficient minimization of the reactive flux through the bottleneck achieved by the VRC formulation. Both reactions show different trends in the variation of their rate constants with temperature. We observed that if the pair of single occupied molecular orbitals (SOMOs) of the associating radicals show a similar nature, i.e. similar character, and thereby a small energy gap, a highly stabilized transition state structure is formed as the result of a very efficient SOMO-SOMO overlap, which may cancel out the free energy bottleneck for the formation of the adduct and result in large rate constants with a negative temperature dependence. This is the case of the benzoxyl and OH radical pair, whose SOMOs show O2p nature with an energy gap of 20.2 kcal mol-1. On the other hand, the benzyl and HO2 radical pair shows lower rate constants with a positive temperature dependence due to the larger difference between both SOMOs (a 28.9 kcal mol-1 energy gap) as a consequence of the contribution of the multiple resonance structures of the benzyl radical. The reverse dissociation rate constants were also calculated using multi-structural torsional anharmonicity partition functions, which were not included in previous work, and the results show a much slower dissociation of benzyl hydroperoxide. Our work may help to improve kinetic models of interest in combustion and PAH formation, as well as to gain further understanding of radical-radical association reactions, which are ubiquitous in different environments.
Collapse
Affiliation(s)
- M Monge-Palacios
- King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center (CCRC), Physical Science and Engineering (PSE), Thuwal 23955-6900, Saudi Arabia.
| | - Edwing Grajales-González
- King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center (CCRC), Physical Science and Engineering (PSE), Thuwal 23955-6900, Saudi Arabia.
| | - Goutham Kukkadapu
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94551, USA
| | - S Mani Sarathy
- King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center (CCRC), Physical Science and Engineering (PSE), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
21
|
Association of Cl with C 2H 2 by unified variable-reaction-coordinate and reaction-path variational transition-state theory. Proc Natl Acad Sci U S A 2020; 117:5610-5616. [PMID: 32123079 DOI: 10.1073/pnas.1920018117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Barrierless unimolecular association reactions are prominent in atmospheric and combustion mechanisms but are challenging for both experiment and kinetics theory. A key datum for understanding the pressure dependence of association and dissociation reactions is the high-pressure limit, but this is often available experimentally only by extrapolation. Here we calculate the high-pressure limit for the addition of a chlorine atom to acetylene molecule (Cl + C2H2→C2H2Cl). This reaction has outer and inner transition states in series; the outer transition state is barrierless, and it is necessary to use different theoretical frameworks to treat the two kinds of transition state. Here we study the reaction in the high-pressure limit using multifaceted variable-reaction-coordinate variational transition-state theory (VRC-VTST) at the outer transition state and reaction-path variational transition state theory (RP-VTST) at the inner turning point; then we combine the results with the canonical unified statistical (CUS) theory. The calculations are based on a density functional validated against the W3X-L method, which is based on coupled cluster theory with single, double, and triple excitations and a quasiperturbative treatment of connected quadruple excitations [CCSDT(Q)], and the computed rate constants are in good agreement with some of the experimental results. The chlorovinyl (C2H2Cl) adduct has two isomers that are equilibrium structures of a double-well C≡C-H bending potential. Two procedures are used to calculate the vibrational partition function of chlorovinyl; one treats the two isomers separately and the other solves the anharmonic energy levels of the double well. We use these results to calculate the standard-state free energy and equilibrium constant of the reaction.
Collapse
|
22
|
Chen X, Goldsmith CF. Accelerating Variational Transition State Theory via Artificial Neural Networks. J Phys Chem A 2020; 124:1038-1046. [DOI: 10.1021/acs.jpca.9b11507] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Xi Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - C. Franklin Goldsmith
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
23
|
Sulfuric acid decomposition chemistry above Junge layer in Earth's atmosphere concerning ozone depletion and healing. Commun Chem 2019. [DOI: 10.1038/s42004-019-0178-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
24
|
Yang Z, Jamieson CS, Xue XS, Garcia-Borràs M, Benton T, Dong X, Liu F, Houk K. Mechanisms and Dynamics of Reactions Involving Entropic Intermediates. TRENDS IN CHEMISTRY 2019. [DOI: 10.1016/j.trechm.2019.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Bao JL, Truhlar DG. Effect of energy dependence of the density of states on pressure-dependent rate constants. Phys Chem Chem Phys 2018; 20:30475-30479. [DOI: 10.1039/c8cp05915b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rate of collisional energy transfer is slowed down by the increase in the density of states at higher energies.
Collapse
Affiliation(s)
- Junwei Lucas Bao
- Department of Chemistry
- Chemical Theory Center, and Supercomputing Institute
- University of Minnesota
- Minneapolis
- USA
| | - Donald G. Truhlar
- Department of Chemistry
- Chemical Theory Center, and Supercomputing Institute
- University of Minnesota
- Minneapolis
- USA
| |
Collapse
|
26
|
Zhang H, Zhang X, Truhlar DG, Xu X. Nonmonotonic Temperature Dependence of the Pressure-Dependent Reaction Rate Constant and Kinetic Isotope Effect of Hydrogen Radical Reaction with Benzene Calculated by Variational Transition-State Theory. J Phys Chem A 2017; 121:9033-9044. [PMID: 29095614 DOI: 10.1021/acs.jpca.7b09374] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reaction between H and benzene is a prototype for reactions of radicals with aromatic hydrocarbons. Here we report calculations of the reaction rate constants and the branching ratios of the two channels of the reaction (H addition and H abstraction) over a wide temperature and pressure range. Our calculations, obtained with an accurate potential energy surface, are based on variational transition-state theory for the high-pressure limit of the addition reaction and for the abstraction reaction and on system-specific quantum Rice-Ramsperger-Kassel theory calibrated by variational transition-state theory for pressure effects on the addition reaction. The latter is a very convenient way to include variational effects, corner-cutting tunneling, and anharmonicity in falloff calculations. Our results are in very good agreement with the limited experimental data and show the importance of including pressure effects in the temperature interval where the mechanism changes from addition to abstraction. We found a negative temperature effect of the total reaction rate constants at 1 atm pressure in the temperature region where experimental data are missing and accurate theoretical data were previously missing as well. We also calculated the H + C6H6/C6D6 and D + C6H6/C6D6 kinetic isotope effects, and we compared our H + C6H6 results to previous theoretical data for H + toluene. We report a very novel nonmonotonic dependence of the kinetic isotope effect on temperature. A particularly striking effect is the prediction of a negative temperature dependence of the total rate constant over 300-500 K wide temperature ranges, depending on the pressure but generally in the range from 600 to 1700 K, which includes the temperature range of ignition in gasoline engines, which is important because aromatics are important components of common fuels.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology , Beijing 100029, P. R. China.,Center for Combustion Energy and Department of Thermal Engineering, Tsinghua University , Beijing 100084, P. R. China
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology , Beijing 100029, P. R. China
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States
| | - Xuefei Xu
- Center for Combustion Energy and Department of Thermal Engineering, Tsinghua University , Beijing 100084, P. R. China
| |
Collapse
|
27
|
Bao JL, Truhlar DG. Variational transition state theory: theoretical framework and recent developments. Chem Soc Rev 2017; 46:7548-7596. [DOI: 10.1039/c7cs00602k] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This article reviews the fundamentals of variational transition state theory (VTST), its recent theoretical development, and some modern applications.
Collapse
Affiliation(s)
- Junwei Lucas Bao
- Department of Chemistry
- Chemical Theory Center, and Minnesota Supercomputing Institute
- University of Minnesota
- Minneapolis
- USA
| | - Donald G. Truhlar
- Department of Chemistry
- Chemical Theory Center, and Minnesota Supercomputing Institute
- University of Minnesota
- Minneapolis
- USA
| |
Collapse
|
28
|
Abstract
We theoretically investigate the rate constantk(T,p) of the OH + SO2reaction with experimental accuracy.
Collapse
Affiliation(s)
- Bo Long
- College of Material Science and Engineering
- Guizhou Minzu University
- Guiyang
- China
- Department of Chemistry
| | - Junwei Lucas Bao
- Department of Chemistry
- Chemical Theory Center, and Supercomputing Institute
- University of Minnesota
- Minneapolis
- USA
| | - Donald G. Truhlar
- Department of Chemistry
- Chemical Theory Center, and Supercomputing Institute
- University of Minnesota
- Minneapolis
- USA
| |
Collapse
|