1
|
Sivaloganathan DM, Wan X, Leon G, Brynildsen MP. Loss of Gre factors leads to phenotypic heterogeneity and cheating in Escherichia coli populations under nitric oxide stress. mBio 2024; 15:e0222924. [PMID: 39248572 PMCID: PMC11498084 DOI: 10.1128/mbio.02229-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Nitric oxide (·NO) is one of the toxic metabolites that bacteria can be exposed to within phagosomes. Gre factors, which are also known as transcript cleavage factors or transcription elongation factors, relieve back-tracked transcription elongation complexes by cleaving nascent RNAs, which allows transcription to resume after stalling. Here we discovered that loss of both Gre factors in Escherichia coli, GreA and GreB, significantly compromised ·NO detoxification due to ·NO-induced phenotypic heterogeneity in ΔgreAΔgreB populations, which did not occur in wild-type cultures. Under normal culturing conditions, both wild-type and ΔgreAΔgreB synthesized transcripts uniformly, whereas treatment with ·NO led to bimodal transcript levels in ΔgreAΔgreB that were unimodal in wild-type. Interestingly, exposure to another toxic metabolite of phagosomes, hydrogen peroxide (H2O2), produced analogous results. Furthermore, we showed that loss of Gre factors led to cheating under ·NO stress where transcriptionally deficient cells benefited from the detoxification activities of the transcriptionally proficient subpopulation. Collectively, these results show that loss of Gre factor activities produces phenotypic heterogeneity under ·NO and H2O2 stress that can yield cheating between subpopulations.IMPORTANCEToxic metabolite stress occurs in a broad range of contexts that are important to human health, microbial ecology, and biotechnology, whereas Gre factors are highly conserved throughout the bacterial kingdom. Here we discovered that loss of Gre factors in E. coli leads to phenotypic heterogeneity under ·NO and H2O2 stress, which we further show with ·NO results in cheating between subpopulations. Collectively, these data suggest that Gre factors play a role in coping with toxic metabolite stress, and that loss of Gre factors can produce cheating between neighbors.
Collapse
Affiliation(s)
| | - Xuanqing Wan
- Department of Chemical
and Biological Engineering, Princeton
University, Princeton,
New Jersey, USA
| | - Gabrielle Leon
- Department of Chemical
and Biological Engineering, Princeton
University, Princeton,
New Jersey, USA
| | - Mark P. Brynildsen
- Department of Chemical
and Biological Engineering, Princeton
University, Princeton,
New Jersey, USA
| |
Collapse
|
2
|
Hustmyer CM, Landick R. Bacterial chromatin proteins, transcription, and DNA topology: Inseparable partners in the control of gene expression. Mol Microbiol 2024; 122:81-112. [PMID: 38847475 PMCID: PMC11260248 DOI: 10.1111/mmi.15283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
DNA in bacterial chromosomes is organized into higher-order structures by DNA-binding proteins called nucleoid-associated proteins (NAPs) or bacterial chromatin proteins (BCPs). BCPs often bind to or near DNA loci transcribed by RNA polymerase (RNAP) and can either increase or decrease gene expression. To understand the mechanisms by which BCPs alter transcription, one must consider both steric effects and the topological forces that arise when DNA deviates from its fully relaxed double-helical structure. Transcribing RNAP creates DNA negative (-) supercoils upstream and positive (+) supercoils downstream whenever RNAP and DNA are unable to rotate freely. This (-) and (+) supercoiling generates topological forces that resist forward translocation of DNA through RNAP unless the supercoiling is constrained by BCPs or relieved by topoisomerases. BCPs also may enhance topological stress and overall can either inhibit or aid transcription. Here, we review current understanding of how RNAP, BCPs, and DNA topology interplay to control gene expression.
Collapse
Affiliation(s)
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison
- Department of Bacteriology, University of Wisconsin-Madison
| |
Collapse
|
3
|
Xiong Y, Han W, Xu C, Shi J, Wang L, Jin T, Jia Q, Lu Y, Hu S, Dou SX, Lin W, Strick TR, Wang S, Li M. Single-molecule reconstruction of eukaryotic factor-dependent transcription termination. Nat Commun 2024; 15:5113. [PMID: 38879529 PMCID: PMC11180205 DOI: 10.1038/s41467-024-49527-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/09/2024] [Indexed: 06/19/2024] Open
Abstract
Factor-dependent termination uses molecular motors to remodel transcription machineries, but the associated mechanisms, especially in eukaryotes, are poorly understood. Here we use single-molecule fluorescence assays to characterize in real time the composition and the catalytic states of Saccharomyces cerevisiae transcription termination complexes remodeled by Sen1 helicase. We confirm that Sen1 takes the RNA transcript as its substrate and translocates along it by hydrolyzing multiple ATPs to form an intermediate with a stalled RNA polymerase II (Pol II) transcription elongation complex (TEC). We show that this intermediate dissociates upon hydrolysis of a single ATP leading to dissociation of Sen1 and RNA, after which Sen1 remains bound to the RNA. We find that Pol II ends up in a variety of states: dissociating from the DNA substrate, which is facilitated by transcription bubble rewinding, being retained to the DNA substrate, or diffusing along the DNA substrate. Our results provide a complete quantitative framework for understanding the mechanism of Sen1-dependent transcription termination in eukaryotes.
Collapse
Affiliation(s)
- Ying Xiong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China
- School of Physics, University of Chinese Academy of Sciences, Beijing, China
| | - Weijing Han
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China
| | - Chunhua Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Jing Shi
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lisha Wang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China
| | - Taoli Jin
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China
| | - Qi Jia
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China
| | - Ying Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Shuxin Hu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physics, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Lin
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Terence R Strick
- Institut de Biologie de l'Ecole Normale Supérieure, PSL Université, INSERM, CNRS, Paris, France.
- Equipe Labellisée de la Ligue Nationale Contre le Cancer, Paris, France.
| | - Shuang Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China.
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China
| |
Collapse
|
4
|
Chauvier A, Walter NG. Regulation of bacterial gene expression by non-coding RNA: It is all about time! Cell Chem Biol 2024; 31:71-85. [PMID: 38211587 DOI: 10.1016/j.chembiol.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
Commensal and pathogenic bacteria continuously evolve to survive in diverse ecological niches by efficiently coordinating gene expression levels in their ever-changing environments. Regulation through the RNA transcript itself offers a faster and more cost-effective way to adapt than protein-based mechanisms and can be leveraged for diagnostic or antimicrobial purposes. However, RNA can fold into numerous intricate, not always functional structures that both expand and obscure the plethora of roles that regulatory RNAs serve within the cell. Here, we review the current knowledge of bacterial non-coding RNAs in relation to their folding pathways and interactions. We posit that co-transcriptional folding of these transcripts ultimately dictates their downstream functions. Elucidating the spatiotemporal folding of non-coding RNAs during transcription therefore provides invaluable insights into bacterial pathogeneses and predictive disease diagnostics. Finally, we discuss the implications of co-transcriptional folding andapplications of RNAs for therapeutics and drug targets.
Collapse
Affiliation(s)
- Adrien Chauvier
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Tenenbaum D, Inlow K, Friedman LJ, Cai A, Gelles J, Kondev J. RNA polymerase sliding on DNA can couple the transcription of nearby bacterial operons. Proc Natl Acad Sci U S A 2023; 120:e2301402120. [PMID: 37459525 PMCID: PMC10372574 DOI: 10.1073/pnas.2301402120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/19/2023] [Indexed: 07/20/2023] Open
Abstract
DNA transcription initiates after an RNA polymerase (RNAP) molecule binds to the promoter of a gene. In bacteria, the canonical picture is that RNAP comes from the cytoplasmic pool of freely diffusing RNAP molecules. Recent experiments suggest the possible existence of a separate pool of polymerases, competent for initiation, which freely slide on the DNA after having terminated one round of transcription. Promoter-dependent transcription reinitiation from this pool of posttermination RNAP may lead to coupled initiation at nearby operons, but it is unclear whether this can occur over the distance and timescales needed for it to function widely on a bacterial genome in vivo. Here, we mathematically model the hypothesized reinitiation mechanism as a diffusion-to-capture process and compute the distances over which significant interoperon coupling can occur and the time required. These quantities depend on molecular association and dissociation rate constants between DNA, RNAP, and the transcription initiation factor σ70; we measure these rate constants using single-molecule experiments in vitro. Our combined theory/experimental results demonstrate that efficient coupling can occur at physiologically relevant σ70 concentrations and on timescales appropriate for transcript synthesis. Coupling is efficient over terminator-promoter distances up to ∼1,000 bp, which includes the majority of terminator-promoter nearest neighbor pairs in the Escherichia coli genome. The results suggest a generalized mechanism that couples the transcription of nearby operons and breaks the paradigm that each binding of RNAP to DNA can produce at most one messenger RNA.
Collapse
Affiliation(s)
- Debora Tenenbaum
- Department of Biochemistry, Brandeis University, Waltham, MA02453
- Department of Physics, Brandeis University, Waltham, MA02453
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Koe Inlow
- Department of Biochemistry, Brandeis University, Waltham, MA02453
| | | | - Anthony Cai
- Department of Biochemistry, Brandeis University, Waltham, MA02453
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA02453
| | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA02453
| |
Collapse
|
6
|
Arseniev A, Panfilov M, Pobegalov G, Potyseva A, Pavlinova P, Yakunina M, Lee J, Borukhov S, Severinov K, Khodorkovskii M. Single-molecule studies reveal the off-pathway elemental pause state as a target of streptolydigin inhibition of RNA polymerase and its dramatic enhancement by Gre factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.542125. [PMID: 37333075 PMCID: PMC10274647 DOI: 10.1101/2023.06.05.542125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Antibiotic streptolydigin (Stl) inhibits bacterial transcription by blocking the trigger loop folding in the active center of RNA polymerase (RNAP), which is essential for catalysis. We use acoustic force spectroscopy to characterize the dynamics of transcription elongation in ternary elongation complexes of RNAP (ECs) in the presence of Stl at a single-molecule level. We found that Stl induces long-lived stochastic pauses while the instantaneous velocity of transcription between the pauses is unaffected. Stl enhances the short-lived pauses associated with an off-pathway elemental paused state of the RNAP nucleotide addition cycle. Unexpectedly, we found that transcript cleavage factors GreA and GreB, which were thought to be Stl competitors, do not alleviate the streptolydigin-induced pausing; instead, they synergistically increase transcription inhibition by Stl. This is the first known instance of a transcriptional factor enhancing antibiotic activity. We propose a structural model of the EC-Gre-Stl complex that explains the observed Stl activities and provides insight into possible cooperative action of secondary channel factors and other antibiotics binding at the Stl-pocket. These results offer a new strategy for high-throughput screening for prospective antibacterial agents.
Collapse
Affiliation(s)
- Anatolii Arseniev
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Mikhail Panfilov
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Georgii Pobegalov
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Alina Potyseva
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Polina Pavlinova
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Maria Yakunina
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Jookyung Lee
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084-1489, USA
| | - Sergei Borukhov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084-1489, USA
| | - Konstantin Severinov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | | |
Collapse
|
7
|
Wang L, Watters JW, Ju X, Lu G, Liu S. Head-on and co-directional RNA polymerase collisions orchestrate bidirectional transcription termination. Mol Cell 2023; 83:1153-1164.e4. [PMID: 36917983 PMCID: PMC10081963 DOI: 10.1016/j.molcel.2023.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/03/2023] [Accepted: 02/15/2023] [Indexed: 03/14/2023]
Abstract
Genomic DNA is a crowded track where motor proteins frequently collide. It remains underexplored whether these collisions carry physiological function. In this work, we develop a single-molecule assay to visualize the trafficking of individual E. coli RNA polymerases (RNAPs) on DNA. Based on transcriptomic data, we hypothesize that RNAP collisions drive bidirectional transcription termination of convergent gene pairs. Single-molecule results show that the head-on collision between two converging RNAPs is necessary to prevent transcriptional readthrough but insufficient to release the RNAPs from the DNA. Remarkably, co-directional collision of a trailing RNAP into the head-on collided complex dramatically increases the termination efficiency. Furthermore, stem-loop structures formed in the nascent RNA are required for collisions to occur at well-defined positions between convergent genes. These findings suggest that physical collisions between RNAPs furnish a mechanism for transcription termination and that programmed genomic conflicts can be exploited to co-regulate the expression of multiple genes.
Collapse
Affiliation(s)
- Ling Wang
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA.
| | - John W Watters
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Xiangwu Ju
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Genzhe Lu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
8
|
Zhang Y, Han W, Wang L, Wang H, Jia Q, Chen T, Wang S, Li M. Correlative Escherichia coli Transcription Rate and Bubble Conformation Remodeled by NusA and NusG. J Phys Chem B 2023; 127:2909-2917. [PMID: 36977198 DOI: 10.1021/acs.jpcb.2c08771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Transcription is highly regulated by a variety of transcription factors, among which NusA and NusG act contradictorily in Escherichia coli (E. coli) that NusA stabilizes a paused RNA polymerase (RNAP) and NusG suppresses it. The mechanism of the NusA and NusG regulations on RNAP transcription has been addressed, but their effect on the conformational changes of the transcription bubble correlated with transcription kinetics remains elusive. By using single-molecule magnetic trap, we identify a reduction in the transcription rate of ∼40% events by NusA. Although the rest ∼60% of transcription events exhibit unaffected transcription rates, a NusA-enhanced standard deviation of the transcription rate is observed. NusA remodeling also increases the extent of DNA unwinding in the transcription bubble by 1-2 base pairs, which can be reduced by NusG. The NusG remodeling is more significant on the RNAP molecules with reduced transcription rates rather than those without. Our results provide a quantitative view on the mechanisms of transcriptional regulation by NusA and NusG factors.
Collapse
Affiliation(s)
- Yuqiong Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong 510631, China
- Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong 510631, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Weijing Han
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Lisha Wang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Hao Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qi Jia
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong 510631, China
- Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Shuang Wang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ming Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Wee LM, Tong AB, Florez Ariza AJ, Cañari-Chumpitaz C, Grob P, Nogales E, Bustamante CJ. A trailing ribosome speeds up RNA polymerase at the expense of transcript fidelity via force and allostery. Cell 2023; 186:1244-1262.e34. [PMID: 36931247 PMCID: PMC10135430 DOI: 10.1016/j.cell.2023.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 03/18/2023]
Abstract
In prokaryotes, translation can occur on mRNA that is being transcribed in a process called coupling. How the ribosome affects the RNA polymerase (RNAP) during coupling is not well understood. Here, we reconstituted the E. coli coupling system and demonstrated that the ribosome can prevent pausing and termination of RNAP and double the overall transcription rate at the expense of fidelity. Moreover, we monitored single RNAPs coupled to ribosomes and show that coupling increases the pause-free velocity of the polymerase and that a mechanical assisting force is sufficient to explain the majority of the effects of coupling. Also, by cryo-EM, we observed that RNAPs with a terminal mismatch adopt a backtracked conformation, while a coupled ribosome allosterically induces these polymerases toward a catalytically active anti-swiveled state. Finally, we demonstrate that prolonged RNAP pausing is detrimental to cell viability, which could be prevented by polymerase reactivation through a coupled ribosome.
Collapse
Affiliation(s)
- Liang Meng Wee
- QB3-Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA
| | - Alexander B Tong
- QB3-Berkeley, Berkeley, CA, USA; Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Alfredo Jose Florez Ariza
- QB3-Berkeley, Berkeley, CA, USA; Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA
| | - Cristhian Cañari-Chumpitaz
- QB3-Berkeley, Berkeley, CA, USA; Department of Chemistry, University of California Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA
| | - Patricia Grob
- QB3-Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Eva Nogales
- QB3-Berkeley, Berkeley, CA, USA; Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Carlos J Bustamante
- QB3-Berkeley, Berkeley, CA, USA; Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA; Department of Chemistry, University of California Berkeley, Berkeley, CA, USA; Department of Physics, University of California Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA; Kavli Energy Nanoscience Institute, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
10
|
Jensen D, Manzano AR, Rector M, Tomko EJ, Record MT, Galburt EA. High-throughput, fluorescent-aptamer-based measurements of steady-state transcription rates for Mycobacterium tuberculosis RNA polymerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532464. [PMID: 36993414 PMCID: PMC10054983 DOI: 10.1101/2023.03.13.532464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The first step in gene expression is the transcription of DNA sequences into RNA. Regulation at the level of transcription leads to changes in steady-state concentrations of RNA transcripts, affecting the flux of downstream functions and ultimately cellular phenotypes. Changes in transcript levels are routinely followed in cellular contexts via genome-wide sequencing techniques. However, in vitro mechanistic studies of transcription have lagged with respect to throughput. Here, we describe the use of a real-time, fluorescent-aptamer-based method to quantitate steady-state transcription rates of the Mycobacterium tuberculosis RNA polymerase. We present clear controls to show that the assay specifically reports on promoter-dependent, full-length RNA transcription rates that are in good agreement with the kinetics determined by gel-resolved, α- 32 P NTP incorporation experiments. We illustrate how the time-dependent changes in fluorescence can be used to measure regulatory effects of nucleotide concentrations and identity, RNAP and DNA concentrations, transcription factors, and antibiotics. Our data showcase the ability to easily perform hundreds of parallel steady-state measurements across varying conditions with high precision and reproducibility to facilitate the study of the molecular mechanisms of bacterial transcription. Significance Statement RNA polymerase transcription mechanisms have largely been determined from in vitro kinetic and structural biology methods. In contrast to the limited throughput of these approaches, in vivo RNA sequencing provides genome-wide measurements but lacks the ability to dissect direct biochemical from indirect genetic mechanisms. Here, we present a method that bridges this gap, permitting high-throughput fluorescence-based measurements of in vitro steady-state transcription kinetics. We illustrate how an RNA-aptamer-based detection system can be used to generate quantitative information on direct mechanisms of transcriptional regulation and discuss the far-reaching implications for future applications.
Collapse
Affiliation(s)
- Drake Jensen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Ana Ruiz Manzano
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Maxwell Rector
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Eric J. Tomko
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - M. Thomas Record
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Eric A. Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| |
Collapse
|
11
|
Tenenbaum D, Inlow K, Friedman L, Cai A, Gelles J, Kondev J. RNA polymerase sliding on DNA can couple the transcription of nearby bacterial operons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528045. [PMID: 36798213 PMCID: PMC9934669 DOI: 10.1101/2023.02.10.528045] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
DNA transcription initiates after an RNA polymerase (RNAP) molecule binds to the promoter of a gene. In bacteria, the canonical picture is that RNAP comes from the cytoplasmic pool of freely diffusing RNAP molecules. Recent experiments suggest the possible existence of a separate pool of polymerases, competent for initiation, which freely slide on the DNA after having terminated one round of transcription. Promoter-dependent transcription reinitiation from this pool of post-termination RNAP may lead to coupled initiation at nearby operons, but it is unclear whether this can occur over the distance- and time-scales needed for it to function widely on a bacterial genome in vivo. Here, we mathematically model the hypothesized reinitiation mechanism as a diffusion-to-capture process and compute the distances over which significant inter-operon coupling can occur and the time required. These quantities depend on previously uncharacterized molecular association and dissociation rate constants between DNA, RNAP and the transcription initiation factor σ 70 ; we measure these rate constants using single-molecule experiments in vitro. Our combined theory/experimental results demonstrate that efficient coupling can occur at physiologically relevant σ 70 concentrations and on timescales appropriate for transcript synthesis. Coupling is efficient over terminator-promoter distances up to ∼ 1, 000 bp, which includes the majority of terminator-promoter nearest neighbor pairs in the E. coli genome. The results suggest a generalized mechanism that couples the transcription of nearby operons and breaks the paradigm that each binding of RNAP to DNA can produce at most one messenger RNA. SIGNIFICANCE STATEMENT After transcribing an operon, a bacterial RNA polymerase can stay bound to DNA, slide along it, and reini-tiate transcription of the same or a different operon. Quantitative single-molecule biophysics experiments combined with mathematical theory demonstrate that this reinitiation process can be quick and efficient over gene spacings typical of a bacterial genome. Reinitiation may provide a mechanism to orchestrate the transcriptional activities of groups of nearby operons.
Collapse
Affiliation(s)
- Debora Tenenbaum
- Department of Biochemistry, Brandeis University, Waltham, MA, United States
- Department of Physics, Brandeis University, Waltham, MA, United States
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Koe Inlow
- Department of Biochemistry, Brandeis University, Waltham, MA, United States
| | - Larry Friedman
- Department of Biochemistry, Brandeis University, Waltham, MA, United States
| | - Anthony Cai
- Department of Biochemistry, Brandeis University, Waltham, MA, United States
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA, United States
| | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA, United States
| |
Collapse
|
12
|
Janissen R, Eslami-Mossallam B, Artsimovitch I, Depken M, Dekker NH. High-throughput single-molecule experiments reveal heterogeneity, state switching, and three interconnected pause states in transcription. Cell Rep 2022; 39:110749. [PMID: 35476989 DOI: 10.1016/j.celrep.2022.110749] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/17/2022] [Accepted: 04/07/2022] [Indexed: 11/19/2022] Open
Abstract
Pausing by bacterial RNA polymerase (RNAp) is vital in the recruitment of regulatory factors, RNA folding, and coupled translation. While backtracking and intra-structural isomerization have been proposed to trigger pausing, our mechanistic understanding of backtrack-associated pauses and catalytic recovery remains incomplete. Using high-throughput magnetic tweezers, we examine the Escherichia coli RNAp transcription dynamics over a wide range of forces and NTP concentrations. Dwell-time analysis and stochastic modeling identify, in addition to a short-lived elemental pause, two distinct long-lived backtrack pause states differing in recovery rates. We identify two stochastic sources of transcription heterogeneity: alterations in short-pause frequency that underlies elongation-rate switching, and variations in RNA cleavage rates in long-lived backtrack states. Together with effects of force and Gre factors, we demonstrate that recovery from deep backtracks is governed by intrinsic RNA cleavage rather than diffusional Brownian dynamics. We introduce a consensus mechanistic model that unifies our findings with prior models.
Collapse
Affiliation(s)
- Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Behrouz Eslami-Mossallam
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Irina Artsimovitch
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA.
| | - Martin Depken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands.
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
13
|
Ordabayev YA, Friedman LJ, Gelles J, Theobald DL. Bayesian machine learning analysis of single-molecule fluorescence colocalization images. eLife 2022; 11:73860. [PMID: 35319463 PMCID: PMC9183235 DOI: 10.7554/elife.73860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/19/2022] [Indexed: 01/07/2023] Open
Abstract
Multi-wavelength single-molecule fluorescence colocalization (CoSMoS) methods allow elucidation of complex biochemical reaction mechanisms. However, analysis of CoSMoS data is intrinsically challenging because of low image signal-to-noise ratios, non-specific surface binding of the fluorescent molecules, and analysis methods that require subjective inputs to achieve accurate results. Here, we use Bayesian probabilistic programming to implement Tapqir, an unsupervised machine learning method that incorporates a holistic, physics-based causal model of CoSMoS data. This method accounts for uncertainties in image analysis due to photon and camera noise, optical non-uniformities, non-specific binding, and spot detection. Rather than merely producing a binary 'spot/no spot' classification of unspecified reliability, Tapqir objectively assigns spot classification probabilities that allow accurate downstream analysis of molecular dynamics, thermodynamics, and kinetics. We both quantitatively validate Tapqir performance against simulated CoSMoS image data with known properties and also demonstrate that it implements fully objective, automated analysis of experiment-derived data sets with a wide range of signal, noise, and non-specific binding characteristics.
Collapse
Affiliation(s)
| | - Larry J Friedman
- Department of Biochemistry, Brandeis UniversityWalthamUnited States
| | - Jeff Gelles
- Department of Biochemistry, Brandeis UniversityWalthamUnited States
| | | |
Collapse
|
14
|
Kilic Z, Sgouralis I, Pressé S. Residence time analysis of RNA polymerase transcription dynamics: A Bayesian sticky HMM approach. Biophys J 2021; 120:1665-1679. [PMID: 33705761 DOI: 10.1016/j.bpj.2021.02.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 01/09/2023] Open
Abstract
The time spent by a single RNA polymerase (RNAP) at specific locations along the DNA, termed "residence time," reports on the initiation, elongation, and termination stages of transcription. At the single-molecule level, this information can be obtained from dual ultrastable optical trapping experiments, revealing a transcriptional elongation of RNAP interspersed with residence times of variable duration. Successfully discriminating between long and short residence times was used by previous approaches to learn about RNAP's transcription elongation dynamics. Here, we propose an approach based on the Bayesian sticky hidden Markov model that treats all residence times for an Escherichia coli RNAP on an equal footing without a priori discriminating between long and short residence times. Furthermore, our method has two additional advantages: we provide full distributions around key point statistics and directly treat the sequence dependence of RNAP's elongation rate. By applying our approach to experimental data, we find assigned relative probabilities on long versus short residence times, force-dependent average residence time transcription elongation dynamics, ∼10% drop in the average backtracking durations in the presence of GreB, and ∼20% drop in the average residence time as a function of applied force in the presence of RNaseA.
Collapse
Affiliation(s)
- Zeliha Kilic
- Center for Biological Physics, Department of Physics, Arizona State University, Tempe, Arizona
| | - Ioannis Sgouralis
- Department of Mathematics, University of Tennessee, Knoxville, Tennessee
| | - Steve Pressé
- Center for Biological Physics, Department of Physics and School of Molecular Sciences, Arizona State University, Tempe, Arizona. spresse@%20asu.edu
| |
Collapse
|
15
|
Hopping and Flipping of RNA Polymerase on DNA during Recycling for Reinitiation after Intrinsic Termination in Bacterial Transcription. Int J Mol Sci 2021; 22:ijms22052398. [PMID: 33673662 PMCID: PMC7957599 DOI: 10.3390/ijms22052398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 11/17/2022] Open
Abstract
Two different molecular mechanisms, sliding and hopping, are employed by DNA-binding proteins for their one-dimensional facilitated diffusion on nonspecific DNA regions until reaching their specific target sequences. While it has been controversial whether RNA polymerases (RNAPs) use one-dimensional diffusion in targeting their promoters for transcription initiation, two recent single-molecule studies discovered that post-terminational RNAPs use one-dimensional diffusion for their reinitiation on the same DNA molecules. Escherichia coli RNAP, after synthesizing and releasing product RNA at intrinsic termination, mostly remains bound on DNA and diffuses in both forward and backward directions for recycling, which facilitates reinitiation on nearby promoters. However, it has remained unsolved which mechanism of one-dimensional diffusion is employed by recycling RNAP between termination and reinitiation. Single-molecule fluorescence measurements in this study reveal that post-terminational RNAPs undergo hopping diffusion during recycling on DNA, as their one-dimensional diffusion coefficients increase with rising salt concentrations. We additionally find that reinitiation can occur on promoters positioned in sense and antisense orientations with comparable efficiencies, so reinitiation efficiency depends primarily on distance rather than direction of recycling diffusion. This additional finding confirms that orientation change or flipping of RNAP with respect to DNA efficiently occurs as expected from hopping diffusion.
Collapse
|
16
|
Dynamics of RNA polymerase II and elongation factor Spt4/5 recruitment during activator-dependent transcription. Proc Natl Acad Sci U S A 2020; 117:32348-32357. [PMID: 33293419 DOI: 10.1073/pnas.2011224117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In eukaryotes, RNA polymerase II (RNApII) transcribes messenger RNA from template DNA. Decades of experiments have identified the proteins needed for transcription activation, initiation complex assembly, and productive elongation. However, the dynamics of recruitment of these proteins to transcription complexes, and of the transitions between these steps, are poorly understood. We used multiwavelength single-molecule fluorescence microscopy to directly image and quantitate these dynamics in a budding yeast nuclear extract that reconstitutes activator-dependent transcription in vitro. A strong activator (Gal4-VP16) greatly stimulated reversible binding of individual RNApII molecules to template DNA. Binding of labeled elongation factor Spt4/5 to DNA typically followed RNApII binding, was NTP dependent, and was correlated with association of mRNA binding protein Hek2, demonstrating specificity of Spt4/5 binding to elongation complexes. Quantitative kinetic modeling shows that only a fraction of RNApII binding events are productive and implies a rate-limiting step, probably associated with recruitment of general transcription factors, needed to assemble a transcription-competent preinitiation complex at the promoter. Spt4/5 association with transcription complexes was slowly reversible, with DNA-bound RNApII molecules sometimes binding and releasing Spt4/5 multiple times. The average Spt4/5 residence time was of similar magnitude to the time required to transcribe an average length yeast gene. These dynamics suggest that a single Spt4/5 molecule remains associated during a typical transcription event, yet can dissociate from RNApII to allow disassembly of abnormally long-lived (i.e., stalled) elongation complexes.
Collapse
|
17
|
Harden TT, Herlambang KS, Chamberlain M, Lalanne JB, Wells CD, Li GW, Landick R, Hochschild A, Kondev J, Gelles J. Alternative transcription cycle for bacterial RNA polymerase. Nat Commun 2020; 11:448. [PMID: 31974358 PMCID: PMC6978322 DOI: 10.1038/s41467-019-14208-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/10/2019] [Indexed: 11/18/2022] Open
Abstract
RNA polymerases (RNAPs) transcribe genes through a cycle of recruitment to promoter DNA, initiation, elongation, and termination. After termination, RNAP is thought to initiate the next round of transcription by detaching from DNA and rebinding a new promoter. Here we use single-molecule fluorescence microscopy to observe individual RNAP molecules after transcript release at a terminator. Following termination, RNAP almost always remains bound to DNA and sometimes exhibits one-dimensional sliding over thousands of basepairs. Unexpectedly, the DNA-bound RNAP often restarts transcription, usually in reverse direction, thus producing an antisense transcript. Furthermore, we report evidence of this secondary initiation in live cells, using genome-wide RNA sequencing. These findings reveal an alternative transcription cycle that allows RNAP to reinitiate without dissociating from DNA, which is likely to have important implications for gene regulation.
Collapse
Affiliation(s)
- Timothy T Harden
- Department of Physics, Brandeis University, Waltham, MA, 02454, USA
| | | | | | - Jean-Benoît Lalanne
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Christopher D Wells
- Department of Microbiology, Blavatnick Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Gene-Wei Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Robert Landick
- Department of Biochemistry and Department of Bacteriology, University of Wisconsin, Madison, WI, 53706, USA
| | - Ann Hochschild
- Department of Microbiology, Blavatnick Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA, 02454, USA.
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA, 02454, USA.
| |
Collapse
|
18
|
Sasaki Y, Sato Y, Takahashi T, Umetsu M, Iki N. Capillary electrophoretic reactor for estimation of spontaneous dissociation rate of Trypsin-Aprotinin complex. Anal Biochem 2019; 585:113406. [PMID: 31445899 DOI: 10.1016/j.ab.2019.113406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 11/25/2022]
Abstract
A capillary electrophoretic reactor was used to analyze the dissociation kinetics of an enzyme-inhibitor complex in a homogeneous solution without immobilization. The complex consisting of trypsin (Try) and aprotinin (Apr) was used as the model. Capillary electrophoresis provided a reaction field for Try-Apr complex to dissociate through the steady removal of free Try and Apr from the Try-Apr zone. By analyzing the dependence of peak height of Try-Apr on separation time, the dissociation rate kdH was obtained as 2.73 × 10-4 s-1 (298 K) at pH 2.46. The dependence of kdH on the proton concentration (pH = 2.09-3.12) revealed a first-order dependence of kdH on [H+]; kdH = kd + k1[H+], where kd is the spontaneous dissociation rate and was 5.65 × 10-5 s-1, and k1 is the second-order rate constant and was 5.07 × 10-2 M-1 s-1. From the kd value, the half-life of the Try-Apr complex at physiological pH was determined as 3.4 h. The presence of the proton-assisted dissociation can be explained by the protonation of -COO- of the Asp residue in Try, which breaks the salt bridge with the -NH3+ group of Lys in Apr.
Collapse
Affiliation(s)
- Yumiko Sasaki
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aramaki-Aoba, Aoba, Sendai, 980-8579, Japan
| | - Yosuke Sato
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aramaki-Aoba, Aoba, Sendai, 980-8579, Japan
| | - Toru Takahashi
- Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Mitsuo Umetsu
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-Aoba, Aoba, Sendai, 980-8579, Japan
| | - Nobuhiko Iki
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aramaki-Aoba, Aoba, Sendai, 980-8579, Japan.
| |
Collapse
|
19
|
Agapov A, Esyunina D, Kulbachinskiy A. Gre-family factors modulate DNA damage sensing by Deinococcus radiodurans RNA polymerase. RNA Biol 2019; 16:1711-1720. [PMID: 31416390 DOI: 10.1080/15476286.2019.1656027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Deinococcus radiodurans is a highly stress resistant bacterium that encodes universal as well as lineage-specific factors involved in DNA transcription and repair. However, the effects of DNA lesions on RNA synthesis by D. radiodurans RNA polymerase (RNAP) have never been studied. We investigated the ability of this RNAP to transcribe damaged DNA templates and demonstrated that various lesions significantly affect the efficiency and fidelity of RNA synthesis. DNA modifications that disrupt correct base-pairing can strongly inhibit transcription and increase nucleotide misincorporation by D. radiodurans RNAP. The universal transcription factor GreA and Deinococcus-specific factor Gfh1 stimulate RNAP stalling at various DNA lesions, depending on the type of the lesion and the presence of Mn2+ ions, abundant divalent cations in D. radiodurans. Furthermore, Gfh1 stimulates the action of the Mfd translocase, which removes transcription elongation complexes paused at the sites of DNA lesions. Thus, Gre-family factors in D. radiodurans might have evolved to increase the efficiency of DNA damage recognition by the transcription and repair machineries in this bacterium.
Collapse
Affiliation(s)
- Aleksei Agapov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Daria Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
20
|
Abdelkareem M, Saint-André C, Takacs M, Papai G, Crucifix C, Guo X, Ortiz J, Weixlbaumer A. Structural Basis of Transcription: RNA Polymerase Backtracking and Its Reactivation. Mol Cell 2019; 75:298-309.e4. [PMID: 31103420 PMCID: PMC7611809 DOI: 10.1016/j.molcel.2019.04.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/14/2019] [Accepted: 04/21/2019] [Indexed: 12/14/2022]
Abstract
Regulatory sequences or erroneous incorporations during DNA transcription cause RNA polymerase backtracking and inactivation in all kingdoms of life. Reactivation requires RNA transcript cleavage. Essential transcription factors (GreA and GreB, or TFIIS) accelerate this reaction. We report four cryo-EM reconstructions of Escherichia coli RNA polymerase representing the entire reaction pathway: (1) a backtracked complex; a backtracked complex with GreB (2) before and (3) after RNA cleavage; and (4) a reactivated, substrate-bound complex with GreB before RNA extension. Compared with eukaryotes, the backtracked RNA adopts a different conformation. RNA polymerase conformational changes cause distinct GreB states: a fully engaged GreB before cleavage; a disengaged GreB after cleavage; and a dislodged, loosely bound GreB removed from the active site to allow RNA extension. These reconstructions provide insight into the catalytic mechanism and dynamics of RNA cleavage and extension and suggest how GreB targets backtracked complexes without interfering with canonical transcription.
Collapse
Affiliation(s)
- Mo'men Abdelkareem
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Strasbourg, France; Université de Strasbourg, Strasbourg, France; CNRS UMR7104, Strasbourg, France; INSERM U1258, 67404 Illkirch Cedex, France
| | - Charlotte Saint-André
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Strasbourg, France; Université de Strasbourg, Strasbourg, France; CNRS UMR7104, Strasbourg, France; INSERM U1258, 67404 Illkirch Cedex, France
| | - Maria Takacs
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Strasbourg, France; Université de Strasbourg, Strasbourg, France; CNRS UMR7104, Strasbourg, France; INSERM U1258, 67404 Illkirch Cedex, France
| | - Gabor Papai
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Strasbourg, France; Université de Strasbourg, Strasbourg, France; CNRS UMR7104, Strasbourg, France; INSERM U1258, 67404 Illkirch Cedex, France
| | - Corinne Crucifix
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Strasbourg, France; Université de Strasbourg, Strasbourg, France; CNRS UMR7104, Strasbourg, France; INSERM U1258, 67404 Illkirch Cedex, France
| | - Xieyang Guo
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Strasbourg, France; Université de Strasbourg, Strasbourg, France; CNRS UMR7104, Strasbourg, France; INSERM U1258, 67404 Illkirch Cedex, France
| | - Julio Ortiz
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Strasbourg, France; Université de Strasbourg, Strasbourg, France; CNRS UMR7104, Strasbourg, France; INSERM U1258, 67404 Illkirch Cedex, France
| | - Albert Weixlbaumer
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Strasbourg, France; Université de Strasbourg, Strasbourg, France; CNRS UMR7104, Strasbourg, France; INSERM U1258, 67404 Illkirch Cedex, France.
| |
Collapse
|
21
|
Strick TR, Portman JR. Transcription-Coupled Repair: From Cells to Single Molecules and Back Again. J Mol Biol 2019; 431:4093-4102. [PMID: 31175845 DOI: 10.1016/j.jmb.2019.05.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 11/19/2022]
Abstract
Transcription-coupled repair is mediated by the Mfd protein. TCR is defined as the preferential repair of DNA lesions in the transcribed strand of actively transcribed genes, and is opposed to the strand-aspecific global genome repair. The Mfd protein mediates TCR by binding to and displacing RNA polymerase, which is stalled at a DNA lesion on the transcribed strand of DNA, then recruiting UvrA and UvrB. The repair cascade results in the recruitment of, and DNA excision by, UvrC; removal of the damage-bearing oligonucleotide by UvrD; "filling-in" of the DNA by DNA polymerase; and sealing of the strands by DNA ligase. The gene required for Mfd was originally identified as a gene needed for the "mutation frequency decline" phenotype in which the repair of certain UV-induced lesions in the transcribed strand of tRNA genes is increased when cells are forced to delay replication immediately following UV exposure. This review will focus on the genetics that led to the discovery of the Mfd gene; summarize the subsequent biochemical, structural and single-molecule interrogations of the Mfd protein; and explore the more recent findings of Mfd in mutagenesis.
Collapse
Affiliation(s)
- T R Strick
- Institut Jacques Monod, CNRS and Université Paris 7, Paris Université, Paris, France; Institut de Biologie de l'Ecole normale supérieure, PSL Université, INSERM, CNRS, Paris, France; Equipe Labellisée de la Ligue Nationale Contre le Cancer, Paris, France; Horizons 2020 Innovative Training Network, DNAREPAIRMAN, Paris, France.
| | - J R Portman
- Institut Jacques Monod, CNRS and Université Paris 7, Paris Université, Paris, France; Institut de Biologie de l'Ecole normale supérieure, PSL Université, INSERM, CNRS, Paris, France; Horizons 2020 Innovative Training Network, DNAREPAIRMAN, Paris, France
| |
Collapse
|
22
|
Belogurov GA, Artsimovitch I. The Mechanisms of Substrate Selection, Catalysis, and Translocation by the Elongating RNA Polymerase. J Mol Biol 2019; 431:3975-4006. [PMID: 31153902 DOI: 10.1016/j.jmb.2019.05.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 11/15/2022]
Abstract
Multi-subunit DNA-dependent RNA polymerases synthesize all classes of cellular RNAs, ranging from short regulatory transcripts to gigantic messenger RNAs. RNA polymerase has to make each RNA product in just one try, even if it takes millions of successive nucleotide addition steps. During each step, RNA polymerase selects a correct substrate, adds it to a growing chain, and moves one nucleotide forward before repeating the cycle. However, RNA synthesis is anything but monotonous: RNA polymerase frequently pauses upon encountering mechanical, chemical and torsional barriers, sometimes stepping back and cleaving off nucleotides from the growing RNA chain. A picture in which these intermittent dynamics enable processive, accurate, and controllable RNA synthesis is emerging from complementary structural, biochemical, computational, and single-molecule studies. Here, we summarize our current understanding of the mechanism and regulation of the on-pathway transcription elongation. We review the details of substrate selection, catalysis, proofreading, and translocation, focusing on rate-limiting steps, structural elements that modulate them, and accessory proteins that appear to control RNA polymerase translocation.
Collapse
Affiliation(s)
| | - Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
23
|
Chauvier A, Cabello-Villegas J, Walter NG. Probing RNA structure and interaction dynamics at the single molecule level. Methods 2019; 162-163:3-11. [PMID: 30951833 DOI: 10.1016/j.ymeth.2019.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023] Open
Abstract
RNA structures and their dynamic fluctuations lie at the heart of understanding key biological process such as transcription, splicing, translation and RNA decay. While conventional bulk assays have proven to identify and characterize key pathway intermediates, the generally dynamic nature of RNA structures renders the information obtained from time and ensemble averaging techniques necessarily lacking in critical details. Here we detail Single-Molecule Kinetic Analysis of RNA Transient Structure (SiM-KARTS), a method that readily monitors structural fluctuations of single RNA molecules through the repetitive interaction of fluorescent probes with an unlabeled, surface-immobilized RNA target of virtually any length and in any biological context. In addition, we demonstrate the broad applicability of SiM-KARTS by kinetically fingerprinting the binding of cognate tRNA ligand to single immobilized T-box riboswitch molecules. SiM-KARTS represents a valuable tool for probing biologically relevant structure and interaction features of potentially many diverse RNA metabolic pathways.
Collapse
Affiliation(s)
- Adrien Chauvier
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Javier Cabello-Villegas
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
24
|
Stumper SK, Ravi H, Friedman LJ, Mooney RA, Corrêa IR, Gershenson A, Landick R, Gelles J. Delayed inhibition mechanism for secondary channel factor regulation of ribosomal RNA transcription. eLife 2019; 8:40576. [PMID: 30720429 PMCID: PMC7028371 DOI: 10.7554/elife.40576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 02/04/2019] [Indexed: 11/25/2022] Open
Abstract
RNA polymerases (RNAPs) contain a conserved ‘secondary channel’ which binds regulatory factors that modulate transcription initiation. In Escherichia coli, the secondary channel factors (SCFs) GreB and DksA both repress ribosomal RNA (rRNA) transcription, but SCF loading and repression mechanisms are unclear. We observed in vitro fluorescently labeled GreB molecules binding to single RNAPs and initiation of individual transcripts from an rRNA promoter. GreB arrived and departed from promoters only in complex with RNAP. GreB did not alter initial RNAP-promoter binding but instead blocked a step after conformational rearrangement of the initial RNAP-promoter complex. Strikingly, GreB-RNAP complexes never initiated at an rRNA promoter; only RNAP molecules arriving at the promoter without bound GreB produced transcript. The data reveal that a model SCF functions by a ‘delayed inhibition’ mechanism and suggest that rRNA promoters are inhibited by GreB/DksA because their short-lived RNAP complexes do not allow sufficient time for SCFs to dissociate.
Collapse
Affiliation(s)
- Sarah K Stumper
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Harini Ravi
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Rachel Anne Mooney
- Department of Biochemistry, University of Wisconsin, Madison, United States
| | | | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin, Madison, United States.,Department of Bacteriology, University of Wisconsin, Madison, United States
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, United States
| |
Collapse
|
25
|
Transcription factor regulation of RNA polymerase's torque generation capacity. Proc Natl Acad Sci U S A 2019; 116:2583-2588. [PMID: 30635423 DOI: 10.1073/pnas.1807031116] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During transcription, RNA polymerase (RNAP) supercoils DNA as it translocates. The resulting torsional stress in DNA can accumulate and, in the absence of regulatory mechanisms, becomes a barrier to RNAP elongation, causing RNAP stalling, backtracking, and transcriptional arrest. Here we investigate whether and how a transcription factor may regulate both torque-induced Escherichia coli RNAP stalling and the torque generation capacity of RNAP. Using a unique real-time angular optical trapping assay, we found that RNAP working against a resisting torque was highly prone to extensive backtracking. We then investigated transcription in the presence of GreB, a transcription factor known to rescue RNAP from the backtracked state. We found that GreB greatly suppressed RNAP backtracking and remarkably increased the torque that RNAP was able to generate by 65%, from 11.2 pN⋅nm to 18.5 pN·nm. Variance analysis of the real-time positional trajectories of RNAP after a stall revealed the kinetic parameters of backtracking and GreB rescue. These results demonstrate that backtracking is the primary mechanism by which torsional stress limits transcription and that the transcription factor GreB effectively enhances the torsional capacity of RNAP. These findings suggest a broader role for transcription factors in regulating RNAP functionality and elongation.
Collapse
|
26
|
Le TT, Wang MD. Molecular Highways—Navigating Collisions of DNA Motor Proteins. J Mol Biol 2018; 430:4513-4524. [DOI: 10.1016/j.jmb.2018.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023]
|
27
|
Portman JR, Strick TR. Transcription-Coupled Repair and Complex Biology. J Mol Biol 2018; 430:4496-4512. [DOI: 10.1016/j.jmb.2018.04.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 10/24/2022]
|
28
|
Gourse RL, Chen AY, Gopalkrishnan S, Sanchez-Vazquez P, Myers A, Ross W. Transcriptional Responses to ppGpp and DksA. Annu Rev Microbiol 2018; 72:163-184. [PMID: 30200857 PMCID: PMC6586590 DOI: 10.1146/annurev-micro-090817-062444] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The stringent response to nutrient deprivation is a stress response found throughout the bacterial domain of life. Although first described in proteobacteria for matching ribosome synthesis to the cell's translation status and for preventing formation of defective ribosomal particles, the response is actually much broader, regulating many hundreds of genes-some positively, some negatively. Utilization of the signaling molecules ppGpp and pppGpp for this purpose is ubiquitous in bacterial evolution, although the mechanisms employed vary. In proteobacteria, the signaling molecules typically bind to two sites on RNA polymerase, one at the interface of the β' and ω subunits and one at the interface of the β' secondary channel and the transcription factor DksA. The β' secondary channel is targeted by other transcription regulators as well. Although studies on the transcriptional outputs of the stringent response date back at least 50 years, the mechanisms responsible are only now coming into focus.
Collapse
Affiliation(s)
- Richard L Gourse
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Albert Y Chen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Saumya Gopalkrishnan
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Patricia Sanchez-Vazquez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | | | - Wilma Ross
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| |
Collapse
|
29
|
Gabizon R, Lee A, Vahedian-Movahed H, Ebright RH, Bustamante CJ. Pause sequences facilitate entry into long-lived paused states by reducing RNA polymerase transcription rates. Nat Commun 2018; 9:2930. [PMID: 30050038 PMCID: PMC6062546 DOI: 10.1038/s41467-018-05344-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/21/2018] [Indexed: 11/25/2022] Open
Abstract
Transcription by RNA polymerase (RNAP) is interspersed with sequence-dependent pausing. The processes through which paused states are accessed and stabilized occur at spatiotemporal scales beyond the resolution of previous methods, and are poorly understood. Here, we combine high-resolution optical trapping with improved data analysis methods to investigate the formation of paused states at enhanced temporal resolution. We find that pause sites reduce the forward transcription rate of nearly all RNAP molecules, rather than just affecting the subset of molecules that enter long-lived pauses. We propose that the reduced rates at pause sites allow time for the elongation complex to undergo conformational changes required to enter long-lived pauses. We also find that backtracking occurs stepwise, with states backtracked by at most one base pair forming quickly, and further backtracking occurring slowly. Finally, we find that nascent RNA structures act as modulators that either enhance or attenuate pausing, depending on the sequence context.
Collapse
Affiliation(s)
- Ronen Gabizon
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA, 94720, USA
| | - Antony Lee
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - Hanif Vahedian-Movahed
- Department of Chemistry and Waksman Institute, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Richard H Ebright
- Department of Chemistry and Waksman Institute, Rutgers University, Piscataway, NJ, 08854, USA
| | - Carlos J Bustamante
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA, 94720, USA.
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Department of Molecular and Cell Biology, and Kavli Energy Nanoscience Institute, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
30
|
Le TT, Yang Y, Tan C, Suhanovsky MM, Fulbright RM, Inman JT, Li M, Lee J, Perelman S, Roberts JW, Deaconescu AM, Wang MD. Mfd Dynamically Regulates Transcription via a Release and Catch-Up Mechanism. Cell 2017; 172:344-357.e15. [PMID: 29224782 DOI: 10.1016/j.cell.2017.11.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/21/2017] [Accepted: 11/09/2017] [Indexed: 11/25/2022]
Abstract
The bacterial Mfd ATPase is increasingly recognized as a general transcription factor that participates in the resolution of transcription conflicts with other processes/roadblocks. This function stems from Mfd's ability to preferentially act on stalled RNA polymerases (RNAPs). However, the mechanism underlying this preference and the subsequent coordination between Mfd and RNAP have remained elusive. Here, using a novel real-time translocase assay, we unexpectedly discovered that Mfd translocates autonomously on DNA. The speed and processivity of Mfd dictate a "release and catch-up" mechanism to efficiently patrol DNA for frequently stalled RNAPs. Furthermore, we showed that Mfd prevents RNAP backtracking or rescues a severely backtracked RNAP, allowing RNAP to overcome stronger obstacles. However, if an obstacle's resistance is excessive, Mfd dissociates the RNAP, clearing the DNA for other processes. These findings demonstrate a remarkably delicate coordination between Mfd and RNAP, allowing efficient targeting and recycling of Mfd and expedient conflict resolution.
Collapse
Affiliation(s)
- Tung T Le
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Yi Yang
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Chuang Tan
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Margaret M Suhanovsky
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02903, USA
| | | | - James T Inman
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Ming Li
- Department of Chemistry, Cornell University, Ithaca, NY 14853, USA
| | - Jaeyoon Lee
- Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Sarah Perelman
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Jeffrey W Roberts
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Alexandra M Deaconescu
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Michelle D Wang
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
31
|
Transcription fidelity and its roles in the cell. Curr Opin Microbiol 2017; 42:13-18. [PMID: 28968546 PMCID: PMC5904569 DOI: 10.1016/j.mib.2017.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/11/2017] [Accepted: 08/18/2017] [Indexed: 12/21/2022]
Abstract
The Trigger Loop is one of the major determinants of transcription fidelity. Intrinsic proofreading occurs via transcript-assisted cleavage. Factor-assisted proofreading takes place via exchange of RNAP active centres. Misincorporation is a major source of transcription pausing. Another role of fidelity is the prevention of conflicts with other cellular processes.
Accuracy of transcription is essential for productive gene expression, and the past decade has brought new understanding of the mechanisms ensuring transcription fidelity. The discovery of a new catalytic domain, the Trigger Loop, revealed that RNA polymerase can actively choose the correct substrates. Also, the intrinsic proofreading activity was found to proceed via a ribozyme-like mechanism, whereby the erroneous nucleoside triphosphate (NTP) helps its own excision. Factor-assisted proofreading was shown to proceed through an exchange of active centres, a unique phenomenon among proteinaceous enzymes. Furthermore, most recent in vivo studies have revised the roles of transcription accuracy and proofreading factors, as not only required for production of errorless RNAs, but also for prevention of frequent misincorporation-induced pausing that may cause conflicts with fellow RNA polymerases and the replication machinery.
Collapse
|
32
|
TraR directly regulates transcription initiation by mimicking the combined effects of the global regulators DksA and ppGpp. Proc Natl Acad Sci U S A 2017; 114:E5539-E5548. [PMID: 28652326 PMCID: PMC5514744 DOI: 10.1073/pnas.1704105114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Escherichia coli F element-encoded protein TraR is a distant homolog of the chromosome-encoded transcription factor DksA. Here we address the mechanism by which TraR acts as a global regulator, inhibiting some promoters and activating others. We show that TraR regulates transcription directly in vitro by binding to the secondary channel of RNA polymerase (RNAP) using interactions similar, but not identical, to those of DksA. Even though it binds to RNAP with only slightly higher affinity than DksA and is only half the size of DksA, TraR by itself inhibits transcription as strongly as DksA and ppGpp combined and much more than DksA alone. Furthermore, unlike DksA, TraR activates transcription even in the absence of ppGpp. TraR lacks the residues that interact with ppGpp in DksA, and TraR binding to RNAP uses the residues in the β' rim helices that contribute to the ppGpp binding site in the DksA-ppGpp-RNAP complex. Thus, unlike DksA, TraR does not bind ppGpp. We propose a model in which TraR mimics the effects of DksA and ppGpp together by binding directly to the region of the RNAP secondary channel that otherwise binds ppGpp, and its N-terminal region, like the coiled-coil tip of DksA, engages the active-site region of the enzyme and affects transcription allosterically. These data provide insights into the function not only of TraR but also of an evolutionarily widespread and diverse family of TraR-like proteins encoded by bacteria, as well as bacteriophages and other extrachromosomal elements.
Collapse
|