1
|
Mooney RA, Zhu J, Saba J, Landick R. NusG-Spt5 Transcription Factors: Universal, Dynamic Modulators of Gene Expression. J Mol Biol 2025; 437:168814. [PMID: 39374889 DOI: 10.1016/j.jmb.2024.168814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The accurate and efficient biogenesis of RNA by cellular RNA polymerase (RNAP) requires accessory factors that regulate the initiation, elongation, and termination of transcription. Of the many discovered to date, the elongation regulator NusG-Spt5 is the only universally conserved transcription factor. With orthologs and paralogs found in all three domains of life, this ubiquity underscores their ancient and essential regulatory functions. NusG-Spt5 proteins evolved to maintain a similar binding interface to RNAP through contacts of the NusG N-terminal domain (NGN) that bridge the main DNA-binding cleft. We propose that varying strength of these contacts, modulated by tethering interactions, either decrease transcriptional pausing by smoothing the rugged thermodynamic landscape of transcript elongation or enhance pausing, depending on which conformation of RNAP is stabilized by NGN contacts. NusG-Spt5 contains one (in bacteria and archaea) or more (in eukaryotes) C-terminal domains that use a KOW fold to contact diverse targets, tether the NGN, and control RNA biogenesis. Recent work highlights these diverse functions in different organisms. Some bacteria contain multiple specialized NusG paralogs that regulate subsets of operons via sequence-specific targeting, controlling production of antibiotics, toxins, or capsule proteins. Despite their common origin, NusG orthologs can differ in their target selection, interacting partners, and effects on RNA synthesis. We describe the current understanding of NusG-Spt5 structure, interactions with RNAP and other regulators, and cellular functions including significant recent progress from genome-wide analyses, single-molecule visualization, and cryo-EM. The recent findings highlight the remarkable diversity of function among these structurally conserved proteins.
Collapse
Affiliation(s)
- Rachel A Mooney
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States.
| | - Junqiao Zhu
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States
| | - Jason Saba
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States.
| |
Collapse
|
2
|
He JB, Ren Y, Li P, Liu YP, Pan HX, Huang LJ, Wang J, Fang P, Tang GL. Crystal Structure and Mutagenesis of an XYP Subfamily Cyclodipeptide Synthase Reveal Key Determinants of Enzyme Activity and Substrate Specificity. Biochemistry 2024; 63:2969-2976. [PMID: 39475147 PMCID: PMC11580168 DOI: 10.1021/acs.biochem.4c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024]
Abstract
Cyclodipeptide synthases (CDPSs) catalyze the synthesis of diverse cyclodipeptides (CDPs) by utilizing two aminoacyl-tRNA (aa-tRNA) substrates in a sequential ping-pong reaction mechanism. Numerous CDPSs have been characterized to provide precursors for diketopiperazines (DKPs) with diverse structural characteristics and biological activities. BcmA, belonging to the XYP subfamily, is a cyclo(l-Ile-l-Leu)-synthesizing CDPS involved in the biosynthesis of the antibiotic bicyclomycin. The structural basis and determinants influencing BcmA enzyme activity and substrate selectivity are not well understood. Here, we report the crystal structure of SsBcmA from Streptomyces sapporonensis. Through structural comparison and systematic site-directed mutagenesis, we highlight the significance of key residues located in the aminoacyl-binding pocket for enzyme activity and substrate specificity. In particular, the nonconserved residues D161 and K165 in pocket P2 are essential for the activity of SsBcmA without significant alteration of the substrate specificity, while the conserved residues F158 as well as F210 and S211 in P2 are responsible for determining substrate selectivity. These findings facilitate the understanding of how CDPSs selectively accept hydrophobic substrates and provide additional clues for the engineering of these enzymes for synthetic biology applications.
Collapse
Affiliation(s)
- Jun-Bin He
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences (CAS), Shanghai 200032, China
| | - Yichen Ren
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences (CAS), Shanghai 200032, China
| | - Peifeng Li
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences (CAS), Shanghai 200032, China
| | - Yi-Pei Liu
- Shaanxi
Natural Carbohydrate Resource Engineering Research Center, College
of Food Science and Technology, Northwest
University, Xi’an 710069, China
| | - Hai-Xue Pan
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences (CAS), Shanghai 200032, China
| | - Lin-Juan Huang
- Shaanxi
Natural Carbohydrate Resource Engineering Research Center, College
of Food Science and Technology, Northwest
University, Xi’an 710069, China
| | - Jiayuan Wang
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences (CAS), Shanghai 200032, China
| | - Pengfei Fang
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences (CAS), Shanghai 200032, China
- School
of Chemistry and Materials Science, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences (CAS), 1 Sub-lane
Xiangshan, Hangzhou, Zhejiang 310024, China
| | - Gong-Li Tang
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences (CAS), Shanghai 200032, China
- School
of Chemistry and Materials Science, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences (CAS), 1 Sub-lane
Xiangshan, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
3
|
Said N, Finazzo M, Hilal T, Wang B, Selinger TL, Gjorgjevikj D, Artsimovitch I, Wahl MC. Sm-like protein Rof inhibits transcription termination factor ρ by binding site obstruction and conformational insulation. Nat Commun 2024; 15:3186. [PMID: 38622114 PMCID: PMC11018626 DOI: 10.1038/s41467-024-47439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Transcription termination factor ρ is a hexameric, RNA-dependent NTPase that can adopt active closed-ring and inactive open-ring conformations. The Sm-like protein Rof, a homolog of the RNA chaperone Hfq, inhibits ρ-dependent termination in vivo but recapitulation of this activity in vitro has proven difficult and the precise mode of Rof action is presently unknown. Here, our cryo-EM structures of ρ-Rof and ρ-RNA complexes show that Rof undergoes pronounced conformational changes to bind ρ at the protomer interfaces, undercutting ρ conformational dynamics associated with ring closure and occluding extended primary RNA-binding sites that are also part of interfaces between ρ and RNA polymerase. Consistently, Rof impedes ρ ring closure, ρ-RNA interactions and ρ association with transcription elongation complexes. Structure-guided mutagenesis coupled with functional assays confirms that the observed ρ-Rof interface is required for Rof-mediated inhibition of cell growth and ρ-termination in vitro. Bioinformatic analyses reveal that Rof is restricted to Pseudomonadota and that the ρ-Rof interface is conserved. Genomic contexts of rof differ between Enterobacteriaceae and Vibrionaceae, suggesting distinct modes of Rof regulation. We hypothesize that Rof and other cellular anti-terminators silence ρ under diverse, but yet to be identified, stress conditions when unrestrained transcription termination by ρ may be detrimental.
Collapse
Affiliation(s)
- Nelly Said
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
| | - Mark Finazzo
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Tarek Hilal
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
- Research Center of Electron Microscopy and Core Facility BioSupraMol, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstr. 36a, D-14195 Berlin, Germany
| | - Bing Wang
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Tim Luca Selinger
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
| | - Daniela Gjorgjevikj
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
- Department of Medicine, MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 0QH, United Kingdom
| | - Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany.
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, D-12489 Berlin, Germany.
| |
Collapse
|
4
|
Said N, Finazzo M, Hilal T, Wang B, Selinger TL, Gjorgjevikj D, Artsimovitch I, Wahl MC. Sm-like protein Rof inhibits transcription termination factor ρ by binding site obstruction and conformational insulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555460. [PMID: 37693585 PMCID: PMC10491184 DOI: 10.1101/2023.08.30.555460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Transcription termination factor ρ is a hexameric, RNA-dependent NTPase that can adopt active closed-ring and inactive open-ring conformations. The Sm-like protein Rof, a homolog of the RNA chaperone Hfq, inhibits ρ-dependent termination in vivo but recapitulation of this activity in vitro has proven difficult and the precise mode of Rof action is presently unknown. Our electron microscopic structures of ρ-Rof and ρ-RNA complexes show that Rof undergoes pronounced conformational changes to bind ρ at the protomer interfaces, undercutting ρ conformational dynamics associated with ring closure and occluding extended primary RNA-binding sites that are also part of interfaces between ρ and RNA polymerase. Consistently, Rof impedes ρ ring closure, ρ-RNA interactions, and ρ association with transcription elongation complexes. Structure-guided mutagenesis coupled with functional assays confirmed that the observed ρ-Rof interface is required for Rof-mediated inhibition of cell growth and ρ-termination in vitro. Bioinformatic analyses revealed that Rof is restricted to Pseudomonadota and that the ρ-Rof interface is conserved. Genomic contexts of rof differ between Enterobacteriaceae and Vibrionaceae, suggesting distinct modes of Rof regulation. We hypothesize that Rof and other cellular anti-terminators silence ρ under diverse, but yet to be identified, stress conditions when unrestrained transcription termination by ρ would be lethal.
Collapse
Affiliation(s)
- Nelly Said
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
| | - Mark Finazzo
- The Ohio State University, Department of Microbiology and Center for RNA Biology, Columbus, OH, USA
| | - Tarek Hilal
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Research Center of Electron Microscopy and Core Facility BioSupraMol, Fabeckstr. 36a, 14195 Berlin, Germany
| | - Bing Wang
- The Ohio State University, Department of Microbiology and Center for RNA Biology, Columbus, OH, USA
| | - Tim Luca Selinger
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
| | - Daniela Gjorgjevikj
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
| | - Irina Artsimovitch
- The Ohio State University, Department of Microbiology and Center for RNA Biology, Columbus, OH, USA
| | - Markus C. Wahl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Str. 15, D-12489 Berlin, Germany
| |
Collapse
|
5
|
Molodtsov V, Wang C, Firlar E, Kaelber JT, Ebright RH. Structural basis of Rho-dependent transcription termination. Nature 2023; 614:367-374. [PMID: 36697824 PMCID: PMC9911385 DOI: 10.1038/s41586-022-05658-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/14/2022] [Indexed: 01/26/2023]
Abstract
Rho is a ring-shaped hexameric ATP-dependent molecular motor. Together with the transcription elongation factor NusG, Rho mediates factor-dependent transcription termination and transcription-translation-coupling quality control in Escherichia coli1-4. Here we report the preparation of complexes that are functional in factor-dependent transcription termination from Rho, NusG, RNA polymerase (RNAP), and synthetic nucleic acid scaffolds, and we report cryogenic electron microscopy structures of the complexes. The structures show that functional factor-dependent pre-termination complexes contain a closed-ring Rho hexamer; have RNA threaded through the central channel of Rho; have 60 nucleotides of RNA interacting sequence-specifically with the exterior of Rho and 6 nucleotides of RNA interacting sequence-specifically with the central channel of Rho; have Rho oriented relative to RNAP such that ATP-dependent translocation by Rho exerts mechanical force on RNAP; and have NusG bridging Rho and RNAP. The results explain five decades of research on Rho and provide a foundation for understanding Rho's function.
Collapse
Affiliation(s)
- Vadim Molodtsov
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Chengyuan Wang
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - Emre Firlar
- Rutgers CryoEM and Nanoimaging Facility and Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, USA
| | - Jason T Kaelber
- Rutgers CryoEM and Nanoimaging Facility and Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, USA
| | - Richard H Ebright
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
6
|
Kirsch SH, Haeckl FPJ, Müller R. Beyond the approved: target sites and inhibitors of bacterial RNA polymerase from bacteria and fungi. Nat Prod Rep 2022; 39:1226-1263. [PMID: 35507039 DOI: 10.1039/d1np00067e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2016 to 2022RNA polymerase (RNAP) is the central enzyme in bacterial gene expression representing an attractive and validated target for antibiotics. Two well-known and clinically approved classes of natural product RNAP inhibitors are the rifamycins and the fidaxomycins. Rifampicin (Rif), a semi-synthetic derivative of rifamycin, plays a crucial role as a first line antibiotic in the treatment of tuberculosis and a broad range of bacterial infections. However, more and more pathogens such as Mycobacterium tuberculosis develop resistance, not only against Rif and other RNAP inhibitors. To overcome this problem, novel RNAP inhibitors exhibiting different target sites are urgently needed. This review includes recent developments published between 2016 and today. Particular focus is placed on novel findings concerning already known bacterial RNAP inhibitors, the characterization and development of new compounds isolated from bacteria and fungi, and providing brief insights into promising new synthetic compounds.
Collapse
Affiliation(s)
- Susanne H Kirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
7
|
RfaH May Oppose Silencing by H-NS and YmoA Proteins during Transcription Elongation. J Bacteriol 2022; 204:e0059921. [PMID: 35258322 DOI: 10.1128/jb.00599-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Nucleoid-associated proteins (NAPs) silence xenogenes by blocking RNA polymerase binding to promoters and hindering transcript elongation. In Escherichia coli, H-NS and its homolog SptA interact with YmoA proteins Hha and YdgT to assemble nucleoprotein filaments that facilitate transcription termination by Rho, which acts in synergy with NusG. Countersilencing during initiation is facilitated by proteins that exclude NAPs from promoter regions, but auxiliary factors that alleviate silencing during elongation are not known. A specialized NusG paralog, RfaH, activates lipopolysaccharide core biosynthesis operons, enabling survival in the presence of detergents and antibiotics. RfaH strongly inhibits Rho-dependent termination by reducing RNA polymerase pausing, promoting translation, and competing with NusG. We hypothesize that RfaH also acts as a countersilencer of NAP/YmoA filaments. We show that deletions of hns and hha+ydgT suppress the growth defects of ΔrfaH by alleviating Rho-mediated polarity within the waa operon. The absence of YmoA proteins exacerbates cellular defects caused by reduced Rho levels or Rho inhibition by bicyclomycin but has negligible effects at a strong model Rho-dependent terminator. Our findings that the distribution of Hha and RfaH homologs is strongly correlated supports a model in which they comprise a silencing/countersilencing pair that controls expression of chromosomal and plasmid-encoded xenogenes. IMPORTANCE Horizontally acquired DNA drives bacterial evolution, but its unregulated expression may harm the recipient. Xenogeneic silencers recognize foreign genes and inhibit their transcription. However, some xenogenes, such as those encoding lipo- and exopolysaccharides, confer resistance to antibiotics, bile salts, and detergents, necessitating the existence of countersilencing fitness mechanisms. Here, we present evidence that Escherichia coli antiterminator RfaH alleviates silencing of the chromosomal waa operon and propose that plasmid-encoded RfaH homologs promote dissemination of antibiotic resistance genes through conjugation.
Collapse
|
8
|
Cryo-EM structure of transcription termination factor Rho from Mycobacterium tuberculosis reveals bicyclomycin resistance mechanism. Commun Biol 2022; 5:120. [PMID: 35140348 PMCID: PMC8828861 DOI: 10.1038/s42003-022-03069-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/21/2022] [Indexed: 01/17/2023] Open
Abstract
The bacterial Rho factor is a ring-shaped motor triggering genome-wide transcription termination and R-loop dissociation. Rho is essential in many species, including in Mycobacterium tuberculosis where rho gene inactivation leads to rapid death. Yet, the M. tuberculosis Rho [MtbRho] factor displays poor NTPase and helicase activities, and resistance to the natural Rho inhibitor bicyclomycin [BCM] that remain unexplained. To address these issues, we solved the cryo-EM structure of MtbRho at 3.3 Å resolution. The MtbRho hexamer is poised into a pre-catalytic, open-ring state wherein specific contacts stabilize ATP in intersubunit ATPase pockets, thereby explaining the cofactor preference of MtbRho. We reveal a leucine-to-methionine substitution that creates a steric bulk in BCM binding cavities near the positions of ATP γ-phosphates, and confers resistance to BCM at the expense of motor efficiency. Our work contributes to explain the unusual features of MtbRho and provides a framework for future antibiotic development. Cryo-EM shows that M. tuberculosis Rho-factor adopts an open, ring-shaped hexamer conformation and a steric bulk in the cavity for bicyclomycin binding, which explains resistance to the antibiotic.
Collapse
|
9
|
Abstract
Rho is a hexameric bacterial RNA helicase, which became a paradigm of factor-dependent transcription termination. The broadly accepted ("textbook") model posits a series of steps, wherein Rho first binds C-rich Rho utilization (rut) sites on nascent RNA, uses its ATP-dependent translocase activity to catch up with RNA polymerase (RNAP), and either pulls the transcript from the elongation complex or pushes RNAP forward, thus terminating transcription. However, this appealingly simple mechano-chemical model lacks a biological realism and is increasingly at odds with genetic and biochemical data. Here, we summarize recent structural and biochemical studies that have advanced our understanding of molecular details of RNA recognition, termination signaling, and RNAP inactivation in Rho-dependent transcription termination, rebalancing the view in favor of an alternative "allosteric" mechanism. In the revised model, Rho binds RNAP early in elongation assisted by the cofactors NusA and NusG, forming a pre-termination complex (PTC). The formation of PTC allows Rho to continuously sample nascent transcripts for a termination signal, which subsequently traps the elongation complex in an inactive state prior to its dissociation.
Collapse
Affiliation(s)
- Zhitai Hao
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.,Howard Hughes Medical Institute, New York University School of Medicine, New York, Ny, USA
| |
Collapse
|
10
|
Simon I, Delaleau M, Schwartz A, Boudvillain M. A Large Insertion Domain in the Rho Factor From a Low G + C, Gram-negative Bacterium is Critical for RNA Binding and Transcription Termination Activity. J Mol Biol 2021; 433:167060. [PMID: 34023400 DOI: 10.1016/j.jmb.2021.167060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/30/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
Rho-dependent termination of transcription (RDTT) is a critical regulatory mechanism specific to bacteria. In a subset of species including most Actinobacteria and Bacteroidetes, the Rho factor contains a large, poorly conserved N-terminal insertion domain (NID) of cryptic function. To date, only two NID-bearing Rho factors from high G + C Actinobacteria have been thoroughly characterized. Both can trigger RDTT at promoter-proximal sites or with structurally constrained transcripts that are unsuitable for the archetypal, NID-less Rho factor of Escherichia coli (EcRho). Here, we provide the first biochemical characterization of a NID-bearing Rho factor from a low G + C bacterium. We show that Bacteroides fragilis Rho (BfRho) is a bona fide RNA-dependent NTPase motor able to unwind long RNA:DNA duplexes and to disrupt transcription complexes. The large NID (~40% of total mass) strongly increases BfRho affinity for RNA, is strictly required for RDTT, but does not promote RDTT at promoter-proximal sites or with a structurally constrained transcript. Furthermore, the NID does not preclude modulation of RDTT by transcription factors NusA and NusG or by the Rho inhibitor bicyclomycin. Although the NID contains a prion-like Q/N-rich motif, it does not spontaneously trigger formation of β-amyloids. Thus, despite its unusually large RNA binding domain, BfRho behaves more like the NID-less EcRho than NID-bearing counterparts from high G + C Actinobacteria. Our data highlight the evolutionary plasticity of Rho's N-terminal region and illustrate how RDTT is adapted to distinct genomic contents.
Collapse
Affiliation(s)
- Isabelle Simon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Rue Charles Sadron, 45071 Orléans cedex 2, France; ED 549, Santé, Sciences Biologiques & Chimie du Vivant, Université d'Orléans, France
| | - Mildred Delaleau
- Centre de Biophysique Moléculaire, CNRS UPR4301, Rue Charles Sadron, 45071 Orléans cedex 2, France
| | - Annie Schwartz
- Centre de Biophysique Moléculaire, CNRS UPR4301, Rue Charles Sadron, 45071 Orléans cedex 2, France
| | - Marc Boudvillain
- Centre de Biophysique Moléculaire, CNRS UPR4301, Rue Charles Sadron, 45071 Orléans cedex 2, France.
| |
Collapse
|
11
|
Harken L, Li SM. Modifications of diketopiperazines assembled by cyclodipeptide synthases with cytochrome P 450 enzymes. Appl Microbiol Biotechnol 2021; 105:2277-2285. [PMID: 33625545 PMCID: PMC7954767 DOI: 10.1007/s00253-021-11178-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/22/2022]
Abstract
2,5-Diketopiperazines are the smallest cyclic peptides comprising two amino acids connected via two peptide bonds. They can be biosynthesized in nature by two different enzyme families, either by nonribosomal peptide synthetases or by cyclodipeptide synthases. Due to the stable scaffold of the diketopiperazine ring, they can serve as precursors for further modifications by different tailoring enzymes, such as methyltransferases, prenyltransferases, oxidoreductases like cyclodipeptide oxidases, 2-oxoglutarate-dependent monooxygenases and cytochrome P450 enzymes, leading to the formation of intriguing secondary metabolites. Among them, cyclodipeptide synthase-associated P450s attracted recently significant attention, since they are able to catalyse a broader variety of astonishing reactions than just oxidation by insertion of an oxygen. The P450-catalysed reactions include hydroxylation at a tertiary carbon, aromatisation of the diketopiperazine ring, intramolecular and intermolecular carbon-carbon and carbon-nitrogen bond formation of cyclodipeptides and nucleobase transfer reactions. Elucidation of the crystal structures of three P450s as cyclodipeptide dimerases provides a structural basis for understanding the reaction mechanism and generating new enzymes by protein engineering. This review summarises recent publications on cyclodipeptide modifications by P450s.Key Points• Intriguing reactions catalysed by cyclodipeptide synthase-associated cytochrome P450s• Homo- and heterodimerisation of diketopiperazines• Coupling of guanine and hypoxanthine with diketopiperazines.
Collapse
Affiliation(s)
- Lauritz Harken
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037, Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037, Marburg, Germany.
| |
Collapse
|
12
|
Said N, Hilal T, Sunday ND, Khatri A, Bürger J, Mielke T, Belogurov GA, Loll B, Sen R, Artsimovitch I, Wahl MC. Steps toward translocation-independent RNA polymerase inactivation by terminator ATPase ρ. Science 2021; 371:eabd1673. [PMID: 33243850 PMCID: PMC7864586 DOI: 10.1126/science.abd1673] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/26/2020] [Indexed: 12/31/2022]
Abstract
Factor-dependent transcription termination mechanisms are poorly understood. We determined a series of cryo-electron microscopy structures portraying the hexameric adenosine triphosphatase (ATPase) ρ on a pathway to terminating NusA/NusG-modified elongation complexes. An open ρ ring contacts NusA, NusG, and multiple regions of RNA polymerase, trapping and locally unwinding proximal upstream DNA. NusA wedges into the ρ ring, initially sequestering RNA. Upon deflection of distal upstream DNA over the RNA polymerase zinc-binding domain, NusA rotates underneath one capping ρ subunit, which subsequently captures RNA. After detachment of NusG and clamp opening, RNA polymerase loses its grip on the RNA:DNA hybrid and is inactivated. Our structural and functional analyses suggest that ρ, and other termination factors across life, may use analogous strategies to allosterically trap transcription complexes in a moribund state.
Collapse
Affiliation(s)
- Nelly Said
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Tarek Hilal
- Research Center of Electron Microscopy and Core Facility BioSupraMol, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Nicholas D Sunday
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Ajay Khatri
- Laboratory of Transcription, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Jörg Bürger
- Microscopy and Cryo-Electron Microscopy Service Group, Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
- Institute of Medical Physics und Biophysics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thorsten Mielke
- Microscopy and Cryo-Electron Microscopy Service Group, Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | - Bernhard Loll
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Ranjan Sen
- Laboratory of Transcription, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| |
Collapse
|
13
|
Castellví A, Pascual-Izarra C, Crosas E, Malfois M, Juanhuix J. Improving data quality and expanding BioSAXS experiments to low-molecular-weight and low-concentration protein samples. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:971-981. [PMID: 33021499 DOI: 10.1107/s2059798320010700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/03/2020] [Indexed: 11/10/2022]
Abstract
The addition of compounds to scavenge the radical species produced during biological small-angle X-ray scattering (BioSAXS) experiments is a common strategy to reduce the effects of radiation damage and produce better quality data. As almost half of the experiments leading to structures deposited in the SASBDB database used scavengers, finding potent scavengers would be advantageous for many experiments. Here, four compounds, three nucleosides and one nitrogenous base, are presented which can act as very effective radical-scavenging additives and increase the critical dose by up to 20 times without altering the stability or reducing the contrast of the tested protein solutions. The efficacy of these scavengers is higher than those commonly used in the field to date, as verified for lysozyme solutions at various concentrations from 7.0 to 0.5 mg ml-1. The compounds are also very efficient at mitigating radiation damage to four proteins with molecular weights ranging from 7 to 240 kDa and pH values from 3 to 8, with the extreme case being catalase at 6.7 mg ml-1, with a scavenging factor exceeding 100. These scavengers can therefore be instrumental in expanding BioSAXS to low-molecular-weight and low-concentration protein samples that were previously inaccessible owing to poor data quality. It is also demonstrated that an increase in the critical dose in standard BioSAXS experiments leads to an increment in the retrieved information, in particular at higher angles, and thus to higher resolution of the model.
Collapse
Affiliation(s)
- Albert Castellví
- Experiments Division, ALBA Synchrotron, Carrer de la Llum 2-26, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - Carlos Pascual-Izarra
- Experiments Division, ALBA Synchrotron, Carrer de la Llum 2-26, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - Eva Crosas
- DESY Photon Science, Notkestrasse 85, 08290 Hamburg, Germany
| | - Marc Malfois
- Experiments Division, ALBA Synchrotron, Carrer de la Llum 2-26, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - Judith Juanhuix
- Experiments Division, ALBA Synchrotron, Carrer de la Llum 2-26, Cerdanyola del Vallès, 08290 Barcelona, Spain
| |
Collapse
|
14
|
Bossi L, Figueroa-Bossi N, Bouloc P, Boudvillain M. Regulatory interplay between small RNAs and transcription termination factor Rho. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194546. [PMID: 32217107 DOI: 10.1016/j.bbagrm.2020.194546] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/12/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022]
Abstract
The largest and best studied group of regulatory small RNAs (sRNAs) in bacteria act by modulating translation or turnover of messenger RNAs (mRNAs) through base-pairing interactions that typically take place near the 5' end of the mRNA. This allows the sRNA to bind the complementary target sequence while the remainder of the mRNA is still being made, creating conditions whereby the action of the sRNA can extend to transcriptional steps, most notably transcription termination. Increasing evidence corroborates the existence of a functional interplay between sRNAs and termination factor Rho. Two general mechanisms have emerged. One mechanism operates in translated regions subjected to sRNA repression. By inhibiting ribosome binding co-transcriptionally, the sRNA uncouples translation from transcription, allowing Rho to bind the nascent RNA and promote termination. In the second mechanism, which functions in 5' untranslated regions, the sRNA antagonizes termination directly by interfering with Rho binding to the RNA or the subsequent translocation along the RNA. Here, we review the above literature in the context of other mechanisms that underlie the participation of Rho-dependent transcription termination in gene regulation. This article is part of a Special Issue entitled: RNA and gene control in bacteria edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Lionello Bossi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Nara Figueroa-Bossi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Philippe Bouloc
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Marc Boudvillain
- Centre de Biophysique Moléculaire, CNRS UPR4301, rue Charles Sadron, 45071 Orléans cedex 2, France
| |
Collapse
|
15
|
Koyanagi T, Siena PM, Przybyla DE, Rafie MI, Nagorski RW. N-(Hydroxybenzyl)benzamide Derivatives: Aqueous pH-Dependent Kinetics and Mechanistic Implications for the Aqueous Reactivity of Carbinolamides. J Org Chem 2020; 85:1115-1125. [PMID: 31830416 DOI: 10.1021/acs.joc.9b02812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rate constants for the aqueous reaction, between pH 0 and 14, have been determined for a series of amide substituted N-(hydroxybenzyl)benzamide derivatives, in H2O, at 25 °C, I = 1.0 M (KCl). The N-(hydroxybenzyl)benzamide derivatives were found to react via three distinct mechanisms with the kinetically dominant mechanism being dependent on the pH of the reaction solution. It has been shown that the carbinolamides react via a specific-base-catalyzed mechanism (E1cB-like) under basic and pH neutral conditions. At lower pH values, an acid-catalyzed mechanism was kinetically dominant and, last, a water reaction was postulated at pH values where neither the hydroxide-dependent nor the general-acid-catalyzed mechanism was dominant. Contrary to earlier studies with N-(hydroxymethyl)benzamide compounds, no evidence for mechanistic variation based upon the nature of the amidic substituent was observed for any of the N-(hydroxybenzyl)benzamide derivatives studied between pH values of 0-14. The rate for the acid-catalyzed reaction (kH, ρ = -1.17), the apparent second-order hydroxide rate constant (k1', ρ = 0.87), the hydroxide-independent rate (k1, ρ = 0.65), and the pKa's of the hydroxyl group of the carbinolamide (ρ = 0.23) are reported.
Collapse
Affiliation(s)
- Takaoki Koyanagi
- Department of Chemistry , Illinois State University , Normal , Illinois 61790-4160 , United States
| | - Paul M Siena
- Department of Chemistry , Illinois State University , Normal , Illinois 61790-4160 , United States
| | - David E Przybyla
- Department of Chemistry , Illinois State University , Normal , Illinois 61790-4160 , United States
| | - Mohammad I Rafie
- Department of Chemistry , Illinois State University , Normal , Illinois 61790-4160 , United States
| | - Richard W Nagorski
- Department of Chemistry , Illinois State University , Normal , Illinois 61790-4160 , United States
| |
Collapse
|
16
|
Nadiras C, Eveno E, Schwartz A, Figueroa-Bossi N, Boudvillain M. A multivariate prediction model for Rho-dependent termination of transcription. Nucleic Acids Res 2019; 46:8245-8260. [PMID: 29931073 PMCID: PMC6144790 DOI: 10.1093/nar/gky563] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/08/2018] [Indexed: 11/13/2022] Open
Abstract
Bacterial transcription termination proceeds via two main mechanisms triggered either by simple, well-conserved (intrinsic) nucleic acid motifs or by the motor protein Rho. Although bacterial genomes can harbor hundreds of termination signals of either type, only intrinsic terminators are reliably predicted. Computational tools to detect the more complex and diversiform Rho-dependent terminators are lacking. To tackle this issue, we devised a prediction method based on Orthogonal Projections to Latent Structures Discriminant Analysis [OPLS-DA] of a large set of in vitro termination data. Using previously uncharacterized genomic sequences for biochemical evaluation and OPLS-DA, we identified new Rho-dependent signals and quantitative sequence descriptors with significant predictive value. Most relevant descriptors specify features of transcript C>G skewness, secondary structure, and richness in regularly-spaced 5'CC/UC dinucleotides that are consistent with known principles for Rho-RNA interaction. Descriptors collectively warrant OPLS-DA predictions of Rho-dependent termination with a ∼85% success rate. Scanning of the Escherichia coli genome with the OPLS-DA model identifies significantly more termination-competent regions than anticipated from transcriptomics and predicts that regions intrinsically refractory to Rho are primarily located in open reading frames. Altogether, this work delineates features important for Rho activity and describes the first method able to predict Rho-dependent terminators in bacterial genomes.
Collapse
Affiliation(s)
- Cédric Nadiras
- Centre de Biophysique Moléculaire, CNRS UPR4301, rue Charles Sadron, 45071 Orléans cedex 2, France.,ED 549, Sciences Biologiques & Chimie du Vivant, Université d'Orléans, France
| | - Eric Eveno
- Centre de Biophysique Moléculaire, CNRS UPR4301, rue Charles Sadron, 45071 Orléans cedex 2, France
| | - Annie Schwartz
- Centre de Biophysique Moléculaire, CNRS UPR4301, rue Charles Sadron, 45071 Orléans cedex 2, France
| | - Nara Figueroa-Bossi
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University of Paris-Sud, University of Paris-Saclay, Gif-sur-Yvette, France
| | - Marc Boudvillain
- Centre de Biophysique Moléculaire, CNRS UPR4301, rue Charles Sadron, 45071 Orléans cedex 2, France
| |
Collapse
|
17
|
Roberts JW. Mechanisms of Bacterial Transcription Termination. J Mol Biol 2019; 431:4030-4039. [PMID: 30978344 DOI: 10.1016/j.jmb.2019.04.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 01/28/2023]
Abstract
Bacterial transcription termination, described mostly for Escherichia coli, occurs in three recognized ways: intrinsic termination, an activity only of the core RNAP enzyme and transcript sequences that encode an RNA hairpin and terminal uridine-rich segment; termination by the enzyme Rho, an ATP-dependent RNA translocase that releases RNA by forcing uncharacterized structural changes in the elongating complex; and Mfd-dependent termination, the activity of an ATP-dependent DNA translocase that is thought to dissociate the elongation complex by exerting torque on a stalled RNAP. Intrinsic termination can be described in terms of the nucleic acid movements in the process, whereas the enzymatic mechanisms have been illuminated importantly by definitive structural and biochemical analysis of their activity.
Collapse
Affiliation(s)
- Jeffrey W Roberts
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
18
|
Nadiras C, Delaleau M, Schwartz A, Margeat E, Boudvillain M. A Fluorogenic Assay To Monitor Rho-Dependent Termination of Transcription. Biochemistry 2019; 58:865-874. [PMID: 30624903 DOI: 10.1021/acs.biochem.8b01216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transcription termination mediated by the ring-shaped, ATP-dependent Rho motor is a multipurpose regulatory mechanism specific to bacteria and constitutes an interesting target for the development of new antibiotics. Although Rho-dependent termination can punctuate gene expression or contribute to the protection of the genome at hundreds of sites within a given bacterium, its exact perimeter and site- or species-specific features remain insufficiently characterized. New advanced approaches are required to explore thoroughly the diversity of Rho-dependent terminators and the complexity of associated mechanisms. Current in vitro analyses of Rho-dependent termination rely on radiolabeling, gel electrophoresis, and phosphorimaging of transcription reaction products and are thus hazardous, inconvenient, and low-throughput. To address these limitations, we have developed the first in vitro assay using a fluorescence detection modality to study Rho-dependent transcription termination. This powerful experimental tool accurately estimates terminator strengths in a matter of minutes and is optimized for a microplate reader format allowing multiplexed characterization of putative terminator sequences and mechanisms or high-throughput screening of new drugs targeting Rho-dependent termination.
Collapse
Affiliation(s)
- Cédric Nadiras
- Centre de Biophysique Moléculaire , CNRS UPR4301 , rue Charles Sadron , 45071 Orléans cedex 2, France.,ED 549, Sciences Biologiques & Chimie du Vivant , Université d'Orléans , 45100 Orléans , France
| | - Mildred Delaleau
- Centre de Biophysique Moléculaire , CNRS UPR4301 , rue Charles Sadron , 45071 Orléans cedex 2, France
| | - Annie Schwartz
- Centre de Biophysique Moléculaire , CNRS UPR4301 , rue Charles Sadron , 45071 Orléans cedex 2, France
| | - Emmanuel Margeat
- Centre de Biochimie Structurale, INSERM U 1054, CNRS UMR 5048, Université de Montpellier , 29 rue de Navacelles , 34090 Montpellier , France
| | - Marc Boudvillain
- Centre de Biophysique Moléculaire , CNRS UPR4301 , rue Charles Sadron , 45071 Orléans cedex 2, France.,ED 549, Sciences Biologiques & Chimie du Vivant , Université d'Orléans , 45100 Orléans , France
| |
Collapse
|
19
|
Tuning the sequence specificity of a transcription terminator. Curr Genet 2019; 65:729-733. [PMID: 30739200 DOI: 10.1007/s00294-019-00939-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/17/2019] [Indexed: 01/08/2023]
Abstract
The bacterial hexameric helicase known as Rho is an archetypal sequence-specific transcription terminator that typically halts the synthesis of a defined set of transcripts, particularly those bearing cytosine-rich 3'-untranslated regions. However, under conditions of translational stress, Rho can also terminate transcription at cytosine-poor sites when assisted by the transcription factor NusG. Recent structural, biochemical, and computational studies of the Rho·NusG interaction in Escherichia coli have helped establish how NusG reprograms Rho activity. NusG is found to be an allosteric activator of Rho that directly binds to the ATPase motor domain of the helicase and facilitates closure of the Rho ring around non-ideal (purine-rich) target RNAs. The manner in which NusG acts on Rho helps to explain how the transcription terminator is excluded from acting on RNA polymerase by exogenous factors, such as the antitermination protein NusE, the NusG paralog RfaH, and RNA polymerase-coupled ribosomes. Collectively, an understanding of the link between NusG and Rho provides new insights into how transcriptional and translational fidelity are maintained during gene expression in bacteria.
Collapse
|
20
|
Lawson MR, Ma W, Bellecourt MJ, Artsimovitch I, Martin A, Landick R, Schulten K, Berger JM. Mechanism for the Regulated Control of Bacterial Transcription Termination by a Universal Adaptor Protein. Mol Cell 2018; 71:911-922.e4. [PMID: 30122535 DOI: 10.1016/j.molcel.2018.07.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/21/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022]
Abstract
NusG/Spt5 proteins are the only transcription factors utilized by all cellular organisms. In enterobacteria, NusG antagonizes the transcription termination activity of Rho, a hexameric helicase, during the synthesis of ribosomal and actively translated mRNAs. Paradoxically, NusG helps Rho act on untranslated transcripts, including non-canonical antisense RNAs and those arising from translational stress; how NusG fulfills these disparate functions is unknown. Here, we demonstrate that NusG activates Rho by assisting helicase isomerization from an open-ring, RNA-loading state to a closed-ring, catalytically active translocase. A crystal structure of closed-ring Rho in complex with NusG reveals the physical basis for this activation and further explains how Rho is excluded from translationally competent RNAs. This study demonstrates how a universally conserved transcription factor acts to modulate the activity of a ring-shaped ATPase motor and establishes how the innate sequence bias of a termination factor can be modulated to silence pervasive, aberrant transcription.
Collapse
Affiliation(s)
- Michael R Lawson
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Wen Ma
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science Technology, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael J Bellecourt
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Andreas Martin
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Klaus Schulten
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science Technology, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - James M Berger
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
21
|
Datta A, Brosh RM. New Insights Into DNA Helicases as Druggable Targets for Cancer Therapy. Front Mol Biosci 2018; 5:59. [PMID: 29998112 PMCID: PMC6028597 DOI: 10.3389/fmolb.2018.00059] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022] Open
Abstract
Small molecules that deter the functions of DNA damage response machinery are postulated to be useful for enhancing the DNA damaging effects of chemotherapy or ionizing radiation treatments to combat cancer by impairing the proliferative capacity of rapidly dividing cells that accumulate replicative lesions. Chemically induced or genetic synthetic lethality is a promising area in personalized medicine, but it remains to be optimized. A new target in cancer therapy is DNA unwinding enzymes known as helicases. Helicases play critical roles in all aspects of nucleic acid metabolism. We and others have investigated small molecule targeted inhibition of helicase function by compound screens using biochemical and cell-based approaches. Small molecule-induced trapping of DNA helicases may represent a generalized mechanism exemplified by certain topoisomerase and PARP inhibitors that exert poisonous consequences, especially in rapidly dividing cancer cells. Taking the lead from the broader field of DNA repair inhibitors and new information gleaned from structural and biochemical studies of DNA helicases, we predict that an emerging strategy to identify useful helicase-interacting compounds will be structure-based molecular docking interfaced with a computational approach. Potency, specificity, drug resistance, and bioavailability of helicase inhibitor drugs and targeting such compounds to subcellular compartments where the respective helicases operate must be addressed. Beyond cancer therapy, continued and new developments in this area may lead to the discovery of helicase-interacting compounds that chemically rescue clinically relevant helicase missense mutant proteins or activate the catalytic function of wild-type DNA helicases, which may have novel therapeutic application.
Collapse
Affiliation(s)
- Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD, United States
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD, United States
| |
Collapse
|
22
|
Recombinant yeast and human cells as screening tools to search for antibacterial agents targeting the transcription termination factor Rho. J Antibiot (Tokyo) 2018; 71:447-455. [PMID: 29371644 PMCID: PMC5869860 DOI: 10.1038/s41429-017-0007-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/24/2017] [Accepted: 10/31/2017] [Indexed: 12/24/2022]
Abstract
The alarming issue of antibiotic resistance expansion requires a continuous search for new and efficient antibacterial agents. Here we describe the design of new tools to screen for target-specific inhibitors of the bacterial Rho factor directly inside eukaryotic cells. Rho factor is a global regulator of gene expression which is essential to most bacteria, especially Gram-negative. Since Rho has no functional or structural homolog in eukaryotes, it constitutes a valuable and well known bacterial target as evidenced by its inhibition by the natural antibiotic, Bicyclomycin. Our screening tools are based on perturbation of mRNA processing and packaging reactions in the nucleus of eukaryotic cells by the RNA-dependent helicase/translocase activity of bacterial Rho factor leading to a growth defect phenotype. In this approach, any compound that impedes Rho activity should restore growth to yeast or human cells expressing Rho protein, providing valuable means to screen for target-specific antibacterial agents within the environment of a eukaryotic cell. The yeast tool expressing E. coli Rho factor was validated using Bicyclomycin as the control antibacterial agent. The validation of the screening tool was further extended with a stable human cell line expressing Rho factor conditionally. Finally, we show that Rho factors from different bacterial pathogens can also be designed as yeast-based screening tools which can reveal subtle variations in the functional features of the proteins.
Collapse
|
23
|
A Six‐Oxidase Cascade for Tandem C−H Bond Activation Revealed by Reconstitution of Bicyclomycin Biosynthesis. Angew Chem Int Ed Engl 2018; 57:719-723. [DOI: 10.1002/anie.201710529] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Indexed: 11/07/2022]
|
24
|
Patteson JB, Cai W, Johnson RA, Santa Maria KC, Li B. Identification of the Biosynthetic Pathway for the Antibiotic Bicyclomycin. Biochemistry 2018; 57:61-65. [PMID: 29053243 PMCID: PMC5760335 DOI: 10.1021/acs.biochem.7b00943] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Diketopiperazines (DKPs) make up a large group of natural products with diverse structures and biological activities. Bicyclomycin is a broad-spectrum DKP antibiotic with unique structure and function: it contains a highly oxidized bicyclic [4.2.2] ring and is the only known selective inhibitor of the bacterial transcription termination factor, Rho. Here, we identify the biosynthetic gene cluster for bicyclomycin containing six iron-dependent oxidases. We demonstrate that the DKP core is made by a tRNA-dependent cyclodipeptide synthase, and hydroxylations on two unactivated sp3 carbons are performed by two mononuclear iron, α-ketoglutarate-dependent hydroxylases. Using bioinformatics, we also identify a homologous gene cluster prevalent in a human pathogen Pseudomonas aeruginosa. We detect bicyclomycin by overexpressing this gene cluster and establish P. aeruginosa as a new producer of bicyclomycin. Our work uncovers the biosynthetic pathway for bicyclomycin and sheds light on the intriguing oxidation chemistry that converts a simple DKP into a powerful antibiotic.
Collapse
Affiliation(s)
| | | | - Rachel A. Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Kevin C. Santa Maria
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Bo Li
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, United States
| |
Collapse
|
25
|
Meng S, Han W, Zhao J, Jian X, Pan H, Tang G. A Six‐Oxidase Cascade for Tandem C−H Bond Activation Revealed by Reconstitution of Bicyclomycin Biosynthesis. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Song Meng
- State Key Laboratory of Bio-organic and Natural Products ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Wei Han
- State Key Laboratory of Bio-organic and Natural Products ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Juan Zhao
- State Key Laboratory of Bio-organic and Natural Products ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xiao‐Hong Jian
- State Key Laboratory of Bio-organic and Natural Products ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Hai‐Xue Pan
- State Key Laboratory of Bio-organic and Natural Products ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Gong‐Li Tang
- State Key Laboratory of Bio-organic and Natural Products ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
26
|
A Bacteriophage Capsid Protein Is an Inhibitor of a Conserved Transcription Terminator of Various Bacterial Pathogens. J Bacteriol 2017; 200:JB.00380-17. [PMID: 29038252 DOI: 10.1128/jb.00380-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/06/2017] [Indexed: 12/25/2022] Open
Abstract
Rho is a hexameric molecular motor that functions as a conserved transcription terminator in the majority of bacterial species and is a potential drug target. Psu is a bacteriophage P4 capsid protein that inhibits Escherichia coli Rho by obstructing its ATPase and translocase activities. In this study, we explored the anti-Rho activity of Psu for Rho proteins from different pathogens. Sequence alignment and homology modeling of Rho proteins from pathogenic bacteria revealed the conserved nature of the Psu-interacting regions in all these proteins. We chose Rho proteins from various pathogens, including Mycobacterium smegmatis, Mycobacterium bovis, Mycobacterium tuberculosis, Xanthomonas campestris, Xanthomonas oryzae, Corynebacterium glutamicum, Vibrio cholerae, Salmonella enterica, and Pseudomonas syringae The purified recombinant Rho proteins of these organisms showed variable rates of ATP hydrolysis on poly(rC) as the substrate and were capable of releasing RNA from the E. coli transcription elongation complexes. Psu was capable of inhibiting these two functions of all these Rho proteins. In vivo pulldown assays revealed direct binding of Psu with many of these Rho proteins. In vivo expression of psu induced killing of M. smegmatis, M. bovis, X. campestris, and E. coli expressing S. enterica Rho indicating Psu-induced inhibition of Rho proteins of these strains under physiological conditions. We propose that the "universal" inhibitory function of the Psu protein against the Rho proteins from both Gram-negative and Gram-positive bacteria could be useful for designing peptides with antimicrobial functions and that these peptides could contribute to synergistic antibiotic treatment of the pathogens by compromising the Rho functions.IMPORTANCE Bacteriophage-derived protein factors modulating different bacterial processes could be converted into unique antimicrobial agents. Bacteriophage P4 capsid protein Psu is an inhibitor of the E. coli transcription terminator Rho. Here we show that apart from antagonizing E. coli Rho, Psu is able to inhibit Rho proteins from various phylogenetically unrelated Gram-negative and Gram-positive pathogens. Upon binding to these Rho proteins, Psu inhibited them by affecting their ATPase and RNA release functions. The expression of Psu in vivo kills various pathogens, such as Mycobacterium and Xanthomonas species. Hence, Psu could be useful for identifying peptide sequences with anti-Rho activities and might constitute part of synergistic antibiotic treatment against pathogens.
Collapse
|
27
|
Abstract
At the end of the multistep transcription process, the elongating RNA polymerase (RNAP) is dislodged from the DNA template either at specific DNA sequences, called the terminators, or by a nascent RNA-dependent helicase, Rho. In Escherichia coli, about half of the transcription events are terminated by the Rho protein. Rho utilizes its RNA-dependent ATPase activities to translocate along the mRNA and eventually dislodges the RNAP via an unknown mechanism. The transcription elongation factor NusG facilitates this termination process by directly interacting with Rho. In this review, we discuss current models describing the mechanism of action of this hexameric transcription terminator, its regulation by different cis and trans factors, and the effects of the termination process on physiological processes in bacterial cells, particularly E. coli and Salmonella enterica Typhimurium.
Collapse
Affiliation(s)
- Pallabi Mitra
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad-500001, India; , , ,
| | - Gairika Ghosh
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad-500001, India; , , , .,Department of Graduate Studies, Manipal University, Manipal, Karnataka-576104, India
| | - Md Hafeezunnisa
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad-500001, India; , , , .,Department of Graduate Studies, Manipal University, Manipal, Karnataka-576104, India
| | - Ranjan Sen
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad-500001, India; , , ,
| |
Collapse
|
28
|
Abstract
RfaH activates horizontally acquired operons that encode lipopolysaccharide core components, pili, toxins, and capsules. Unlike its paralog NusG, which potentiates Rho-mediated silencing, RfaH strongly inhibits Rho. RfaH is recruited to its target operons via a network of contacts with an elongating RNA polymerase (RNAP) and a specific DNA element called ops to modify RNAP into a pause- and NusG-resistant state. rfaH null mutations confer hypersensitivity to antibiotics and detergents, altered susceptibility to bacteriophages, and defects in virulence. Here, we carried out a selection for suppressors that restore the ability of a ΔrfaH mutant Escherichia coli strain to grow in the presence of sodium dodecyl sulfate. We isolated rho, rpoC, and hns suppressor mutants with changes in regions previously shown to be important for their function. In addition, we identified mutants with changes in an unstructured region that connects the primary RNA-binding and helicase domains of Rho. The connector mutants display strong defects in vivo, consistent with their ability to compensate for the loss of RfaH, and act synergistically with bicyclomycin (BCM), which has been recently shown to inhibit Rho transformation into a translocation-competent state. We hypothesize that the flexible connector permits the reorientation of Rho domains and serves as a target for factors that control the motor function of Rho allosterically. Our results, together with the existing data, support a model in which the connector segment plays a hitherto overlooked role in the regulation of Rho-dependent termination.IMPORTANCE The transcription termination factor Rho silences foreign DNA, reduces antisense transcription, mediates surveillance of mRNA quality, and maintains genome integrity by resolving transcription-replication collisions and deleterious R loops. Upon binding to RNA, Rho undergoes a rate-limiting transition from an open "lock washer" state to a closed ring capable of processive translocation on, and eventually the release of, the nascent transcript. Recent studies revealed that Rho ligands, including its cofactor NusG and inhibitor bicyclomycin, control the ring dynamics allosterically. In this work, we used a genetic selection for suppressors of RfaH, a potent inhibitor of Rho, to isolate a new class of mutations in a flexible region that connects the primary RNA-binding and ATPase/translocase domains of Rho. We propose that the connector is essential for the modulation of Rho activity by different RNA sequences and accessory proteins.
Collapse
|
29
|
Molecular mechanisms of substrate-controlled ring dynamics and substepping in a nucleic acid-dependent hexameric motor. Proc Natl Acad Sci U S A 2016; 113:E7691-E7700. [PMID: 27856760 PMCID: PMC5137716 DOI: 10.1073/pnas.1616745113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ring-shaped hexameric helicases and translocases support essential DNA-, RNA-, and protein-dependent transactions in all cells and many viruses. How such systems coordinate ATPase activity between multiple subunits to power conformational changes that drive the engagement and movement of client substrates is a fundamental question. Using the Escherichia coli Rho transcription termination factor as a model system, we have used solution and crystallographic structural methods to delineate the range of conformational changes that accompany distinct substrate and nucleotide cofactor binding events. Small-angle X-ray scattering data show that Rho preferentially adopts an open-ring state in solution and that RNA and ATP are both required to cooperatively promote ring closure. Multiple closed-ring structures with different RNA substrates and nucleotide occupancies capture distinct catalytic intermediates accessed during translocation. Our data reveal how RNA-induced ring closure templates a sequential ATP-hydrolysis mechanism, provide a molecular rationale for how the Rho ATPase domains distinguishes between distinct RNA sequences, and establish structural snapshots of substepping events in a hexameric helicase/translocase.
Collapse
|