1
|
Arpin D, Palacios A, Basu K, Ortega J. The binding of RbgA to a critical 50S assembly intermediate facilitates YphC function in bacterial ribosomal assembly. Nucleic Acids Res 2024:gkae1197. [PMID: 39658043 DOI: 10.1093/nar/gkae1197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
The intricate process of 50S ribosomal subunit assembly in Bacillus subtilis involves multiple parallel pathways converging into a crucial intermediate known as the 45S particle. RbgA and YphC, play pivotal roles in completing the maturation of the functional sites in the 45S particle. In this work, we found that RbgA and YphC can independently bind the 45S particle with high affinity, but when RbgA binds first to the particle, it significantly increases the binding affinity of YphC. Using cryo-electron microscopy, we determined that the changes exerted by RbgA and YphC when binding independently closely resemble those observed when the two factors bind to the 45S particle simultaneously. However, the structural analysis revealed that RbgA binding causes a conformational change that uncovers the binding site for YphC, thus increasing its binding affinity. We concluded that the functional interplay between RbgA and YphC primarily revolves around one factor promoting the binding of the other, rather than the binding of the two factors inducing entirely new conformational changes compared with those induced by the factors individually. These results highlight the synergic mechanism between two essential assembly factors, underscoring the intricate mechanism bacteria use to maximize the efficiency of the ribosome assembly process.
Collapse
Affiliation(s)
- Dominic Arpin
- Department of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montreal, Quebec H3A 0C7, Canada
- Centre de Recherche en Biologie Structurale, McGill University, 3649 Promenade Sir William Osler, Montreal, QuebecH3G 0B1, Canada
| | - Armando Palacios
- Department of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montreal, Quebec H3A 0C7, Canada
- Centre de Recherche en Biologie Structurale, McGill University, 3649 Promenade Sir William Osler, Montreal, QuebecH3G 0B1, Canada
| | - Kaustuv Basu
- Department of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montreal, Quebec H3A 0C7, Canada
- Centre de Recherche en Biologie Structurale, McGill University, 3649 Promenade Sir William Osler, Montreal, QuebecH3G 0B1, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montreal, Quebec H3A 0C7, Canada
- Centre de Recherche en Biologie Structurale, McGill University, 3649 Promenade Sir William Osler, Montreal, QuebecH3G 0B1, Canada
| |
Collapse
|
2
|
Sanchez-Torres V, Kirigo J, Wood TK. Implications of lytic phage infections inducing persistence. Curr Opin Microbiol 2024; 79:102482. [PMID: 38714140 DOI: 10.1016/j.mib.2024.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 05/09/2024]
Abstract
Phage therapy holds much promise as an alternative to antibiotics for fighting infection. However, this approach is no panacea as recent results show that a small fraction of cells survives lytic phage infection due to both dormancy (i.e. formation of persister cells) and resistance (genetic change). In this brief review, we summarize evidence suggesting phages induce the persister state. Therefore, it is predicted that phage cocktails should be combined with antipersister compounds to eradicate bacterial infections.
Collapse
Affiliation(s)
- Viviana Sanchez-Torres
- Escuela de Ingeniería Química, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Joy Kirigo
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
3
|
Hao Y, Hulscher RM, Zinshteyn B, Woodson SA. Late consolidation of rRNA structure during co-transcriptional assembly in E. coli by time-resolved DMS footprinting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.574868. [PMID: 38260533 PMCID: PMC10802402 DOI: 10.1101/2024.01.10.574868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The production of new ribosomes requires proper folding of the rRNA and the addition of more than 50 ribosomal proteins. The structures of some assembly intermediates have been determined by cryo-electron microscopy, yet these structures do not provide information on the folding dynamics of the rRNA. To visualize the changes in rRNA structure during ribosome assembly in E. coli cells, transcripts were pulse-labeled with 4-thiouridine and the structure of newly made rRNA probed at various times by dimethyl sulfate modification and mutational profiling sequencing (4U-DMS-MaPseq). The in-cell DMS modification patterns revealed that many long-range rRNA tertiary interactions and protein binding sites through the 16S and 23S rRNA remain partially unfolded 1.5 min after transcription. By contrast, the active sites were continually shielded from DMS modification, suggesting that these critical regions are guarded by cellular factors throughout assembly. Later, bases near the peptidyl tRNA site exhibited specific rearrangements consistent with the binding and release of assembly factors. Time-dependent structure-probing in cells suggests that many tertiary interactions throughout the new ribosomal subunits remain mobile or unfolded until the late stages of subunit maturation.
Collapse
Affiliation(s)
- Yumeng Hao
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ryan M. Hulscher
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Boris Zinshteyn
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Sarah A. Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
4
|
Gruffaz C, Smirnov A. GTPase Era at the heart of ribosome assembly. Front Mol Biosci 2023; 10:1263433. [PMID: 37860580 PMCID: PMC10582724 DOI: 10.3389/fmolb.2023.1263433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Ribosome biogenesis is a key process in all organisms. It relies on coordinated work of multiple proteins and RNAs, including an array of assembly factors. Among them, the GTPase Era stands out as an especially deeply conserved protein, critically required for the assembly of bacterial-type ribosomes from Escherichia coli to humans. In this review, we bring together and critically analyze a wealth of phylogenetic, biochemical, structural, genetic and physiological data about this extensively studied but still insufficiently understood factor. We do so using a comparative and, wherever possible, synthetic approach, by confronting observations from diverse groups of bacteria and eukaryotic organelles (mitochondria and chloroplasts). The emerging consensus posits that Era intervenes relatively early in the small subunit biogenesis and is essential for the proper shaping of the platform which, in its turn, is a prerequisite for efficient translation. The timing of Era action on the ribosome is defined by its interactions with guanosine nucleotides [GTP, GDP, (p)ppGpp], ribosomal RNA, and likely other factors that trigger or delay its GTPase activity. As a critical nexus of the small subunit biogenesis, Era is subject to sophisticated regulatory mechanisms at the transcriptional, post-transcriptional, and post-translational levels. Failure of these mechanisms or a deficiency in Era function entail dramatic generalized consequences for the protein synthesis and far-reaching, pleiotropic effects on the organism physiology, such as the Perrault syndrome in humans.
Collapse
Affiliation(s)
- Christelle Gruffaz
- UMR7156- Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, Centre National de la Recherche Scientifique (CNRS), Strasbourg, France
| | - Alexandre Smirnov
- UMR7156- Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, Centre National de la Recherche Scientifique (CNRS), Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| |
Collapse
|
5
|
Fernández-García L, Tomás M, Wood TK. Ribosome inactivation by Escherichia coli GTPase RsgA inhibits T4 phage. Front Microbiol 2023; 14:1242163. [PMID: 37670987 PMCID: PMC10475562 DOI: 10.3389/fmicb.2023.1242163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction Bacteria must combat phages, and myriad bacterial anti-phage systems have been discovered that reduce host metabolism, for example, by depleting energetic compounds like ATP and NAD+. Hence, these systems indirectly inhibit protein production. Surprisingly, direct reduction of ribosome activity has not been demonstrated to thwart phage. Methods Here, by producing each of the 4,287 Escherichia coli proteins and selecting for anti-phage activity that leads to enhanced growth, we investigated the role of host proteins in phage inhibition. Results and discussion We identified that E. coli GTPase RsgA inhibits lytic phage T4 by inactivating ribosomes.
Collapse
Affiliation(s)
- Laura Fernández-García
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
- Microbiology Translational and Multidisciplinary (MicroTM)-Research Institute Biomedical A Coruña (INIBIC) and Microbiology Department of Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - María Tomás
- Microbiology Translational and Multidisciplinary (MicroTM)-Research Institute Biomedical A Coruña (INIBIC) and Microbiology Department of Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
6
|
Warner BR, Bundschuh R, Fredrick K. Roles of the leader-trailer helix and antitermination complex in biogenesis of the 30S ribosomal subunit. Nucleic Acids Res 2023; 51:5242-5254. [PMID: 37102690 PMCID: PMC10250234 DOI: 10.1093/nar/gkad316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
Ribosome biogenesis occurs co-transcriptionally and entails rRNA folding, ribosomal protein binding, rRNA processing, and rRNA modification. In most bacteria, the 16S, 23S and 5S rRNAs are co-transcribed, often with one or more tRNAs. Transcription involves a modified RNA polymerase, called the antitermination complex, which forms in response to cis-acting elements (boxB, boxA and boxC) in the nascent pre-rRNA. Sequences flanking the rRNAs are complementary and form long helices known as leader-trailer helices. Here, we employed an orthogonal translation system to interrogate the functional roles of these RNA elements in 30S subunit biogenesis in Escherichia coli. Mutations that disrupt the leader-trailer helix caused complete loss of translation activity, indicating that this helix is absolutely essential for active subunit formation in the cell. Mutations of boxA also reduced translation activity, but by only 2- to 3-fold, suggesting a smaller role for the antitermination complex. Similarly modest drops in activity were seen upon deletion of either or both of two leader helices, termed here hA and hB. Interestingly, subunits formed in the absence of these leader features exhibited defects in translational fidelity. These data suggest that the antitermination complex and precursor RNA elements help to ensure quality control during ribosome biogenesis.
Collapse
Affiliation(s)
- Benjamin R Warner
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ralf Bundschuh
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus,OH 43210, USA
| | - Kurt Fredrick
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Giudice E, Georgeault S, Lavigne R, Pineau C, Trautwetter A, Ermel G, Blanco C, Gillet R. Purification and Characterization of Authentic 30S Ribosomal Precursors Induced by Heat Shock. Int J Mol Sci 2023; 24:ijms24043491. [PMID: 36834906 PMCID: PMC9959188 DOI: 10.3390/ijms24043491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Ribosome biogenesis is a complex and multistep process that depends on various assembly factors. To understand this process and identify the ribosome assembly intermediates, most studies have set out to delete or deplete these assembly factors. Instead, we took advantage of the impact of heat stress (45 °C) on the late stages of the biogenesis of the 30S ribosomal subunit to explore authentic precursors. Under these conditions, reduced levels of the DnaK chaperone proteins devoted to ribosome assembly lead to the transient accumulation of 21S ribosomal particles, which are 30S precursors. We constructed strains with different affinity tags on one early and one late 30S ribosomal protein and purified the 21S particles that form under heat shock. A combination of relative quantification using mass spectrometry-based proteomics and cryo-electron microscopy (cryo-EM) was then used to determine their protein contents and structures.
Collapse
Affiliation(s)
- Emmanuel Giudice
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
| | - Sylvie Georgeault
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
| | - Régis Lavigne
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, 35000 Rennes, France
- Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, 35000 Rennes, France
| | - Charles Pineau
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, 35000 Rennes, France
- Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, 35000 Rennes, France
| | - Annie Trautwetter
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
| | - Gwennola Ermel
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
| | - Carlos Blanco
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
| | - Reynald Gillet
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
- Correspondence:
| |
Collapse
|
8
|
Naganathan A, Culver GM. Interdependency and Redundancy Add Complexity and Resilience to Biogenesis of Bacterial Ribosomes. Annu Rev Microbiol 2022; 76:193-210. [PMID: 35609945 DOI: 10.1146/annurev-micro-041020-121806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pace and efficiency of ribosomal subunit production directly impact the fitness of bacteria. Biogenesis demands more than just the union of ribosomal components, including RNA and proteins, to form this functional ribonucleoprotein particle. Extra-ribosomal protein factors play a fundamental role in the efficiency and efficacy of ribosomal subunit biogenesis. A paucity of data on intermediate steps, multiple and overlapping pathways, and the puzzling number of functions that extra-ribosomal proteins appear to play in vivo make unraveling the formation of this macromolecular assemblage difficult. In this review, we outline with examples the multinodal landscape of factor-assisted mechanisms that influence ribosome synthesis in bacteria. We discuss in detail late-stage events that mediate correct ribosome formation and the transition to translation initiation and thereby ensure high-fidelity protein synthesis.
Collapse
Affiliation(s)
- Anusha Naganathan
- Department of Biology, University of Rochester, Rochester, New York, USA; ,
| | - Gloria M Culver
- Department of Biology, University of Rochester, Rochester, New York, USA; ,
- Center for RNA Biology and Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York, USA
| |
Collapse
|
9
|
Rabuck-Gibbons JN, Lyumkis D, Williamson JR. Quantitative mining of compositional heterogeneity in cryo-EM datasets of ribosome assembly intermediates. Structure 2022; 30:498-509.e4. [PMID: 34990602 PMCID: PMC9891661 DOI: 10.1016/j.str.2021.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/02/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
Single-particle cryoelectron microscopy (cryo-EM) offers a unique opportunity to characterize macromolecular structural heterogeneity by virtue of its ability to place distinct particle populations into different groups through computational classification. However, there is a dearth of tools for surveying the heterogeneity landscape, quantitatively analyzing heterogeneous particle populations after classification, deciding how many unique classes are represented by the data, and accurately cross-comparing reconstructions. Here, we develop a workflow that contains discovery and analysis modules to quantitatively mine cryo-EM data for sets of structures with maximal diversity. This workflow was applied to a dataset of E. coli 50S ribosome assembly intermediates, which are characterized by significant structural heterogeneity. We identified more detailed branchpoints in the assembly process and characterized the interactions of an assembly factor with immature intermediates. While the tools described here were developed for ribosome assembly, they should be broadly applicable to the analysis of other heterogeneous cryo-EM datasets.
Collapse
Affiliation(s)
- Jessica N Rabuck-Gibbons
- Department of Integrative Structural and Computational Biology, Department of Chemistry, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dmitry Lyumkis
- Department of Integrative Structural and Computational Biology, Department of Chemistry, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Laboratory of Genetics and Helmsley Center for Genomic Medicine, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, Department of Chemistry, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
Maksimova E, Kravchenko O, Korepanov A, Stolboushkina E. Protein Assistants of Small Ribosomal Subunit Biogenesis in Bacteria. Microorganisms 2022; 10:microorganisms10040747. [PMID: 35456798 PMCID: PMC9032327 DOI: 10.3390/microorganisms10040747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023] Open
Abstract
Ribosome biogenesis is a fundamental and multistage process. The basic steps of ribosome assembly are the transcription, processing, folding, and modification of rRNA; the translation, folding, and modification of r-proteins; and consecutive binding of ribosomal proteins to rRNAs. Ribosome maturation is facilitated by biogenesis factors that include a broad spectrum of proteins: GTPases, RNA helicases, endonucleases, modification enzymes, molecular chaperones, etc. The ribosome assembly factors assist proper rRNA folding and protein–RNA interactions and may sense the checkpoints during the assembly to ensure correct order of this process. Inactivation of these factors is accompanied by severe growth phenotypes and accumulation of immature ribosomal subunits containing unprocessed rRNA, which reduces overall translation efficiency and causes translational errors. In this review, we focus on the structural and biochemical analysis of the 30S ribosomal subunit assembly factors RbfA, YjeQ (RsgA), Era, KsgA (RsmA), RimJ, RimM, RimP, and Hfq, which take part in the decoding-center folding.
Collapse
Affiliation(s)
| | | | - Alexey Korepanov
- Correspondence: (A.K.); (E.S.); Tel.: +7-925-7180670 (A.K.); +7-915-4791359 (E.S.)
| | - Elena Stolboushkina
- Correspondence: (A.K.); (E.S.); Tel.: +7-925-7180670 (A.K.); +7-915-4791359 (E.S.)
| |
Collapse
|
11
|
Lenarčič T, Niemann M, Ramrath DJF, Calderaro S, Flügel T, Saurer M, Leibundgut M, Boehringer D, Prange C, Horn EK, Schneider A, Ban N. Mitoribosomal small subunit maturation involves formation of initiation-like complexes. Proc Natl Acad Sci U S A 2022; 119:e2114710118. [PMID: 35042777 PMCID: PMC8784144 DOI: 10.1073/pnas.2114710118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial ribosomes (mitoribosomes) play a central role in synthesizing mitochondrial inner membrane proteins responsible for oxidative phosphorylation. Although mitoribosomes from different organisms exhibit considerable structural variations, recent insights into mitoribosome assembly suggest that mitoribosome maturation follows common principles and involves a number of conserved assembly factors. To investigate the steps involved in the assembly of the mitoribosomal small subunit (mt-SSU) we determined the cryoelectron microscopy structures of middle and late assembly intermediates of the Trypanosoma brucei mitochondrial small subunit (mt-SSU) at 3.6- and 3.7-Å resolution, respectively. We identified five additional assembly factors that together with the mitochondrial initiation factor 2 (mt-IF-2) specifically interact with functionally important regions of the rRNA, including the decoding center, thereby preventing premature mRNA or large subunit binding. Structural comparison of assembly intermediates with mature mt-SSU combined with RNAi experiments suggests a noncanonical role of mt-IF-2 and a stepwise assembly process, where modular exchange of ribosomal proteins and assembly factors together with mt-IF-2 ensure proper 9S rRNA folding and protein maturation during the final steps of assembly.
Collapse
Affiliation(s)
- Tea Lenarčič
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Moritz Niemann
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - David J F Ramrath
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Salvatore Calderaro
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Timo Flügel
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Martin Saurer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Céline Prange
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Elke K Horn
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - André Schneider
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland;
| |
Collapse
|
12
|
The Stringent Response Inhibits 70S Ribosome Formation in Staphylococcus aureus by Impeding GTPase-Ribosome Interactions. mBio 2021; 12:e0267921. [PMID: 34749534 PMCID: PMC8579695 DOI: 10.1128/mbio.02679-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
During nutrient limitation, bacteria produce the alarmones (p)ppGpp as effectors of a stress signaling network termed the stringent response. RsgA, RbgA, Era, and HflX are four ribosome-associated GTPases (RA-GTPases) that bind to (p)ppGpp in Staphylococcus aureus. These enzymes are cofactors in ribosome assembly, where they cycle between the ON (GTP-bound) and OFF (GDP-bound) ribosome-associated states. Entry into the OFF state occurs upon hydrolysis of GTP, with GTPase activity increasing substantially upon ribosome association. When bound to (p)ppGpp, GTPase activity is inhibited, reducing 70S ribosome assembly and growth. Here, we determine how (p)ppGpp impacts RA-GTPase-ribosome interactions. We show that RA-GTPases preferentially bind to 5′-diphosphate-containing nucleotides GDP and ppGpp over GTP, which is likely exploited as a regulatory mechanism within the cell to shut down ribosome biogenesis during stress. Stopped-flow fluorescence and association assays reveal that when bound to (p)ppGpp, the association of RA-GTPases to ribosomal subunits is destabilized, both in vitro and within bacterial cells. Consistently, structural analysis of the ppGpp-bound RA-GTPase RsgA reveals an OFF-state conformation similar to the GDP-bound state, with the G2/switch I loop adopting a conformation incompatible with ribosome association. Altogether, we highlight (p)ppGpp-mediated inhibition of RA-GTPases as a major mechanism of stringent response-mediated ribosome assembly and growth control.
Collapse
|
13
|
Schedlbauer A, Iturrioz I, Ochoa-Lizarralde B, Diercks T, López-Alonso JP, Lavin JL, Kaminishi T, Çapuni R, Dhimole N, de Astigarraga E, Gil-Carton D, Fucini P, Connell SR. A conserved rRNA switch is central to decoding site maturation on the small ribosomal subunit. SCIENCE ADVANCES 2021; 7:7/23/eabf7547. [PMID: 34088665 PMCID: PMC8177701 DOI: 10.1126/sciadv.abf7547] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/20/2021] [Indexed: 05/03/2023]
Abstract
While a structural description of the molecular mechanisms guiding ribosome assembly in eukaryotic systems is emerging, bacteria use an unrelated core set of assembly factors for which high-resolution structural information is still missing. To address this, we used single-particle cryo-electron microscopy to visualize the effects of bacterial ribosome assembly factors RimP, RbfA, RsmA, and RsgA on the conformational landscape of the 30S ribosomal subunit and obtained eight snapshots representing late steps in the folding of the decoding center. Analysis of these structures identifies a conserved secondary structure switch in the 16S ribosomal RNA central to decoding site maturation and suggests both a sequential order of action and molecular mechanisms for the assembly factors in coordinating and controlling this switch. Structural and mechanistic parallels between bacterial and eukaryotic systems indicate common folding features inherent to all ribosomes.
Collapse
Affiliation(s)
- Andreas Schedlbauer
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Idoia Iturrioz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Borja Ochoa-Lizarralde
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Tammo Diercks
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Jorge Pedro López-Alonso
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | | | - Tatsuya Kaminishi
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
- Department of Genetics, Graduate School of Medicine, Osaka University, Japan
| | - Retina Çapuni
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Neha Dhimole
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Elisa de Astigarraga
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - David Gil-Carton
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Paola Fucini
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Sean R Connell
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
14
|
Jahagirdar D, Jha V, Basu K, Gomez-Blanco J, Vargas J, Ortega J. Alternative conformations and motions adopted by 30S ribosomal subunits visualized by cryo-electron microscopy. RNA (NEW YORK, N.Y.) 2020; 26:2017-2030. [PMID: 32989043 PMCID: PMC7668263 DOI: 10.1261/rna.075846.120] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/22/2020] [Indexed: 05/06/2023]
Abstract
It is only after recent advances in cryo-electron microscopy that it is now possible to describe at high-resolution structures of large macromolecules that do not crystalize. Purified 30S subunits interconvert between an "active" and "inactive" conformation. The active conformation was described by crystallography in the early 2000s, but the structure of the inactive form at high resolution remains unsolved. Here we used cryo-electron microscopy to obtain the structure of the inactive conformation of the 30S subunit to 3.6 Å resolution and study its motions. In the inactive conformation, an alternative base-pairing of three nucleotides causes the region of helix 44, forming the decoding center to adopt an unlatched conformation and the 3' end of the 16S rRNA positions similarly to the mRNA during translation. Incubation of inactive 30S subunits at 42°C reverts these structural changes. The air-water interface to which ribosome subunits are exposed during sample preparation also peel off some ribosomal proteins. Extended exposures to low magnesium concentrations make the ribosomal particles more susceptible to the air-water interface causing the unfolding of large rRNA structural domains. Overall, this study provides new insights about the conformational space explored by the 30S ribosomal subunit when the ribosomal particles are free in solution.
Collapse
Affiliation(s)
- Dushyant Jahagirdar
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Vikash Jha
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Kaustuv Basu
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Josue Gomez-Blanco
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Javier Vargas
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| |
Collapse
|
15
|
Santorelli D, Rocchio S, Fata F, Silvestri I, Angelucci F, Imperi F, Marasco D, Diaferia C, Gigli L, Demitri N, Federici L, Di Matteo A, Travaglini-Allocatelli C. The folding and aggregation properties of a single KH-domain protein: Ribosome binding factor A (RbfA) from Pseudomonas aeruginosa. Biochim Biophys Acta Gen Subj 2020; 1865:129780. [PMID: 33157160 DOI: 10.1016/j.bbagen.2020.129780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/13/2020] [Accepted: 11/01/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Ribosome-binding factor A from the pathogenic bacterium Pseudomonas aeruginosa (PaRbfA) is a small ribosome assembly factor, composed by a single KH domain, involved in the maturation of the 30S subunit. These domains are characterized by the ability to bind RNA or ssDNA and are often located in proteins involved in a variety of cellular functions. However, although the ability of proteins to fold properly, to misfold or to aggregate is of paramount importance for their cellular functions, limited information is available on these dynamic properties in the case of KH domains. METHODS PaRbfA thermodynamic stability and folding mechanism: Far-UV CD and fluorescence spectroscopy, stopped-flow kinetics and chevron plot analysis, site-directed mutagenesis. Fibrils characterization: FT-IR spectroscopy, Thioflavin T fluorescence, Transmission Electron Microscopy (TEM) and X-ray fibrils diffraction. RESULTS Quantitative analysis of the (un)folding kinetics of PaRbfA show that, in vitro, the protein folds via a 3-states mechanism involving a transiently populated folding intermediate. We also provide experimental evidences that PaRbfA can form ordered fibrils endowed with cross-β structure even in mild conditions. CONCLUSION These results lead to the hypothesis that the folding intermediate of PaRbfA may expose (some of) the predicted amyloidogenic regions, which could act as aggregation nuclei in the fibrillogenesis. GENERAL SIGNIFICANCE The methodological approach presented herein could be readily adapted to verify the ability of other KH domain proteins to form cross-β structured fibrils and to transiently populate a folding intermediate.
Collapse
Affiliation(s)
- D Santorelli
- Department of Biochemical Sciences "A Rossi Fanelli" - Sapienza, University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - S Rocchio
- Department of Biochemical Sciences "A Rossi Fanelli" - Sapienza, University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biochemical Sciences "A Rossi Fanelli" - Sapienza, University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - F Fata
- Department of Health, Life and Environmental Sciences, University of L'Aquila, P.le Salvatore Tommasi 1, 76100 L'Aquila, Italy
| | - I Silvestri
- Department of Health, Life and Environmental Sciences, University of L'Aquila, P.le Salvatore Tommasi 1, 76100 L'Aquila, Italy
| | - F Angelucci
- Department of Health, Life and Environmental Sciences, University of L'Aquila, P.le Salvatore Tommasi 1, 76100 L'Aquila, Italy
| | - F Imperi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - D Marasco
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - C Diaferia
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - L Gigli
- Elettra - Sincrotrone Trieste, S.S. 14 Km 163.5, Area Science Park, 34149 Basovizza, Trieste, Italy
| | - N Demitri
- Elettra - Sincrotrone Trieste, S.S. 14 Km 163.5, Area Science Park, 34149 Basovizza, Trieste, Italy
| | - L Federici
- Department of Medical, Oral and Biotechnological Sciences and Center for Advanced Studies and Technology (CAST), University of Chieti "G. d'Annunzio", Via dei Vestini 31 - 66100, Chieti, Italy
| | - A Di Matteo
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biochemical Sciences "A Rossi Fanelli" - Sapienza, University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - C Travaglini-Allocatelli
- Department of Biochemical Sciences "A Rossi Fanelli" - Sapienza, University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
16
|
Sharma H, Anand B. Ribosome assembly defects subvert initiation Factor3 mediated scrutiny of bona fide start signal. Nucleic Acids Res 2020; 47:11368-11386. [PMID: 31586395 PMCID: PMC6868393 DOI: 10.1093/nar/gkz825] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/17/2019] [Accepted: 10/03/2019] [Indexed: 12/02/2022] Open
Abstract
In bacteria, the assembly factors tightly orchestrate the maturation of ribosomes whose competency for protein synthesis is validated by translation machinery at various stages of translation cycle. However, what transpires to the quality control measures when the ribosomes are produced with assembly defects remains enigmatic. In Escherichia coli, we show that 30S ribosomes that harbour assembly defects due to the lack of assembly factors such as RbfA and KsgA display suboptimal initiation codon recognition and bypass the critical codon–anticodon proofreading steps during translation initiation. These premature ribosomes on entering the translation cycle compromise the fidelity of decoding that gives rise to errors during initiation and elongation. We show that the assembly defects compromise the binding of initiation factor 3 (IF3), which in turn appears to license the rapid transition of 30S (pre) initiation complex to 70S initiation complex by tempering the validation of codon–anticodon interaction during translation initiation. This suggests that the premature ribosomes harbouring the assembly defects subvert the IF3 mediated proofreading of cognate initiation codon to enter the translation cycle.
Collapse
Affiliation(s)
- Himanshu Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - B Anand
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
17
|
Sharma IM, Woodson SA. RbfA and IF3 couple ribosome biogenesis and translation initiation to increase stress tolerance. Nucleic Acids Res 2020; 48:359-372. [PMID: 31728529 PMCID: PMC7145577 DOI: 10.1093/nar/gkz1065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/09/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Bacterial ribosome biogenesis and translation occur in the same cellular compartment. Therefore, a biochemical gate-keeping step is required to prevent error-prone immature ribosomes from engaging in protein synthesis. Here, we provide evidence for a previously unknown quality control mechanism in which the abundant ribosome assembly factor, RbfA, suppresses protein synthesis by immature Escherichia coli 30S subunits. After 30S maturation, RbfA is displaced by initiation factor 3 (IF3), which promotes translation initiation. Genetic interactions between RbfA and IF3 show that RbfA release by IF3 is important during logarithmic growth as well as during stress encountered during stationary phase, low nutrition, low temperature, and antibiotics. By gating the transition from 30S biogenesis to translation initiation, RbfA and IF3 maintain the fidelity of bacterial protein synthesis.
Collapse
Affiliation(s)
- Indra Mani Sharma
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Sarah A Woodson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
18
|
Shayan R, Rinaldi D, Larburu N, Plassart L, Balor S, Bouyssié D, Lebaron S, Marcoux J, Gleizes PE, Plisson-Chastang C. Good Vibrations: Structural Remodeling of Maturing Yeast Pre-40S Ribosomal Particles Followed by Cryo-Electron Microscopy. Molecules 2020; 25:molecules25051125. [PMID: 32138239 PMCID: PMC7179242 DOI: 10.3390/molecules25051125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/03/2022] Open
Abstract
Assembly of eukaryotic ribosomal subunits is a very complex and sequential process that starts in the nucleolus and finishes in the cytoplasm with the formation of functional ribosomes. Over the past few years, characterization of the many molecular events underlying eukaryotic ribosome biogenesis has been drastically improved by the “resolution revolution” of cryo-electron microscopy (cryo-EM). However, if very early maturation events have been well characterized for both yeast ribosomal subunits, little is known regarding the final maturation steps occurring to the small (40S) ribosomal subunit. To try to bridge this gap, we have used proteomics together with cryo-EM and single particle analysis to characterize yeast pre-40S particles containing the ribosome biogenesis factor Tsr1. Our analyses lead us to refine the timing of the early pre-40S particle maturation steps. Furthermore, we suggest that after an early and structurally stable stage, the beak and platform domains of pre-40S particles enter a “vibrating” or “wriggling” stage, that might be involved in the final maturation of 18S rRNA as well as the fitting of late ribosomal proteins into their mature position.
Collapse
Affiliation(s)
- Ramtin Shayan
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse CEDEX, France; (R.S.); (D.R.); (N.L.); (L.P.); (S.B.); (S.L.)
| | - Dana Rinaldi
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse CEDEX, France; (R.S.); (D.R.); (N.L.); (L.P.); (S.B.); (S.L.)
| | - Natacha Larburu
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse CEDEX, France; (R.S.); (D.R.); (N.L.); (L.P.); (S.B.); (S.L.)
| | - Laura Plassart
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse CEDEX, France; (R.S.); (D.R.); (N.L.); (L.P.); (S.B.); (S.L.)
| | - Stéphanie Balor
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse CEDEX, France; (R.S.); (D.R.); (N.L.); (L.P.); (S.B.); (S.L.)
| | - David Bouyssié
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31062 Toulouse CEDEX, France;
| | - Simon Lebaron
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse CEDEX, France; (R.S.); (D.R.); (N.L.); (L.P.); (S.B.); (S.L.)
| | - Julien Marcoux
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse CEDEX, France; (R.S.); (D.R.); (N.L.); (L.P.); (S.B.); (S.L.)
- Correspondence: (J.M.); (P.-E.G.); (C.P.-C.)
| | - Pierre-Emmanuel Gleizes
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse CEDEX, France; (R.S.); (D.R.); (N.L.); (L.P.); (S.B.); (S.L.)
- Correspondence: (J.M.); (P.-E.G.); (C.P.-C.)
| | - Célia Plisson-Chastang
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse CEDEX, France; (R.S.); (D.R.); (N.L.); (L.P.); (S.B.); (S.L.)
- Correspondence: (J.M.); (P.-E.G.); (C.P.-C.)
| |
Collapse
|
19
|
Razi A, Davis JH, Hao Y, Jahagirdar D, Thurlow B, Basu K, Jain N, Gomez-Blanco J, Britton RA, Vargas J, Guarné A, Woodson SA, Williamson JR, Ortega J. Role of Era in assembly and homeostasis of the ribosomal small subunit. Nucleic Acids Res 2019; 47:8301-8317. [PMID: 31265110 PMCID: PMC6736133 DOI: 10.1093/nar/gkz571] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/11/2019] [Accepted: 06/27/2019] [Indexed: 01/23/2023] Open
Abstract
Assembly factors provide speed and directionality to the maturation process of the 30S subunit in bacteria. To gain a more precise understanding of how these proteins mediate 30S maturation, it is important to expand on studies of 30S assembly intermediates purified from bacterial strains lacking particular maturation factors. To reveal the role of the essential protein Era in the assembly of the 30S ribosomal subunit, we analyzed assembly intermediates that accumulated in Era-depleted Escherichia coli cells using quantitative mass spectrometry, high resolution cryo-electron microscopy and in-cell footprinting. Our combined approach allowed for visualization of the small subunit as it assembled and revealed that with the exception of key helices in the platform domain, all other 16S rRNA domains fold even in the absence of Era. Notably, the maturing particles did not stall while waiting for the platform domain to mature and instead re-routed their folding pathway to enable concerted maturation of other structural motifs spanning multiple rRNA domains. We also found that binding of Era to the mature 30S subunit destabilized helix 44 and the decoding center preventing binding of YjeQ, another assembly factor. This work establishes Era’s role in ribosome assembly and suggests new roles in maintaining ribosome homeostasis.
Collapse
Affiliation(s)
- Aida Razi
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Joseph H Davis
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yumeng Hao
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Dushyant Jahagirdar
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Brett Thurlow
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S4K1, Canada
| | - Kaustuv Basu
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Nikhil Jain
- Department of Molecular Virology and Microbiology, Baylor College of Medicine,Houston, TX 77030, USA.,Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Josue Gomez-Blanco
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine,Houston, TX 77030, USA.,Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Javier Vargas
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Alba Guarné
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1 Canada
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - James R Williamson
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| |
Collapse
|
20
|
Bennison DJ, Irving SE, Corrigan RM. The Impact of the Stringent Response on TRAFAC GTPases and Prokaryotic Ribosome Assembly. Cells 2019; 8:cells8111313. [PMID: 31653044 PMCID: PMC6912228 DOI: 10.3390/cells8111313] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Many facets of ribosome biogenesis and function, including ribosomal RNA (rRNA) transcription, 70S assembly and protein translation, are negatively impacted upon induction of a nutrient stress-sensing signalling pathway termed the stringent response. This stress response is mediated by the alarmones guanosine tetra- and penta-phosphate ((p)ppGpp), the accumulation of which leads to a massive cellular response that slows growth and aids survival. The 70S bacterial ribosome is an intricate structure, with assembly both complex and highly modular. Presiding over the assembly process is a group of P-loop GTPases within the TRAFAC (Translation Factor Association) superclass that are crucial for correct positioning of both early and late stage ribosomal proteins (r-proteins) onto the rRNA. Often described as 'molecular switches', members of this GTPase superfamily readily bind and hydrolyse GTP to GDP in a cyclic manner that alters the propensity of the GTPase to carry out a function. TRAFAC GTPases are considered to act as checkpoints to ribosome assembly, involved in binding to immature sections in the GTP-bound state, preventing further r-protein association until maturation is complete. Here we review our current understanding of the impact of the stringent response and (p)ppGpp production on ribosome maturation in prokaryotic cells, focusing on the inhibition of (p)ppGpp on GTPase-mediated subunit assembly, but also touching upon the inhibition of rRNA transcription and protein translation.
Collapse
Affiliation(s)
- Daniel J Bennison
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| | - Sophie E Irving
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| | - Rebecca M Corrigan
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
21
|
Seffouh A, Jain N, Jahagirdar D, Basu K, Razi A, Ni X, Guarné A, Britton RA, Ortega J. Structural consequences of the interaction of RbgA with a 50S ribosomal subunit assembly intermediate. Nucleic Acids Res 2019; 47:10414-10425. [PMID: 31665744 PMCID: PMC6821245 DOI: 10.1093/nar/gkz770] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
Bacteria harbor a number GTPases that function in the assembly of the ribosome and are essential for growth. RbgA is one of these GTPases and is required for the assembly of the 50S subunit in most bacteria. Homologs of this protein are also implicated in the assembly of the large subunit of the mitochondrial and eukaryotic ribosome. We present here the cryo-electron microscopy structure of RbgA bound to a Bacillus subtilis 50S subunit assembly intermediate (45SRbgA particle) that accumulates in cells upon RbgA depletion. Binding of RbgA at the P site of the immature particle stabilizes functionally important rRNA helices in the A and P-sites, prior to the completion of the maturation process of the subunit. The structure also reveals the location of the highly conserved N-terminal end of RbgA containing the catalytic residue Histidine 9. The derived model supports a mechanism of GTP hydrolysis, and it shows that upon interaction of RbgA with the 45SRbgA particle, Histidine 9 positions itself near the nucleotide potentially acting as the catalytic residue with minimal rearrangements. This structure represents the first visualization of the conformational changes induced by an assembly factor in a bacterial subunit intermediate.
Collapse
Affiliation(s)
- Amal Seffouh
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Nikhil Jain
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dushyant Jahagirdar
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Kaustuv Basu
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Aida Razi
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Xiaodan Ni
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Alba Guarné
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| |
Collapse
|
22
|
Rocchio S, Santorelli D, Rinaldo S, Franceschini M, Malatesta F, Imperi F, Federici L, Travaglini-Allocatelli C, Di Matteo A. Structural and functional investigation of the Small Ribosomal Subunit Biogenesis GTPase A (RsgA) from Pseudomonas aeruginosa. FEBS J 2019; 286:4245-4260. [PMID: 31199072 DOI: 10.1111/febs.14959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/03/2019] [Accepted: 06/11/2019] [Indexed: 01/16/2023]
Abstract
The Small Ribosomal Subunit Biogenesis GTPase A (RsgA) is a bacterial assembly factor involved in the late stages of the 30S subunit maturation. It is a multidomain GTPase in which the central circularly permutated GTPase domain is flanked by an OB domain and a Zn-binding domain. All three domains participate in the interaction with the 30S particle thus ensuring an efficient coupling between catalytic activity and biological function. In vivo studies suggested the relevance of rsgA in bacterial growth and cellular viability, but other pleiotropic roles of RsgA are also emerging. Here, we report the 3D structure of RsgA from Pseudomonas aeruginosa (PaRsgA) in the GDP-bound form. We also report a biophysical and biochemical characterization of the protein in both the GDP-bound and its nucleotide-free form. In particular, we report a kinetic analysis of the RsgA binding to GTP and GDP. We found that PaRsgA is able to bind both nucleotides with submicromolar affinity. The higher affinity towards GDP (KD = 0.011 μm) with respect to GTP (KD = 0.16 μm) is mainly ascribed to a smaller GDP dissociation rate. Our results confirm that PaRsgA, like most other GTPases, has a weak intrinsic enzymatic activity (kCAT = 0.058 min-1 ). Finally, the biological role of RsgA in P. aeruginosa was investigated, allowing us to conclude that rsgA is dispensable for P. aeruginosa growth but important for drug resistance and virulence in an animal infection model. DATABASES: Coordinates and structure factors for the protein structure described in this manuscript have been deposited in the Protein Data Bank (https://www.rcsb.org) with the accession code 6H4D.
Collapse
Affiliation(s)
- Serena Rocchio
- Dipartimento di Scienze Biochimiche, "A Rossi Fanelli"- Sapienza Università di Roma, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| | - Daniele Santorelli
- Dipartimento di Scienze Biochimiche, "A Rossi Fanelli"- Sapienza Università di Roma, Italy
| | - Serena Rinaldo
- Dipartimento di Scienze Biochimiche, "A Rossi Fanelli"- Sapienza Università di Roma, Italy
| | - Mimma Franceschini
- Ce.S.I.-MeT Centro di Scienze dell'Invecchiamento e Medicina Traslazionale, Università "G. d'Annunzio" di Chieti, Italy.,Dipartimento di Scienze Mediche, Orali e Biotecnologiche - Università "G. d'Annunzio" di Chieti, Italy
| | - Francesco Malatesta
- Dipartimento di Scienze Biochimiche, "A Rossi Fanelli"- Sapienza Università di Roma, Italy
| | - Francesco Imperi
- Dipartimento di Scienze, Università Roma Tre, Italy.,Dipartimento di Biologia e Biotecnologie Charles Darwin, Laboratorio affiliato all'Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| | - Luca Federici
- Ce.S.I.-MeT Centro di Scienze dell'Invecchiamento e Medicina Traslazionale, Università "G. d'Annunzio" di Chieti, Italy.,Dipartimento di Scienze Mediche, Orali e Biotecnologiche - Università "G. d'Annunzio" di Chieti, Italy
| | | | - Adele Di Matteo
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| |
Collapse
|
23
|
Dao EH, Poitevin F, Sierra RG, Gati C, Rao Y, Ciftci HI, Akşit F, McGurk A, Obrinski T, Mgbam P, Hayes B, De Lichtenberg C, Pardo-Avila F, Corsepius N, Zhang L, Seaberg MH, Hunter MS, Liang M, Koglin JE, Wakatsuki S, Demirci H. Structure of the 30S ribosomal decoding complex at ambient temperature. RNA (NEW YORK, N.Y.) 2018; 24:1667-1676. [PMID: 30139800 PMCID: PMC6239188 DOI: 10.1261/rna.067660.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/14/2018] [Indexed: 05/29/2023]
Abstract
The ribosome translates nucleotide sequences of messenger RNA to proteins through selection of cognate transfer RNA according to the genetic code. To date, structural studies of ribosomal decoding complexes yielding high-resolution data have predominantly relied on experiments performed at cryogenic temperatures. New light sources like the X-ray free electron laser (XFEL) have enabled data collection from macromolecular crystals at ambient temperature. Here, we report an X-ray crystal structure of the Thermus thermophilus 30S ribosomal subunit decoding complex to 3.45 Å resolution using data obtained at ambient temperature at the Linac Coherent Light Source (LCLS). We find that this ambient-temperature structure is largely consistent with existing cryogenic-temperature crystal structures, with key residues of the decoding complex exhibiting similar conformations, including adenosine residues 1492 and 1493. Minor variations were observed, namely an alternate conformation of cytosine 1397 near the mRNA channel and the A-site. Our serial crystallography experiment illustrates the amenability of ribosomal microcrystals to routine structural studies at ambient temperature, thus overcoming a long-standing experimental limitation to structural studies of RNA and RNA-protein complexes at near-physiological temperatures.
Collapse
Affiliation(s)
- E Han Dao
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Frédéric Poitevin
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, California 94025, USA
- Department of Structural Biology, Stanford University, Palo Alto, California 94305, USA
| | - Raymond G Sierra
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, California 94025, USA
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Cornelius Gati
- Department of Structural Biology, Stanford University, Palo Alto, California 94305, USA
- Biosciences Division, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Yashas Rao
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, California 94025, USA
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Halil Ibrahim Ciftci
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Fulya Akşit
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Alex McGurk
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Trevor Obrinski
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Paul Mgbam
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Brandon Hayes
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Casper De Lichtenberg
- Institutionen för Kemi, Kemiskt Biologiskt Centrum, Umeå Universitet, SE-901 87 Umeå, Sweden
| | - Fatima Pardo-Avila
- Department of Structural Biology, Stanford University, Palo Alto, California 94305, USA
| | - Nicholas Corsepius
- Department of Structural Biology, Stanford University, Palo Alto, California 94305, USA
| | - Lindsey Zhang
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Matthew H Seaberg
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Mengling Liang
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Jason E Koglin
- Linac Coherent Light Source, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Soichi Wakatsuki
- Department of Structural Biology, Stanford University, Palo Alto, California 94305, USA
- Biosciences Division, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Hasan Demirci
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, California 94025, USA
- Department of Structural Biology, Stanford University, Palo Alto, California 94305, USA
- Biosciences Division, SLAC National Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
24
|
Sanchez-Garcia R, Segura J, Maluenda D, Carazo JM, Sorzano COS. Deep Consensus, a deep learning-based approach for particle pruning in cryo-electron microscopy. IUCRJ 2018; 5:854-865. [PMID: 30443369 PMCID: PMC6211526 DOI: 10.1107/s2052252518014392] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/11/2018] [Indexed: 05/24/2023]
Abstract
Single-particle cryo-electron microscopy (cryo-EM) has recently become a mainstream technique for the structural determination of macromolecules. Typical cryo-EM workflows collect hundreds of thousands of single-particle projections from thousands of micrographs using particle-picking algorithms. However, the number of false positives selected by these algorithms is large, so that a number of different 'cleaning steps' are necessary to decrease the false-positive ratio. Most commonly employed techniques for the pruning of false-positive particles are time-consuming and require user intervention. In order to overcome these limitations, a deep learning-based algorithm named Deep Consensus is presented in this work. Deep Consensus works by computing a smart consensus over the output of different particle-picking algorithms, resulting in a set of particles with a lower false-positive ratio than the initial set obtained by the pickers. Deep Consensus is based on a deep convolutional neural network that is trained on a semi-automatically generated data set. The performance of Deep Consensus has been assessed on two well known experimental data sets, virtually eliminating user intervention for pruning, and enhances the reproducibility and objectivity of the whole process while achieving precision and recall figures above 90%.
Collapse
Affiliation(s)
- Ruben Sanchez-Garcia
- Biocomputing Unit, Spanish National Center for Biotechnology, Calle Darwin 3, 28049 Madrid, Spain
| | - Joan Segura
- Biocomputing Unit, Spanish National Center for Biotechnology, Calle Darwin 3, 28049 Madrid, Spain
| | - David Maluenda
- Biocomputing Unit, Spanish National Center for Biotechnology, Calle Darwin 3, 28049 Madrid, Spain
| | - Jose Maria Carazo
- Biocomputing Unit, Spanish National Center for Biotechnology, Calle Darwin 3, 28049 Madrid, Spain
| | - Carlos Oscar S. Sorzano
- Biocomputing Unit, Spanish National Center for Biotechnology, Calle Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
25
|
Complementary uses of small angle X-ray scattering and X-ray crystallography. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1623-1630. [PMID: 28743534 DOI: 10.1016/j.bbapap.2017.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/10/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022]
Abstract
Most proteins function within networks and, therefore, protein interactions are central to protein function. Although stable macromolecular machines have been extensively studied, dynamic protein interactions remain poorly understood. Small-angle X-ray scattering probes the size, shape and dynamics of proteins in solution at low resolution and can be used to study samples in a large range of molecular weights. Therefore, it has emerged as a powerful technique to study the structure and dynamics of biomolecular systems and bridge fragmented information obtained using high-resolution techniques. Here we review how small-angle X-ray scattering can be combined with other structural biology techniques to study protein dynamics. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
|