1
|
Mak KM, Shin DW. Hepatic sinusoids versus central veins: Structures, markers, angiocrines, and roles in liver regeneration and homeostasis. Anat Rec (Hoboken) 2020; 304:1661-1691. [PMID: 33135318 DOI: 10.1002/ar.24560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 01/20/2023]
Abstract
The blood circulates through the hepatic sinusoids delivering nutrients and oxygen to the liver parenchyma and drains into the hepatic central vein, yet the structures and phenotypes of these vessels are distinctively different. Sinusoidal endothelial cells are uniquely fenestrated, lack basal lamina and possess organelles involved in endocytosis, pinocytosis, degradation, synthesis and secretion. Hepatic central veins are nonfenestrated but are also active in synthesis and secretion. Endothelial cells of sinusoids and central veins secrete angiocrines that play respective roles in hepatic regeneration and metabolic homeostasis. The list of markers for identifying sinusoidal endothelial cells is long and their terminologies are complex. Further, their uses vary in different investigations and, in some instances, could be confusing. Central vein markers are fewer but more distinctive. Here we analyze and categorize the molecular pathways/modules associated with the sinusoid-mediated liver regeneration in response to partial hepatectomy and chemical-induced acute or chronic injury. Similarly, we highlight the findings that central vein-derived angiocrines interact with Wnt/β-catenin in perivenous hepatocytes to direct gene expression and maintain pericentral metabolic zonation. The proposal that perivenous hepatocytes behave as stem/progenitor cells to provoke hepatic homeostatic cell renewal is reevaluated and newer concepts of broad zonal distribution of hepatocyte proliferation in liver homeostasis and regeneration are updated. Thus, this review integrates the structures, biology and physiology of liver sinusoids and central veins in mediating hepatic regeneration and metabolic homeostasis.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Da Wi Shin
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
2
|
Pek NMQ, Liu KJ, Nichane M, Ang LT. Controversies Surrounding the Origin of Hepatocytes in Adult Livers and the in Vitro Generation or Propagation of Hepatocytes. Cell Mol Gastroenterol Hepatol 2020; 11:273-290. [PMID: 32992051 PMCID: PMC7695885 DOI: 10.1016/j.jcmgh.2020.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022]
Abstract
Epithelial cells in the liver (known as hepatocytes) are high-performance engines of myriad metabolic functions and versatile responders to liver injury. As hepatocytes metabolize amino acids, alcohol, drugs, and other substrates, they produce and are exposed to a milieu of toxins and harmful byproducts that can damage themselves. In the healthy liver, hepatocytes generally divide slowly. However, after liver injury, hepatocytes can ramp up proliferation to regenerate the liver. Yet, on extensive injury, regeneration falters, and liver failure ensues. It is therefore critical to understand the mechanisms underlying liver regeneration and, in particular, which liver cells are mobilized during liver maintenance and repair. Controversies continue to surround the very existence of hepatic stem cells and, if they exist, their spatial location, multipotency, degree of contribution to regeneration, ploidy, and susceptibility to tumorigenesis. This review discusses these controversies. Finally, we highlight how insights into hepatocyte regeneration and biology in vivo can inform in vitro studies to propagate primary hepatocytes with liver regeneration-associated signals and to generate hepatocytes de novo from pluripotent stem cells.
Collapse
Affiliation(s)
| | | | | | - Lay Teng Ang
- Correspondence Address correspondence to: Lay Teng Ang, PhD, Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, California 94305.
| |
Collapse
|
3
|
Reg3α and Reg3β Expressions Followed by JAK2/STAT3 Activation Play a Pivotal Role in the Acceleration of Liver Hypertrophy in a Rat ALPPS Model. Int J Mol Sci 2020; 21:ijms21114077. [PMID: 32517345 PMCID: PMC7312405 DOI: 10.3390/ijms21114077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023] Open
Abstract
To explore the underlying mechanism of rapid liver hypertrophy by liver partition in associating liver partition and portal vein ligation for staged hepatectomy (ALPPS), liver partition at different sites was investigated. Increased inflammatory cytokines owing to the liver partition have been reportedly responsible. If this were true, rapid liver hypertrophy should be achieved regardless of where the liver was split. A male Sprague-Dawley rat model was created, in which a liver split was placed inside the portal vein ligated lobe (PiLL), in addition to the ALPPS and portal vein ligation (PVL) models. Liver regeneration rate, inflammatory cytokine levels, activation status of the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway and expressions of regenerating islet-derived (Reg)3α and Reg3β were investigated. The liver regeneration rate was significantly higher in the ALPPS group than in the PiLL group, whereas inflammatory cytokine levels were nearly equal. Additional volume increase in ALPPS group over PVL and PiLL groups was JAK2/STAT3-dependent. Reg3α and Reg3β expressions were observed only in the ALPPS group. An increase in inflammatory cytokines was not enough to describe the mechanism of rapid liver hypertrophy in ALPPS. Expressions of Reg3α and Reg3β could play an important role in conjunction with an activation of the JAK2/STAT3 pathway.
Collapse
|
4
|
Mak KM, Png CYM. The Hepatic Central Vein: Structure, Fibrosis, and Role in Liver Biology. Anat Rec (Hoboken) 2019; 303:1747-1767. [PMID: 31581357 DOI: 10.1002/ar.24273] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022]
Abstract
The hepatic central vein is a primary source of Wnt2, Wnt9b, and R-spondin3. These angiocrines activate ß-catenin signaling to regulate hepatic metabolic zonation and perivenous gene expression in mice. Little is known about the central vein ultrastructure. Here, we describe the morphological-functional correlates of the central vein and its draining and branching patterns. Central vein fibrosis occurs in liver disease and is often accompanied by perivenous perisinusoidal fibrosis, which may affect perivenous gene expression. We review the biological properties of perivenous hepatocytes and glutamine synthetase that serve as a biomarker of perivenous hepatocytes. Glutamine synthetase and P4502E1 are indicators of ß-catenin activity in centrilobular liver injury and regeneration. The Wnt/ß-catenin pathway is the master regulator of hepatic metabolic zonation and perivenous gene expression and is modulated by the R-spondin-LGR4/5-ZNRF3/RNF43 module. We examined the structures of the molecules of these pathways and their involvements in liver biology. Central vein-derived Wnts and R-spondin3 participate in the cellular-molecular circuitry of the Wnt/ß-catenin and R-spondin-LGR4/5-ZNRF3/RNF43 module. The transport and secretion of lipidated Wnts in Wnt-producing cells require Wntless protein. Secreted Wnts are carried on exosomes in the extracellular matrix to responder cells. The modes of release of Wnts and R-spondin3 from central veins and their transit in the venular wall toward perivenous hepatocytes are unknown. We hypothesize that central vein fibrosis may impact perivenous gene expression. The proposal that the central vein constitutes an anatomical niche of perivenous stem cells that subserve homeostatic hepatic renewal still needs studies using additional mouse models for validation. Anat Rec, 2019. © 2019 American Association for Anatomy Anat Rec, 303:1747-1767, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - C Y Maximilian Png
- Division of Vascular Surgery, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
5
|
Ogrodnik M, Salmonowicz H, Jurk D, Passos JF. Expansion and Cell-Cycle Arrest: Common Denominators of Cellular Senescence. Trends Biochem Sci 2019; 44:996-1008. [PMID: 31345557 DOI: 10.1016/j.tibs.2019.06.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/21/2022]
Abstract
Cellular senescence is a major driver of age-related diseases, and senotherapies are being tested in clinical trials. Despite its popularity, cellular senescence is weakly defined and is frequently referred to as irreversible cell-cycle arrest. In this article we hypothesize that cellular senescence is a phenotype that results from the coordination of two processes: cell expansion and cell-cycle arrest. We provide evidence for the compatibility of the proposed model with recent findings showing senescence in postmitotic tissues, wound healing, obesity, and development. We believe our model also explains why some characteristics of senescence can be found in non-senescent cells. Finally, we propose new avenues for research from our model.
Collapse
Affiliation(s)
- Mikolaj Ogrodnik
- Department of Physiology and Biochemical Engineering, Mayo Clinic, Rochester, MN, USA.
| | - Hanna Salmonowicz
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Diana Jurk
- Department of Physiology and Biochemical Engineering, Mayo Clinic, Rochester, MN, USA; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - João F Passos
- Department of Physiology and Biochemical Engineering, Mayo Clinic, Rochester, MN, USA; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
6
|
Tsai JM, Weissman IL, Rinkevich Y. Partial Lobular Hepatectomy: A Surgical Model for Morphologic Liver Regeneration. J Vis Exp 2018. [PMID: 29912198 DOI: 10.3791/57302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Morphological organ regeneration following acute tissue loss is common among lower vertebrates, but is rarely observed in mammalian postnatal life. Adult liver regeneration after 70% partial hepatectomy results in hepatocyte hypertrophy with some replication in remaining lobes with restoration of metabolic activity, but with permanent loss of the injured lobe's morphology and architecture. Here, we detail a new surgical method in the neonate that leaves a physiologic environment conducive to regeneration. This model involves amputation of the left lobe apex and a subsequent conservative management regimen, and lacks the necessity for ligation of major liver vessels or chemical injury, leaving a physiologic environment where regeneration may occur. We extend this protocol to amputations on juvenile (P7-14) mice, during which the injured liver transitions from organ regeneration to compensatory growth by hypertrophy. The presented, brief 30 min protocol provides a framework to study the mechanisms of regeneration, its age-associated decline in mammals, and the characterization of putative hepatic stem or progenitors.
Collapse
Affiliation(s)
- Jonathan M Tsai
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine; Department of Developmental Biology, Stanford University School of Medicine
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine; Department of Developmental Biology, Stanford University School of Medicine
| | - Yuval Rinkevich
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München; German Center for Lung Research (DZL);
| |
Collapse
|
7
|
Comparative regenerative mechanisms across different mammalian tissues. NPJ Regen Med 2018; 3:6. [PMID: 29507774 PMCID: PMC5824955 DOI: 10.1038/s41536-018-0044-5] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 02/08/2023] Open
Abstract
Stimulating regeneration of complex tissues and organs after injury to effect complete structural and functional repair, is an attractive therapeutic option that would revolutionize clinical medicine. Compared to many metazoan phyla that show extraordinary regenerative capacity, which in some instances persists throughout life, regeneration in mammalians, particularly humans, is limited or absent. Here we consider recent insights in the elucidation of molecular mechanisms of regeneration that have come from studies of tissue homeostasis and injury repair in mammalian tissues that span the spectrum from little or no self-renewal, to those showing active cell turnover throughout life. These studies highlight the diversity of factors that constrain regeneration, including immune responses, extracellular matrix composition, age, injury type, physiological adaptation, and angiogenic and neurogenic capacity. Despite these constraints, much progress has been made in elucidating key molecular mechanisms that may provide therapeutic targets for the development of future regenerative therapies, as well as previously unidentified developmental paradigms and windows-of-opportunity for improved regenerative repair.
Collapse
|
8
|
Tan AKY, Loh KM, Ang LT. Evaluating the regenerative potential and functionality of human liver cells in mice. Differentiation 2017; 98:25-34. [PMID: 29078082 DOI: 10.1016/j.diff.2017.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 02/07/2023]
Abstract
Liver diseases afflict millions of patients worldwide. Currently, the only long-term treatment for liver failure is the transplantation of a new liver. However, intravenously transplanting a suspension of human hepatocytes might be a less-invasive approach to partially reconstitute lost liver functions in human patients as evinced by promising outcomes in clinical trials. The purpose of this essay is to emphasize outstanding questions that continue to surround hepatocyte transplantation. While adult primary human hepatocytes are the gold standard for transplantation, hepatocytes are heterogeneous. Whether all hepatocytes engraft equally and what specifically defines an "engraftable" hepatocyte capable of long-term liver reconstitution remains unclear. To this end, mouse models of liver injury enable the evaluation of human hepatocytes and their behavior upon transplantation into a complex injured liver environment. While mouse models may not be fully representative of the injured human liver and human hepatocytes tend to engraft mice less efficiently than mouse hepatocytes, valuable lessons have nonetheless been learned from transplanting human hepatocytes into mouse models. With an eye to the future, it will be crucial to eventually detail the optimal biological source (whether in vivo- or in vitro-derived) and presumptive heterogeneity of human hepatocytes and to understand the mechanisms through which they engraft and regenerate liver tissue in vivo.
Collapse
Affiliation(s)
- Antson Kiat Yee Tan
- Stem Cell&Developmental Biology Group, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore
| | - Kyle M Loh
- Stanford Institute for Stem Cell Biology and Regenerative Medicine and the Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lay Teng Ang
- Stem Cell&Developmental Biology Group, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore.
| |
Collapse
|