1
|
An T, Tan Q, Jiang L, Liu L, Jiang X, Liu L, Chang X, Tian X, Deng Z, Gao S, Wang L, Chen S. A DNA phosphorothioation pathway via adenylated intermediate modulates Tdp machinery. Nat Chem Biol 2025:10.1038/s41589-024-01832-w. [PMID: 39820821 DOI: 10.1038/s41589-024-01832-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025]
Abstract
In prokaryotes, the non-bridging oxygen in the DNA sugar-phosphate backbone can be enzymatically replaced by a sulfur atom, resulting in phosphorothioate (PT) modification. However, the mechanism underlying the oxygen-to-sulfur substitution remains enigmatic. In this study, we discovered a hypercompact DNA phosphorothioation system, TdpABC, in extreme thermophiles. This DNA sulfuration process occurs through two sequential steps: an initial activation step by ATP to form an adenylated intermediate, followed by a substitution step where the adenyl group is replaced with a sulfur atom. Together with the TdpA-TdpB, the TdpABC system provides anti-phage defense by degrading PT-free phage DNA. Cryogenic electron microscopy structural analysis revealed that the TdpA hexamer binds one strand of encircled duplex DNA via hydrogen bonds arranged in a spiral staircase conformation. Nevertheless, the TdpAB-DNA interaction was sensitive to the hydrophobicity of the PT sulfur. PTs inhibit ATP-driven translocation and nuclease activity of TdpAB on self-DNA, thereby preventing autoimmunity.
Collapse
Affiliation(s)
- Tianchen An
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, China
- Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Shenzhen University Medical School, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qian Tan
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, China
- Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Shenzhen University Medical School, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lixu Jiang
- Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Shenzhen University Medical School, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Li Liu
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Shenzhen University Medical School, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xing Jiang
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Shenzhen University Medical School, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Liying Liu
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xiaofei Chang
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xihao Tian
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Zixin Deng
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Shuai Gao
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Lianrong Wang
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, China.
| | - Shi Chen
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
- Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Shenzhen University Medical School, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| |
Collapse
|
2
|
Tang Y, Wu D, Zhang Y, Liu X, Chu H, Tan Q, Jiang L, Chen S, Wu G, Wang L. Molecular basis of the phosphorothioation-sensing antiphage defense system IscS-DndBCDE-DndI. Nucleic Acids Res 2024; 52:13594-13604. [PMID: 39611571 DOI: 10.1093/nar/gkae1133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024] Open
Abstract
Phosphorothioation serves as a DNA backbone modification mechanism, wherein a sulfur atom substitutes the nonbridging oxygen atom within the phosphodiester, facilitated by the gene products of dndABCDE or sspABCD. The combination of dndABCDE with dndFGH forms a bona fide defense system, where the DndFGH protein complex exhibits DNA nickase and DNA translocase activities to prevent phage invasion. In this study, we identified that dndI, co-transcribed with dndFGH, can independently couple with iscS-dndBCDE as an anti-phage defense system. Moreover, we resolved the crystal structure of DndI from Salmonella at a resolution of 3.10 Å. We discovered that its residue Y25, residing within a hydrophobic region of DndI, is involved in phosphorothioate (PT) sensing. Upon sensing PT modifications at 5'-GPSAAC-3'/5'-GPSTTC-3', the ATPase activity of DndI is stimulated, which subsequently triggers a conformational transition, facilitating the dissociation of DndI from self-DNA, thereby allowing DndI to avoid cleaving self-DNA while restricting PT-deficient phage DNA. This research broadens the knowledge of the mechanistic diversity underlying PT-based defense systems and highlights their complexity in the course of evolution.
Collapse
Affiliation(s)
- Yaqian Tang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Yitian Road 7019, Futian District, Shenzhen 518026, China
| | - Dan Wu
- Senior Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Fuxing road 28, Haidian District, Beijing 100853, China
| | - Yueying Zhang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Xuan Liu
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Hui Chu
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Qian Tan
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Lixu Jiang
- Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen University Medical School, The First Affiliated Hospital of Shenzhen University, Guanguang Road 1301, Longhua District, Shenzhen 518035, China
| | - Shi Chen
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
- Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen University Medical School, The First Affiliated Hospital of Shenzhen University, Guanguang Road 1301, Longhua District, Shenzhen 518035, China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, 200240, China
| | - Lianrong Wang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Yitian Road 7019, Futian District, Shenzhen 518026, China
| |
Collapse
|
3
|
Jiang S, Chen C, Huang W, He Y, Du X, Wang Y, Ou H, Deng Z, Xu C, Jiang L, Wang L, Chen S. A widespread phage-encoded kinase enables evasion of multiple host antiphage defence systems. Nat Microbiol 2024; 9:3226-3239. [PMID: 39506096 DOI: 10.1038/s41564-024-01851-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
DNA degradation (Dnd) is a widespread bacterial antiphage defence system that relies on DNA phosphorothioate (PT) modification for self/non-self discrimination and subsequent degradation of unmodified DNA. Phages employ counterstrategies to evade host immunity, but anti-Dnd immunity has not been characterized. Here we report an immune evasion protein encoded by the Salmonella phage JSS1 that contributes to subverting Dnd and other defence systems. Using quantitative proteomic and phosphoproteomic analyses, we show that the protein JSS1_004 employs N-terminal Ser/Thr/Tyr protein kinase activity to catalyse the multisite phosphorylation of host DndFGH. Notably, JSS1_004 also phosphorylates other bacterial immune systems to varying degrees, including CRISPR‒Cas, QatABCD, SIR2+HerA and DUF4297+HerA. Given that JSS1_004 and its homologues are widespread in phylogenetically diverse phages, we suggest that this strategy constitutes a family of immune evasion proteins that increases the chances of phage proliferation even when a host deploys multiple defence systems.
Collapse
Affiliation(s)
- Susu Jiang
- Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification and Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen University Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Chao Chen
- Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification and Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen University Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wanqiu Huang
- Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification and Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen University Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Yue He
- Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification and Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen University Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xuan Du
- Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification and Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen University Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Yi Wang
- Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification and Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen University Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Hongda Ou
- Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification and Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen University Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zixin Deng
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Congrui Xu
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Lixu Jiang
- Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification and Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen University Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lianrong Wang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, China
| | - Shi Chen
- Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification and Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen University Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Wang L, Tang Y, Deng Z, Chen S. DNA Phosphorothioate Modification Systems and Associated Phage Defense Systems. Annu Rev Microbiol 2024; 78:447-462. [PMID: 39565949 DOI: 10.1146/annurev-micro-041222-014330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
In contrast to the well-known DNA methylation of nucleobases, DNA phosphorothioate (PT) modification occurs in the DNA sugar-phosphate backbone. The non-bridging oxygen is replaced by a sulfur atom, which increases the nuclease tolerance of the DNA. In recent years, we have witnessed advances in understanding of PT modification enzymes, the features of PT modification across prokaryotic genomes, and PT-related physiological functions. Although only a small fraction of modifiable recognition sites across bacterial genomes undergo PT modification, enzymes such as DndFGH and SspE can use this modification as a recognition marker to differentiate between self- and non-self-DNA, thus destroying PT-lacking invasive DNA and preventing autoimmunity. We highlight the molecular mechanisms of PT modification-associated defense systems. We also describe notable applications of PT systems in the engineering of phage-resistant bacterial strains, RNA editing, and nucleic acid detection.
Collapse
Affiliation(s)
- Lianrong Wang
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, China;
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Yaqian Tang
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Zixin Deng
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Shi Chen
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Shenzhen University Medical School, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China;
| |
Collapse
|
5
|
Yuan Y, DeMott MS, Byrne SR, Flores K, Poyet M, Groussin M, Microbiome Conservancy G, Berdy B, Comstock L, Alm EJ, Dedon PC. Phosphorothioate DNA modification by BREX Type 4 systems in the human gut microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597175. [PMID: 38895356 PMCID: PMC11185695 DOI: 10.1101/2024.06.03.597175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Among dozens of microbial DNA modifications regulating gene expression and host defense, phosphorothioation (PT) is the only known backbone modification, with sulfur inserted at a non-bridging oxygen by dnd and ssp gene families. Here we explored the distribution of PT genes in 13,663 human gut microbiome genomes, finding that 6.3% possessed dnd or ssp genes predominantly in Bacillota, Bacteroidota, and Pseudomonadota. This analysis uncovered several putative new PT synthesis systems, including Type 4 Bacteriophage Exclusion (BREX) brx genes, which were genetically validated in Bacteroides salyersiae. Mass spectrometric analysis of DNA from 226 gut microbiome isolates possessing dnd, ssp, and brx genes revealed 8 PT dinucleotide settings confirmed in 6 consensus sequences by PT-specific DNA sequencing. Genomic analysis showed PT enrichment in rRNA genes and depletion at gene boundaries. These results illustrate the power of the microbiome for discovering prokaryotic epigenetics and the widespread distribution of oxidation-sensitive PTs in gut microbes.
Collapse
Affiliation(s)
- Yifeng Yuan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michael S. DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Shane R. Byrne
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Katia Flores
- Department of Microbiology, Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Mathilde Poyet
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Institute of Experimental Medicine, Kiel University, Germany
- Global Microbiome Conservancy (https://microbiomeconservancy.org/), Kiel University, Germany
| | - Mathieu Groussin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Institute of Clinical and Molecular Biology, Kiel University, Germany
- Global Microbiome Conservancy (https://microbiomeconservancy.org/), Kiel University, Germany
| | - Global Microbiome Conservancy
- Global Microbiome Conservancy (https://microbiomeconservancy.org/), Kiel University, Germany
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA
| | - Brittany Berdy
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Laurie Comstock
- Department of Microbiology, Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Eric J. Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA
- Singapore-MIT Alliance for Research and Technology, Singapore
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology, Singapore
| |
Collapse
|
6
|
Byrne SR, DeMott MS, Yuan Y, Ghanegolmohammadi F, Kaiser S, Fox JG, Alm EJ, Dedon PC. Temporal dynamics and metagenomics of phosphorothioate epigenomes in the human gut microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596306. [PMID: 38854053 PMCID: PMC11160787 DOI: 10.1101/2024.05.29.596306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Epigenetic regulation of gene expression and host defense is well established in microbial communities, with dozens of DNA modifications comprising the epigenomes of prokaryotes and bacteriophage. Phosphorothioation (PT) of DNA, in which a chemically-reactive sulfur atom replaces a non-bridging oxygen in the sugar-phosphate backbone, is catalyzed by dnd and ssp gene families widespread in bacteria and archaea. However, little is known about the role of PTs or other microbial epigenetic modifications in the human microbiome. Here we optimized and applied fecal DNA extraction, mass spectrometric, and metagenomics technologies to characterize the landscape and temporal dynamics of gut microbes possessing PT modifications. Results Exploiting the nuclease-resistance of PTs, mass spectrometric analysis of limit digests of PT-containing DNA reveals PT dinucleotides as part of genomic consensus sequences, with 16 possible dinucleotide combinations. Analysis of mouse fecal DNA revealed a highly uniform spectrum of 11 PT dinucleotides in all littermates, with PTs estimated to occur in 5-10% of gut microbes. Though at similar levels, PT dinucleotides in fecal DNA from 11 healthy humans possessed signature combinations and levels of individual PTs. Comparison with a widely distributed microbial epigenetic mark, m6dA, suggested temporal dynamics consistent with expectations for gut microbial communities based on Taylor's Power Law. Application of PT-seq for site-specific metagenomic analysis of PT-containing bacteria in one fecal donor revealed the larger consensus sequences for the PT dinucleotides in Bacteroidota, Firmicutes, Actinobacteria, and Proteobacteria, which differed from unbiased metagenomics and suggested that the abundance of PT-containing bacteria did not simply mirror the spectrum of gut bacteria. PT-seq further revealed low abundance PT sites not detected as dinucleotides by mass spectrometry, attesting to the complementarity of the technologies. Conclusions The results of our studies provide a benchmark for understanding the behavior of an abundant and chemically-reactive epigenetic mark in the human gut microbiome, with implications for inflammatory conditions of the gut.
Collapse
Affiliation(s)
- Shane R Byrne
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michael S DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yifeng Yuan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Farzan Ghanegolmohammadi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stefanie Kaiser
- Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - James G. Fox
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Eric J. Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance IRG, Singapore
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance IRG, Singapore
| |
Collapse
|
7
|
Ding Y, Zhao L, Wang G, Shi Y, Guo G, Liu C, Chen Z, Coker OO, She J, Yu J. PacBio sequencing of human fecal samples uncovers the DNA methylation landscape of 22 673 gut phages. Nucleic Acids Res 2023; 51:12140-12149. [PMID: 37904586 PMCID: PMC10711547 DOI: 10.1093/nar/gkad977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Gut phages have an important impact on human health. Methylation plays key roles in DNA recognition, gene expression regulation and replication for phages. However, the DNA methylation landscape of gut phages is largely unknown. Here, with PacBio sequencing (2120×, 4785 Gb), we detected gut phage methylation landscape based on 22 673 gut phage genomes, and presented diverse methylation motifs and methylation differences in genomic elements. Moreover, the methylation rate of phages was associated with taxonomy and host, and N6-methyladenine methylation rate was higher in temperate phages than in virulent phages, suggesting an important role for methylation in phage-host interaction. In particular, 3543 (15.63%) phage genomes contained restriction-modification system, which could aid in evading clearance by the host. This study revealed the DNA methylation landscape of gut phage and its potential roles, which will advance the understanding of gut phage survival and human health.
Collapse
Affiliation(s)
- Yanqiang Ding
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liuyang Zhao
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Guoping Wang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Shi
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Gang Guo
- Center for Gut Microbiome Research, Department of Surgery, Med-X Institute, Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Changan Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zigui Chen
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Olabisi Oluwabukola Coker
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junjun She
- Center for Gut Microbiome Research, Department of Surgery, Med-X Institute, Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Copeland CE, Kwon YC. Suitability evaluation of toehold switch and EXPAR for cell-free MicroRNA biosensor development. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2023; 4:83-89. [PMID: 39416922 PMCID: PMC11446392 DOI: 10.1016/j.biotno.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 10/19/2024]
Abstract
The development of a robust and cost-effective sensing platform for microRNA (miRNA) is of paramount importance in detecting and monitoring various diseases. Current miRNA detection methods are marred by low accuracy, high cost, and instability. The toehold switch riboregulator has shown promising results in detecting viral RNAs integrated with the freeze-dried cell-free system (CFS). This study aimed to leverage the toehold switch technology and portability to detect miRNA in the CFS and to incorporate the exponential amplification reaction (EXPAR) to bring the detection to clinically relevant levels. We assessed various EXPAR DNA templates under different conditions to enhance the accuracy of the sensing platform. Furthermore, different structures of toehold switches were tested with either high-concentration synthetic miRNA or EXPAR product to assess sensitivity. Herein, we elucidated the mechanisms of the toehold switch and EXPAR, presented the findings of these optimizations, and discussed the potential benefits and drawbacks of their combined use.
Collapse
Affiliation(s)
- Caroline E. Copeland
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Yong-Chan Kwon
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
- Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| |
Collapse
|
9
|
Jiang S, Chen K, Wang Y, Zhang Y, Tang Y, Huang W, Xiong X, Chen S, Chen C, Wang L. A DNA phosphorothioation-based Dnd defense system provides resistance against various phages and is compatible with the Ssp defense system. mBio 2023; 14:e0093323. [PMID: 37260233 PMCID: PMC10470545 DOI: 10.1128/mbio.00933-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 06/02/2023] Open
Abstract
DndABCDE-catalyzed DNA phosphorothioation (PT), in which the nonbridging oxygen is swapped with a sulfur atom, was first identified in the bacterial genome. Usually, this modification gene cluster is paired with a restriction module consisting of DndF, DndG, and DndH. Although the mechanisms for the antiphage activity conferred by this Dnd-related restriction and modification (R-M) system have been well characterized, several features remain unclear, including the antiphage spectrum and potential interference with DNA methylation. Recently, a novel PT-related R-M system, composed of the modification module SspABCD paired with a single restriction enzyme, SspE, was revealed to be widespread in the bacterial kingdom, which aroused our interest in the interaction between Dnd- and Ssp-based R-M systems. In this study, we discussed the action of Dnd-related R-M systems against phages and demonstrated that the host could benefit from the protection provided by Dnd-related R-M systems against infection by various lytic phages as well as temperate phages. However, this defense barrier would fail against lysogenic phages. Interestingly, DNA methylation, even in the consensus sequence recognized by the Dnd system, could not weaken the restriction efficiency. Finally, we explored the interaction between Dnd- and Ssp-based R-M systems and found that these two systems were compatible. This study not only expands our knowledge of Dnd-associated R-M systems but also reveals a complex interaction between different defense barriers that coexist in the cell. IMPORTANCE Recently, we decoded the mechanism of Dnd-related R-M systems against genetic parasites. In the presence of exogenous DNA that lacks PT, the macromolecular machine consisting of DndF, DndG, and DndH undergoes conformational changes to perform DNA binding, translocation, and DNA nicking activities and scavenge the foreign DNA. However, several questions remain unanswered, including questions regarding the antiphage spectrum, potential interference by DNA methylation, and interplay with other PT-dependent R-M systems. Here, we revealed that the host could benefit from Dnd-related R-M systems for a broad range of antiphage activities, regardless of the presence of DNA methylation. Furthermore, we demonstrated that the convergence of Dnd- and Ssp-related R-M systems could confer to the host a stronger antiphage ability through the additive suppression of phage replication. This study not only deepens our understanding of PT-related defense barriers but also expands our knowledge of the arms race between bacteria and their predators.
Collapse
Affiliation(s)
- Susu Jiang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
- Department of Respiratory Diseases, The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Ke Chen
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
- Department of Respiratory Diseases, The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yingying Wang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yueying Zhang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yaru Tang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wanqiu Huang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Xiaolin Xiong
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Shi Chen
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Chao Chen
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Lianrong Wang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
- Department of Respiratory Diseases, The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Mayo-Muñoz D, Pinilla-Redondo R, Birkholz N, Fineran PC. A host of armor: Prokaryotic immune strategies against mobile genetic elements. Cell Rep 2023; 42:112672. [PMID: 37347666 DOI: 10.1016/j.celrep.2023.112672] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023] Open
Abstract
Prokaryotic adaptation is strongly influenced by the horizontal acquisition of beneficial traits via mobile genetic elements (MGEs), such as viruses/bacteriophages and plasmids. However, MGEs can also impose a fitness cost due to their often parasitic nature and differing evolutionary trajectories. In response, prokaryotes have evolved diverse immune mechanisms against MGEs. Recently, our understanding of the abundance and diversity of prokaryotic immune systems has greatly expanded. These defense systems can degrade the invading genetic material, inhibit genome replication, or trigger abortive infection, leading to population protection. In this review, we highlight these strategies, focusing on the most recent discoveries. The study of prokaryotic defenses not only sheds light on microbial evolution but also uncovers novel enzymatic activities with promising biotechnological applications.
Collapse
Affiliation(s)
- David Mayo-Muñoz
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Rafael Pinilla-Redondo
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Nils Birkholz
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
11
|
Li Y, Lan Y, Zheng X, Zhao Y. Insights into Wavelength-Mediated Excited State Intramolecular Proton Transfer in Solution: UV Resonance Raman Spectroscopy and Theoretical Calculation. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
12
|
The functional coupling between restriction and DNA phosphorothioate modification systems underlying the DndFGH restriction complex. Nat Catal 2022. [DOI: 10.1038/s41929-022-00884-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Nicking mechanism underlying the DNA phosphorothioate-sensing antiphage defense by SspE. Nat Commun 2022; 13:6773. [PMID: 36351933 PMCID: PMC9646914 DOI: 10.1038/s41467-022-34505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
DNA phosphorothioate (PT) modification, with a nonbridging phosphate oxygen substituted by sulfur, represents a widespread epigenetic marker in prokaryotes and provides protection against genetic parasites. In the PT-based defense system Ssp, SspABCD confers a single-stranded PT modification of host DNA in the 5'-CPSCA-3' motif and SspE impedes phage propagation. SspE relies on PT modification in host DNA to exert antiphage activity. Here, structural and biochemical analyses reveal that SspE is preferentially recruited to PT sites mediated by the joint action of its N-terminal domain (NTD) hydrophobic cavity and C-terminal domain (CTD) DNA binding region. PT recognition enlarges the GTP-binding pocket, thereby increasing GTP hydrolysis activity, which subsequently triggers a conformational switch of SspE from a closed to an open state. The closed-to-open transition promotes the dissociation of SspE from self PT-DNA and turns on the DNA nicking nuclease activity of CTD, enabling SspE to accomplish self-nonself discrimination and limit phage predation, even when only a small fraction of modifiable consensus sequences is PT-protected in a bacterial genome.
Collapse
|
14
|
Papaleo S, Alvaro A, Nodari R, Panelli S, Bitar I, Comandatore F. The red thread between methylation and mutation in bacterial antibiotic resistance: How third-generation sequencing can help to unravel this relationship. Front Microbiol 2022; 13:957901. [PMID: 36188005 PMCID: PMC9520237 DOI: 10.3389/fmicb.2022.957901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
DNA methylation is an important mechanism involved in bacteria limiting foreign DNA acquisition, maintenance of mobile genetic elements, DNA mismatch repair, and gene expression. Changes in DNA methylation pattern are observed in bacteria under stress conditions, including exposure to antimicrobial compounds. These changes can result in transient and fast-appearing adaptive antibiotic resistance (AdR) phenotypes, e.g., strain overexpressing efflux pumps. DNA methylation can be related to DNA mutation rate, because it is involved in DNA mismatch repair systems and because methylated bases are well-known mutational hotspots. The AdR process can be the first important step in the selection of antibiotic-resistant strains, allowing the survival of the bacterial population until more efficient resistant mutants emerge. Epigenetic modifications can be investigated by third-generation sequencing platforms that allow us to simultaneously detect all the methylated bases along with the DNA sequencing. In this scenario, this sequencing technology enables the study of epigenetic modifications in link with antibiotic resistance and will help to investigate the relationship between methylation and mutation in the development of stable mechanisms of resistance.
Collapse
Affiliation(s)
- Stella Papaleo
- Romeo ed Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Alessandro Alvaro
- Romeo ed Enrica Invernizzi Pediatric Research Center, Department of Bioscience, University of Milan, Milan, Italy
| | - Riccardo Nodari
- Romeo ed Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Simona Panelli
- Romeo ed Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Ibrahim Bitar
- Department of Microbiology, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Francesco Comandatore
- Romeo ed Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- *Correspondence: Francesco Comandatore
| |
Collapse
|
15
|
Ou Y, Dai P, Zhou X, Xiong T, Li Y, Chen Z, Zou B. A strategy of model space search for dynamic causal modeling in task fMRI data exploratory analysis. Phys Eng Sci Med 2022; 45:867-882. [PMID: 35849323 DOI: 10.1007/s13246-022-01156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/18/2022] [Indexed: 12/01/2022]
Abstract
Dynamic causal modeling (DCM) is a tool used for effective connectivity (EC) estimation in neuroimage analysis. But it is a model-driven analysis method, and the structure of the EC network needs to be determined in advance based on a large amount of prior knowledge. This characteristic makes it difficult to apply DCM to the exploratory brain network analysis. The exploratory analysis of DCM can be realized from two perspectives: one is to reduce the computational cost of the model; the other is to reduce the model space. From the perspective of model space reduction, a model space exploration strategy is proposed, including two algorithms. One algorithm, named GreedyEC, starts with reducing EC from full model, and the other, named GreedyROI, start with adding EC from one node model. Then the two algorithms were applied to the task state functional magnetic resonance imaging (fMRI) data of visual object recognition and selected the best DCM model from the perspective of model comparison based on Bayesian model compare method. Results show that combining the results of the two algorithms can further improve the effect of DCM exploratory analysis. For convenience in application, the algorithms were encapsulated into MATLAB function based on SPM to help neuroscience researchers to analyze the brain causal information flow network. The strategy provides a model space exploration tool that may obtain the best model from the perspective of model comparison and lower the threshold of DCM analysis.
Collapse
Affiliation(s)
- Yilin Ou
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Peishan Dai
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
- Hunan Engineering Research Center of Machine Vision and Intelligent Medicine, Central South University, Changsha, 410083, China.
| | - Xiaoyan Zhou
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Tong Xiong
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Yang Li
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Engineering Research Center of Machine Vision and Intelligent Medicine, Central South University, Changsha, 410083, China
| | - Zailiang Chen
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Engineering Research Center of Machine Vision and Intelligent Medicine, Central South University, Changsha, 410083, China
| | - Beiji Zou
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Engineering Research Center of Machine Vision and Intelligent Medicine, Central South University, Changsha, 410083, China
| |
Collapse
|
16
|
Huang Q, Chen X, Meng QF, Yue L, Jiang W, Zhao XZ, Rao L, Chen X, Chen S. Microfluidics-Assisted Fluorescence Mapping of DNA Phosphorothioation. Anal Chem 2022; 94:10479-10486. [PMID: 35834188 DOI: 10.1021/acs.analchem.2c01752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As the key player of a new restriction modification system, DNA phosphorothioate (PT) modification, which swaps oxygen for sulfur on the DNA backbone, protects the bacterial host from foreign DNA invasion. The identification of PT sites helps us understand its physiological defense mechanisms, but accurately quantifying this dynamic modification remains a challenge. Herein, we report a simple quantitative analysis method for optical mapping of PT sites in the single bacterial genome. DNA molecules are fully stretched and immobilized in a microfluidic chip by capillary flow and electrostatic interactions, improving the labeling efficiency by maximizing exposure of PT sites on DNA while avoiding DNA loss and damage. After screening 116 candidates, we identified a bifunctional chemical compound, iodoacetyl-polyethylene glycol-biotin, that can noninvasively and selectively biotinylate PT sites, enabling further labeling with streptavidin fluorescent nanoprobes. With this method, PT sites in PT+ DNA can be easily detected by fluorescence, while almost no detectable ones were found in PT- DNA, achieving real-time visualization of PT sites on a single DNA molecule. Collectively, this facile genome-wide PT site detection method directly characterizes the distribution and frequency of DNA modification, facilitating a better understanding of its modification mechanism that can be potentially extended to label DNAs in different species.
Collapse
Affiliation(s)
- Qinqin Huang
- The Second Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xingxiang Chen
- The Second Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Qian-Fang Meng
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China.,School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ludan Yue
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China.,Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Wei Jiang
- The Second Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Xing-Zhong Zhao
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Lang Rao
- The Second Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.,Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore.,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.,Department of Burn and Plastic Surgery, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| |
Collapse
|
17
|
Face identity coding in the deep neural network and primate brain. Commun Biol 2022; 5:611. [PMID: 35725902 PMCID: PMC9209415 DOI: 10.1038/s42003-022-03557-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/01/2022] [Indexed: 01/01/2023] Open
Abstract
A central challenge in face perception research is to understand how neurons encode face identities. This challenge has not been met largely due to the lack of simultaneous access to the entire face processing neural network and the lack of a comprehensive multifaceted model capable of characterizing a large number of facial features. Here, we addressed this challenge by conducting in silico experiments using a pre-trained face recognition deep neural network (DNN) with a diverse array of stimuli. We identified a subset of DNN units selective to face identities, and these identity-selective units demonstrated generalized discriminability to novel faces. Visualization and manipulation of the network revealed the importance of identity-selective units in face recognition. Importantly, using our monkey and human single-neuron recordings, we directly compared the response of artificial units with real primate neurons to the same stimuli and found that artificial units shared a similar representation of facial features as primate neurons. We also observed a region-based feature coding mechanism in DNN units as in human neurons. Together, by directly linking between artificial and primate neural systems, our results shed light on how the primate brain performs face recognition tasks.
Collapse
|
18
|
Wadley T, Moon SH, DeMott MS, Wanchai V, Huang E, Dedon PC, Boysen G, Nookaew I. Nanopore Sequencing for Detection and Characterization of Phosphorothioate Modifications in Native DNA Sequences. Front Microbiol 2022; 13:871937. [PMID: 35531280 PMCID: PMC9069010 DOI: 10.3389/fmicb.2022.871937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial DNA is subject to various modifications involved in gene regulation and defense against bacteriophage attacks. Phosphorothioate (PT) modifications are protective modifications in which the non-bridging oxygen in the DNA phosphate backbone is replaced with a sulfur atom. Here, we expand third-generation sequencing techniques to allow for the sequence-specific mapping of DNA modifications by demonstrating the application of Oxford Nanopore Technologies (ONT) and the ELIGOS software package for site-specific detection and characterization of PT modifications. The ONT/ELIGOS platform accurately detected PT modifications in a plasmid carrying synthetic PT modifications. Subsequently, studies were extended to the genome-wide mapping of PT modifications in the Salmonella enterica genomes within the wild-type strain and strains lacking the PT regulatory gene dndB (ΔdndB) or the PT synthetic gene dndC (ΔdndC). PT site-specific signatures were observed in the established motifs of GAAC/GTTC. The PT site locations were in close agreement with PT sites previously identified using the Nick-seq technique. Compared to the wild-type strain, the number of PT modifications are 1.8-fold higher in ΔdndB and 25-fold lower in ΔdndC, again consistent with known regulation of the dnd operon. These results demonstrate the suitability of the ONT platform for accurate detection and identification of the unusual PT backbone modifications in native genome sequences.
Collapse
Affiliation(s)
- Taylor Wadley
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pathobiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Sun Hee Moon
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Michael S. DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Visanu Wanchai
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - En Huang
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Gunnar Boysen
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- *Correspondence: Intawat Nookaew,
| |
Collapse
|
19
|
Involvement of the DNA Phosphorothioation System in TorR Binding and Anaerobic TMAO Respiration in Salmonella enterica. mBio 2022; 13:e0069922. [PMID: 35420479 PMCID: PMC9239176 DOI: 10.1128/mbio.00699-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the phosphorothioate (PT) modification, in which the nonbridging oxygen in the DNA sugar-phosphate backbone is replaced by sulfur, has been reported to play versatile roles in multiple cellular processes, very little data have been obtained to define the role of PT in epigenetic regulation. In this study, we report that the PT system in Salmonella enterica serovar Cerro 87 is involved in the transcriptional regulation of the torCAD operon encoding the trimethylamine N-oxide (TMAO) respiration machinery that enables the use of TMAO as a terminal electron acceptor for respiration when oxygen is not available. In vitro, PT enhanced the binding of the transcriptional activator of the torCAD operon, namely, TorR, to its DNA substrate (tor boxes). However, in vivo, the PT modification protein complex DndCDE downregulated torCAD transcription through competing with the binding of TorR to the tor boxes. The altered expression of torCAD caused by PT modification proteins affected cell growth that relied on TMAO respiration. To our knowledge, this is the first report supporting that PT proteins participate in transcriptional regulation, showing a new function of PT systems.
Collapse
|
20
|
Sui J, Qiao W, Xiang X, Luo Y. Epigenetic Changes in Mycobacterium tuberculosis and its Host Provide Potential Targets or Biomarkers for Drug Discovery and Clinical Diagnosis. Pharmacol Res 2022; 179:106195. [DOI: 10.1016/j.phrs.2022.106195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 11/26/2022]
|
21
|
Jian H, Xu G, Yi Y, Hao Y, Wang Y, Xiong L, Wang S, Liu S, Meng C, Wang J, Zhang Y, Chen C, Feng X, Luo H, Zhang H, Zhang X, Wang L, Wang Z, Deng Z, Xiao X. The origin and impeded dissemination of the DNA phosphorothioation system in prokaryotes. Nat Commun 2021; 12:6382. [PMID: 34737280 PMCID: PMC8569181 DOI: 10.1038/s41467-021-26636-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Phosphorothioate (PT) modification by the dnd gene cluster is the first identified DNA backbone modification and constitute an epigenetic system with multiple functions, including antioxidant ability, restriction modification, and virus resistance. Despite these advantages for hosting dnd systems, they are surprisingly distributed sporadically among contemporary prokaryotic genomes. To address this ecological paradox, we systematically investigate the occurrence and phylogeny of dnd systems, and they are suggested to have originated in ancient Cyanobacteria after the Great Oxygenation Event. Interestingly, the occurrence of dnd systems and prophages is significantly negatively correlated. Further, we experimentally confirm that PT modification activates the filamentous phage SW1 by altering the binding affinity of repressor and the transcription level of its encoding gene. Competition assays, concurrent epigenomic and transcriptomic sequencing subsequently show that PT modification affects the expression of a variety of metabolic genes, which reduces the competitive fitness of the marine bacterium Shewanella piezotolerans WP3. Our findings strongly suggest that a series of negative effects on microorganisms caused by dnd systems limit horizontal gene transfer, thus leading to their sporadic distribution. Overall, our study reveals putative evolutionary scenario of the dnd system and provides novel insights into the physiological and ecological influences of PT modification.
Collapse
Affiliation(s)
- Huahua Jian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Guanpeng Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Yi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yali Hao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Xiong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Siyuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shunzhang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Canxing Meng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiahua Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xiaoyuan Feng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Zhang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
22
|
|
23
|
Anton BP, Roberts RJ. Beyond Restriction Modification: Epigenomic Roles of DNA Methylation in Prokaryotes. Annu Rev Microbiol 2021; 75:129-149. [PMID: 34314594 DOI: 10.1146/annurev-micro-040521-035040] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The amount of bacterial and archaeal genome sequence and methylome data has greatly increased over the last decade, enabling new insights into the functional roles of DNA methylation in these organisms. Methyltransferases (MTases), the enzymes responsible for DNA methylation, are exchanged between prokaryotes through horizontal gene transfer and can function either as part of restriction-modification systems or in apparent isolation as single (orphan) genes. The patterns of DNA methylation they confer on the host chromosome can have significant effects on gene expression, DNA replication, and other cellular processes. Some processes require very stable patterns of methylation, resulting in conservation of persistent MTases in a particular lineage. Other processes require patterns that are more dynamic yet more predictable than what is afforded by horizontal gene transfer and gene loss, resulting in phase-variable or recombination-driven MTase alleles. In this review, we discuss what is currently known about the functions of DNA methylation in prokaryotes in light of these evolutionary patterns. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Brian P Anton
- New England Biolabs, Ipswich, Massachusetts 01938, USA; ,
| | | |
Collapse
|
24
|
Wei Y, Huang Q, Tian X, Zhang M, He J, Chen X, Chen C, Deng Z, Li Z, Chen S, Wang L. Single-molecule optical mapping of the distribution of DNA phosphorothioate epigenetics. Nucleic Acids Res 2021; 49:3672-3680. [PMID: 33764453 PMCID: PMC8053081 DOI: 10.1093/nar/gkab169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/13/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
DNA phosphorothioate (PT) modifications, with the nonbridging phosphate oxygen replaced by sulfur, governed by DndABCDE or SspABCD, are widely distributed in prokaryotes and have a highly unusual feature of occupying only a small portion of available consensus sequences in a genome. Despite the presence of plentiful non-PT-protected consensuses, DNA PT modification is still employed as a recognition tag by the restriction cognate, for example, DndFGH or SspE, to discriminate and destroy PT-lacking foreign DNA. This raises a fundamental question about how PT modifications are distributed along DNA molecules to keep the restriction components in check. Here, we present two single-molecule strategies that take advantage of the nucleophilicity of PT in combination with fluorescent markers for optical mapping of both single- and double-stranded PT modifications across individual DNA molecules. Surprisingly, PT profiles vary markedly from molecule to molecule, with different PT locations and spacing distances between PT pairs, even in the presence of DndFGH or SspE. The results revealed unprecedented PT modification features previously obscured by ensemble averaging, providing novel insights into the riddles regarding unusual target selection by PT modification and restriction components.
Collapse
Affiliation(s)
- Yue Wei
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.,Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China.,Department of Burn and Plastic Surgery, Division of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Qinqin Huang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.,Department of Molecular Pathology, The Second Affiliated Hospital, Academy of Medical Sciences of Zhengzhou University, Zhengzhou 450000, China
| | - Xihao Tian
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Mingmin Zhang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Junkai He
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xingxiang Chen
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Chao Chen
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China
| | - Zixin Deng
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China
| | - Shi Chen
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.,Department of Burn and Plastic Surgery, Division of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Lianrong Wang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.,Department of Burn and Plastic Surgery, Division of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China
| |
Collapse
|
25
|
Dai Y, Qi CB, Feng Y, Cheng QY, Liu FL, Cheng MY, Yuan BF, Feng YQ. Sensitive and Simultaneous Determination of Uridine Thiolation and Hydroxylation Modifications in Eukaryotic RNA by Derivatization Coupled with Mass Spectrometry Analysis. Anal Chem 2021; 93:6938-6946. [PMID: 33908769 DOI: 10.1021/acs.analchem.0c04630] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The discovery of dynamic and reversible modifications in RNA expands their functional repertoires. Now, RNA modifications have been viewed as new regulators involved in a variety of biological processes. Among these modifications, thiolation is one kind of special modification in RNA. Several thiouridines have been identified to be present in RNA, and they are essential in the natural growth and metabolism of cells. However, detection of these thiouridines generally is challenging, and few studies could offer the quantitative levels of uridine modifications in RNA, which limits the in-depth elucidation of their functions. Herein, we developed a chemical derivatization in combination with mass spectrometry analysis for the sensitive and simultaneous determination of uridine thiolation and hydroxylation modifications in eukaryotic RNA. The chemical derivatization strategy enables the addition of easily ionizable groups to the uridine thiolation and hydroxylation modifications, leading up to a 339-fold increase in detection sensitivities of these modifications by mass spectrometry analysis. The limits of detection of these uridine modifications can be down to 17 amol. With the established method, we discovered and confirmed that a new modification of 5-hydroxyuridine (ho5U) was widely present in small RNAs of mammalian cells, expanding the diversity of RNA modifications. The developed method shows superior capability in determining low-abundance RNA modifications and may promote identifying new modifications in RNA, which should be valuable in uncovering the unknown functions of RNA modifications.
Collapse
Affiliation(s)
- Yi Dai
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Chu-Bo Qi
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, China
| | - Yang Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Qing-Yun Cheng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Fei-Long Liu
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Ming-Yu Cheng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bi-Feng Yuan
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Health Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
26
|
Abstract
We recently found that SspABCD, catalyzing single-stranded (ss) DNA phosphorothioate (PT) modification, coupled with SspE provides protection against phage infection. SspE performs both PT-simulated NTPase and DNA-nicking nuclease activities to damage phage DNA, rendering SspA-E a PT-sensing defense system. Unlike nucleobase modifications in canonical restriction-modification systems, DNA phosphorothioate (PT) epigenetic modification occurs in the DNA sugar-phosphate backbone when the nonbridging oxygen is replaced by sulfur in a double-stranded (ds) or single-stranded (ss) manner governed by DndABCDE or SspABCD, respectively. SspABCD coupled with SspE constitutes a defense barrier in which SspE depends on sequence-specific PT modifications to exert its antiphage activity. Here, we identified a new type of ssDNA PT-based SspABCD-SspFGH defense system capable of providing protection against phages through a mode of action different from that of SspABCD-SspE. We provide further evidence that SspFGH damages non-PT-modified DNA and exerts antiphage activity by suppressing phage DNA replication. Despite their different defense mechanisms, SspFGH and SspE are compatible and pair simultaneously with one SspABCD module, greatly enhancing the protection against phages. Together with the observation that the sspBCD-sspFGH cassette is widely distributed in bacterial genomes, this study highlights the diversity of PT-based defense barriers and expands our knowledge of the arsenal of phage defense mechanisms.
Collapse
|
27
|
Clavé G, Reverte M, Vasseur JJ, Smietana M. Modified internucleoside linkages for nuclease-resistant oligonucleotides. RSC Chem Biol 2021; 2:94-150. [PMID: 34458777 PMCID: PMC8341215 DOI: 10.1039/d0cb00136h] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022] Open
Abstract
In the past few years, several drugs derived from nucleic acids have been approved for commercialization and many more are in clinical trials. The sensitivity of these molecules to nuclease digestion in vivo implies the need to exploit resistant non-natural nucleotides. Among all the possible modifications, the one concerning the internucleoside linkage is of particular interest. Indeed minor changes to the natural phosphodiester may result in major modifications of the physico-chemical properties of nucleic acids. As this linkage is a key element of nucleic acids' chemical structures, its alteration can strongly modulate the plasma stability, binding properties, solubility, cell penetration and ultimately biological activity of nucleic acids. Over the past few decades, many research groups have provided knowledge about non-natural internucleoside linkage properties and participated in building biologically active nucleic acid derivatives. The recent renewing interest in nucleic acids as drugs, demonstrated by the emergence of new antisense, siRNA, aptamer and cyclic dinucleotide molecules, justifies the review of all these studies in order to provide new perspectives in this field. Thus, in this review we aim at providing the reader insights into modified internucleoside linkages that have been described over the years whose impact on annealing properties and resistance to nucleases have been evaluated in order to assess their potential for biological applications. The syntheses of modified nucleotides as well as the protocols developed for their incorporation within oligonucleotides are described. Given the intended biological applications, the modifications described in the literature that have not been tested for their resistance to nucleases are not reported.
Collapse
Affiliation(s)
| | - Maeva Reverte
- IBMM, Univ. Montpellier, CNRS, ENSCM Montpellier France
| | | | | |
Collapse
|
28
|
Vashistha H, Kohram M, Salman H. Non-genetic inheritance restraint of cell-to-cell variation. eLife 2021; 10:64779. [PMID: 33523801 PMCID: PMC7932692 DOI: 10.7554/elife.64779] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/28/2021] [Indexed: 12/22/2022] Open
Abstract
Heterogeneity in physical and functional characteristics of cells (e.g. size, cycle time, growth rate, protein concentration) proliferates within an isogenic population due to stochasticity in intracellular biochemical processes and in the distribution of resources during divisions. Conversely, it is limited in part by the inheritance of cellular components between consecutive generations. Here we introduce a new experimental method for measuring proliferation of heterogeneity in bacterial cell characteristics, based on measuring how two sister cells become different from each other over time. Our measurements provide the inheritance dynamics of different cellular properties, and the 'inertia' of cells to maintain these properties along time. We find that inheritance dynamics are property specific and can exhibit long-term memory (∼10 generations) that works to restrain variation among cells. Our results can reveal mechanisms of non-genetic inheritance in bacteria and help understand how cells control their properties and heterogeneity within isogenic cell populations.
Collapse
Affiliation(s)
- Harsh Vashistha
- Department of Physics and Astronomy, The Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Maryam Kohram
- Department of Physics and Astronomy, The Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Hanna Salman
- Department of Physics and Astronomy, The Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States.,Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
29
|
DNA Phosphorothioate Modifications Are Widely Distributed in the Human Microbiome. Biomolecules 2020; 10:biom10081175. [PMID: 32806589 PMCID: PMC7464106 DOI: 10.3390/biom10081175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 01/17/2023] Open
Abstract
The DNA phosphorothioate (PT) modification existing in many prokaryotes, including bacterial pathogens and commensals, confers multiple characteristics, including restricting gene transfer, influencing the global transcriptional response, and reducing fitness during exposure to chemical mediators of inflammation. While PT-containing bacteria have been investigated in a variety of environments, they have not been studied in the human microbiome. Here, we investigated the distribution of PT-harboring strains and verified their existence in the human microbiome. We found over 2000 PT gene-containing strains distributed in different body sites, especially in the gastrointestinal tract. PT-modifying genes are preferentially distributed within several genera, including Pseudomonas, Clostridioides, and Escherichia, with phylogenic diversities. We also assessed the PT modification patterns and found six new PT-linked dinucleotides (CpsG, CpsT, ApsG, TpsG, GpsC, ApsT) in human fecal DNA. To further investigate the PT in the human gut microbiome, we analyzed the abundance of PT-modifying genes and quantified the PT-linked dinucleotides in the fecal DNA. These results confirmed that human microbiome is a rich reservoir for PT-containing microbes and contains a wide variety of PT modification patterns.
Collapse
|
30
|
Epigenetic competition reveals density-dependent regulation and target site plasticity of phosphorothioate epigenetics in bacteria. Proc Natl Acad Sci U S A 2020; 117:14322-14330. [PMID: 32518115 DOI: 10.1073/pnas.2002933117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Phosphorothioate (PT) DNA modifications-in which a nonbonding phosphate oxygen is replaced with sulfur-represent a widespread, horizontally transferred epigenetic system in prokaryotes and have a highly unusual property of occupying only a small fraction of available consensus sequences in a genome. Using Salmonella enterica as a model, we asked a question of fundamental importance: How do the PT-modifying DndA-E proteins select their GPSAAC/GPSTTC targets? Here, we applied innovative analytical, sequencing, and computational tools to discover a novel behavior for DNA-binding proteins: The Dnd proteins are "parked" at the G6mATC Dam methyltransferase consensus sequence instead of the expected GAAC/GTTC motif, with removal of the 6mA permitting extensive PT modification of GATC sites. This shift in modification sites further revealed a surprising constancy in the density of PT modifications across the genome. Computational analysis showed that GAAC, GTTC, and GATC share common features of DNA shape, which suggests that PT epigenetics are regulated in a density-dependent manner partly by DNA shape-driven target selection in the genome.
Collapse
|
31
|
Structural Analysis of an l-Cysteine Desulfurase from an Ssp DNA Phosphorothioation System. mBio 2020; 11:mBio.00488-20. [PMID: 32345643 PMCID: PMC7188994 DOI: 10.1128/mbio.00488-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Apart from its roles in Fe-S cluster assembly, tRNA thiolation, and sulfur-containing cofactor biosynthesis, cysteine desulfurase serves as a sulfur donor in the DNA PT modification, in which a sulfur atom substitutes a nonbridging oxygen in the DNA phosphodiester backbone. The initial sulfur mobilization from l-cysteine is catalyzed by the SspA cysteine desulfurase in the SspABCD-mediated DNA PT modification system. By determining the crystal structure of SspA, the study presents the molecular mechanism that SspA employs to recognize its cysteine substrate and PLP cofactor. To overcome the long distance (8.9 Å) between the catalytic Cys314 and the cysteine substrate, a conformational change occurs to bring Cys314 to the vicinity of the substrate, allowing for nucleophilic attack. DNA phosphorothioate (PT) modification, in which the nonbridging oxygen in the sugar-phosphate backbone is substituted by sulfur, is catalyzed by DndABCDE or SspABCD in a double-stranded or single-stranded manner, respectively. In Dnd and Ssp systems, mobilization of sulfur in PT formation starts with the activation of the sulfur atom of cysteine catalyzed by the DndA and SspA cysteine desulfurases, respectively. Despite playing the same biochemical role, SspA cannot be functionally replaced by DndA, indicating its unique physiological properties. In this study, we solved the crystal structure of Vibrio cyclitrophicus SspA in complex with its natural substrate, cysteine, and cofactor, pyridoxal phosphate (PLP), at a resolution of 1.80 Å. Our solved structure revealed the molecular mechanism that SspA employs to recognize its cysteine substrate and PLP cofactor, suggesting a common binding mode shared by cysteine desulfurases. In addition, although the distance between the catalytic Cys314 and the substrate cysteine is 8.9 Å, which is too far for direct interaction, our structural modeling and biochemical analysis revealed a conformational change in the active site region toward the cysteine substrate to move them close to each other to facilitate the nucleophilic attack. Finally, the pulldown analysis showed that SspA could form a complex with SspD, an ATP pyrophosphatase, suggesting that SspD might potentially accept the activated sulfur atom directly from SspA, providing further insights into the biochemical pathway of Ssp-mediated PT modification.
Collapse
|
32
|
Xiong X, Wu G, Wei Y, Liu L, Zhang Y, Su R, Jiang X, Li M, Gao H, Tian X, Zhang Y, Hu L, Chen S, Tang Y, Jiang S, Huang R, Li Z, Wang Y, Deng Z, Wang J, Dedon PC, Chen S, Wang L. SspABCD-SspE is a phosphorothioation-sensing bacterial defence system with broad anti-phage activities. Nat Microbiol 2020; 5:917-928. [PMID: 32251370 DOI: 10.1038/s41564-020-0700-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 03/02/2020] [Indexed: 01/07/2023]
Abstract
Bacteria have evolved diverse mechanisms to fend off predation by bacteriophages. We previously identified the Dnd system, which uses DndABCDE to insert sulfur into the DNA backbone as a double-stranded phosphorothioate (PT) modification, and DndFGH, a restriction component. Here, we describe an unusual SspABCD-SspE PT system in Vibrio cyclitrophicus, Escherichia coli and Streptomyces yokosukanensis, which has distinct genetic organization, biochemical functions and phenotypic behaviour. SspABCD confers single-stranded and high-frequency PTs with SspB acting as a nickase and possibly introducing nicks to facilitate sulfur incorporation. Strikingly, SspABCD coupled with SspE provides protection against phages in unusual ways: (1) SspE senses sequence-specific PTs by virtue of its PT-stimulated NTPase activity to exert its anti-phage activity, and (2) SspE inhibits phage propagation by introducing nicking damage to impair phage DNA replication. These results not only expand our knowledge about the diversity and functions of DNA PT modification but also enhance our understanding of the known arsenal of defence systems.
Collapse
Affiliation(s)
- Xiaolin Xiong
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Wei
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Liqiong Liu
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yubing Zhang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Su
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xianyue Jiang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Mengxue Li
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Haiyan Gao
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Xihao Tian
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Yizhou Zhang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Li Hu
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Si Chen
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - You Tang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Susu Jiang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Ruolin Huang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yunfu Wang
- Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zixin Deng
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawei Wang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shi Chen
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Lianrong Wang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China. .,Taihe Hospital, Hubei University of Medicine, Shiyan, China. .,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China.
| |
Collapse
|
33
|
Davey L, Valdivia RH. Bacterial genetics and molecular pathogenesis in the age of high throughput DNA sequencing. Curr Opin Microbiol 2020; 54:59-66. [PMID: 32044689 PMCID: PMC8765803 DOI: 10.1016/j.mib.2020.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/12/2020] [Indexed: 12/17/2022]
Abstract
When Stanley Falkow introduced Molecular Koch's Postulates (Falkow, 1988) as a conceptual framework to identify microbial factors that contributed to disease, he reaffirmed the prominent role that the basic principles of genetic analysis should play in defining genotype-phenotype associations in microbial pathogens. In classical bacterial genetics the nature of mutations is inferred through cis-trans complementation and by indirectly mapping their relative position and physical distance through recombination frequencies - all of which were made possible by the genetic tools of the day: natural transformations, conjugation and transduction. Unfortunately, many of these genetic tools are not always available to study pathogenic bacteria. The recombinant DNA revolution in the 1980s launched the field of molecular pathogenesis as genes could be treated as physical units that could be cut, spliced and transplanted from one microbe to another and thus not only 'prove' that an individual gene complemented a virulence defect in a mutant strain but also could impart pathogenic properties to otherwise benign microbes. The recombinant DNA revolution also enabled the generation of newer versions of genetic tools to generate mutations and engineer microbial genomes. The last decade has ushered in next generation sequencing technologies as a new powerful tool for bacterial genetics. The routine and inexpensive sequencing of microbial genomes has increased the number and phylogenetic scope of microbes that are amenable to functional characterization and experimentation. In this review, we highlight some salient advances in this rapidly evolving area.
Collapse
Affiliation(s)
- Lauren Davey
- Duke University School of Medicine, Molecular Genetics and Microbiology, 272 Jones Bldg DUMC 3580, Durham, NC 27710, United States
| | - Raphael H Valdivia
- Duke University School of Medicine, Molecular Genetics and Microbiology, 272 Jones Bldg DUMC 3580, Durham, NC 27710, United States.
| |
Collapse
|
34
|
Seif Y, Choudhary KS, Hefner Y, Anand A, Yang L, Palsson BO. Metabolic and genetic basis for auxotrophies in Gram-negative species. Proc Natl Acad Sci U S A 2020; 117:6264-6273. [PMID: 32132208 PMCID: PMC7084086 DOI: 10.1073/pnas.1910499117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Auxotrophies constrain the interactions of bacteria with their environment, but are often difficult to identify. Here, we develop an algorithm (AuxoFind) using genome-scale metabolic reconstruction to predict auxotrophies and apply it to a series of available genome sequences of over 1,300 Gram-negative strains. We identify 54 auxotrophs, along with the corresponding metabolic and genetic basis, using a pangenome approach, and highlight auxotrophies conferring a fitness advantage in vivo. We show that the metabolic basis of auxotrophy is species-dependent and varies with 1) pathway structure, 2) enzyme promiscuity, and 3) network redundancy. Various levels of complexity constitute the genetic basis, including 1) deleterious single-nucleotide polymorphisms (SNPs), in-frame indels, and deletions; 2) single/multigene deletion; and 3) movement of mobile genetic elements (including prophages) combined with genomic rearrangements. Fourteen out of 19 predictions agree with experimental evidence, with the remaining cases highlighting shortcomings of sequencing, assembly, annotation, and reconstruction that prevent predictions of auxotrophies. We thus develop a framework to identify the metabolic and genetic basis for auxotrophies in Gram-negatives.
Collapse
Affiliation(s)
- Yara Seif
- Systems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122
| | - Kumari Sonal Choudhary
- Systems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122
| | - Ying Hefner
- Systems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122
| | - Amitesh Anand
- Systems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122
| | - Laurence Yang
- Systems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122
- Department of Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Bernhard O Palsson
- Systems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122;
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
35
|
Pu T, Mei Z, Zhang W, Liang WJ, Zhou X, Liang J, Deng Z, Wang Z. An in vitro DNA phosphorothioate modification reaction. Mol Microbiol 2019; 113:452-463. [PMID: 31749226 DOI: 10.1111/mmi.14430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/10/2019] [Accepted: 11/17/2019] [Indexed: 12/25/2022]
Abstract
Phosphorothioation (PT) involves the replacement of a nonbridging phosphate oxygen on the DNA backbone with sulfur. In bacteria, the procedure is both sequence- and stereo-specific. We reconstituted the PT reaction using purified DndCDE from Salmonella enterica and IscS from Escherichia coli. We determined that the in vitro process of PT was oxygen sensitive. Only one strand on a double-stranded (ds) DNA substrate was modified in the reaction. The modification was dominant between G and A in the GAAC/GTTC conserved sequence. The modification between G and T required the presence of PT between G and A on the opposite strand. Cysteine, S-adenosyl methionine (SAM) and the formation of an iron-sulfur cluster in DndCDE (DndCDE-FeS) were essential for the process. Results from SAM cleavage reactions support the supposition that PT is a radical SAM reaction. Adenosine triphosphate (ATP) promoted the reaction but was not essential. The data and conclusions presented suggest that the PT reaction in bacteria involves three steps. The first step is the binding of DndCDE-FeS to DNA and searching for the modification sequence, possibly with the help of ATP. Cysteine locks DndCDE-FeS to the modification site with an appropriate protein conformation. SAM triggers the radical SAM reaction to complete the oxygen-sulfur swapping.
Collapse
Affiliation(s)
- Tianning Pu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhiling Mei
- Shanghai Thinkgene Biotech CO., LTD, Shanghai, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wei-Jun Liang
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, UK
| | - Xiufen Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
36
|
Abstract
In all domains of life, genomes contain epigenetic information superimposed over the nucleotide sequence. Epigenetic signals control DNA-protein interactions and can cause phenotypic change in the absence of mutation. A nearly universal mechanism of epigenetic signalling is DNA methylation. In bacteria, DNA methylation has roles in genome defence, chromosome replication and segregation, nucleoid organization, cell cycle control, DNA repair and regulation of transcription. In many bacterial species, DNA methylation controls reversible switching (phase variation) of gene expression, a phenomenon that generates phenotypic cell variants. The formation of epigenetic lineages enables the adaptation of bacterial populations to harsh or changing environments and modulates the interaction of pathogens with their eukaryotic hosts.
Collapse
|
37
|
Gu M, Zeng Z, Xing M, Xiong Y, Deng Z, Chen S, Wang L. The Biological Applications of Two Aggregation-Induced Emission Luminogens. Biotechnol J 2019; 14:e1900212. [PMID: 31469239 DOI: 10.1002/biot.201900212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/16/2019] [Indexed: 02/06/2023]
Abstract
Fluorescence imaging, as a commonly used scientific tool, is widely applied in various biomedical and material structures through visualization technology. Highly selective and sensitive luminescent biological probes, as well as those with good water solubility, are urgently needed for biomedical research. In contrast to the traditional aggregation-caused quenching of fluorescence, in the unique phenomenon of aggregation-induced emission (AIE), the individual luminogens have extremely weak or no emissivity because they each have free intramolecular motion; however, when they form aggregates, these components immediately "light up". Since the discovery of "turn-on" mechanism, researchers have been studying and applying AIE in a variety of fields to develop more sensitive, selective, and efficient strategies for the AIE dyes. There are numerous advantages to the use of AIE-based methods, including low background interference, strong contrast, high performance in intracellular imaging, and the ability for long-term monitoring in vivo. In this review, two typical examples of AIEgens, TPE-Cy and TPE-Ph-In, are described, including their structure properties and applications. Recent progress in the biological applications is mainly focused on. Undoubtedly, in the near future, an increasing number of encouraging and practical ideas will promote the development of more AIEgens for broad use in biomedical applications.
Collapse
Affiliation(s)
- Meijia Gu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zixuan Zeng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
| | - Mai Xing
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
| | - Yige Xiong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| |
Collapse
|
38
|
Yao P, Liu Y, Wang C, Lan W, Wang C, Cao C. Investigating the interactions between DNA and DndE during DNA phosphorothioation. FEBS Lett 2019; 593:2790-2799. [PMID: 31276192 DOI: 10.1002/1873-3468.13529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 01/08/2023]
Abstract
The DNA phosphorothioate modification is a novel physiological variation in bacteria. DndE controls this modification by binding to dsDNA via a mechanism that remains unclear. Structural analysis of the wild-type DndE tetramer suggests that a positively charged region in its center is important for DNA binding. In the present study, we replaced residues G21 and G24 in this region with lysines, which increases the DNA binding affinity but does not affect the DNA degradation phenotype. Structural analysis of the mutant indicates that it forms a new tetrameric conformation and that DndE interacts with DNA as a monomer rather than as a tetramer. A structural model of the DndE-DNA complex, based on its structural homolog P22 Arc repressor, indicates that two flexible loops in DndE are determinants of DNA binding.
Collapse
Affiliation(s)
- Penfei Yao
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yaping Liu
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chengkun Wang
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Wenxian Lan
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Chunxi Wang
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Chunyang Cao
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Bains W, Petkowski JJ, Sousa-Silva C, Seager S. Trivalent Phosphorus and Phosphines as Components of Biochemistry in Anoxic Environments. ASTROBIOLOGY 2019; 19:885-902. [PMID: 30896974 DOI: 10.1089/ast.2018.1958] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phosphorus is an essential element for all life on Earth, yet trivalent phosphorus (e.g., in phosphines) appears to be almost completely absent from biology. Instead phosphorus is utilized by life almost exclusively as phosphate, apart from a small contingent of other pentavalent phosphorus compounds containing structurally similar chemical groups. In this work, we address four previously stated arguments as to why life does not explore trivalent phosphorus: (1) precedent (lack of confirmed instances of trivalent phosphorus in biochemicals suggests that life does not have the means to exploit this chemistry), (2) thermodynamic limitations (synthesizing trivalent phosphorus compounds is too energetically costly), (3) stability (phosphines are too reactive and readily oxidize in an oxygen (O2)-rich atmosphere), and (4) toxicity (the trivalent phosphorus compounds are broadly toxic). We argue that the first two of these arguments are invalid, and the third and fourth arguments only apply to the O2-rich environment of modern Earth. Specifically, both the reactivity and toxicity of phosphines are specific to aerobic life and strictly dependent on O2-rich environment. We postulate that anaerobic life persisting in anoxic (O2-free) environments may exploit trivalent phosphorus chemistry much more extensively. We review the production of trivalent phosphorus compounds by anaerobic organisms, including phosphine gas and an alkyl phosphine, phospholane. We suggest that the failure to find more such compounds in modern terrestrial life may be a result of the strong bias of the search for natural products toward aerobic organisms. We postulate that a more thorough identification of metabolites of the anaerobic biosphere could reveal many more trivalent phosphorus compounds. We conclude with a discussion of the implications of our work for the origin and early evolution of life, and suggest that trivalent phosphorus compounds could be valuable markers for both extraterrestrial life and the Shadow Biosphere on Earth.
Collapse
Affiliation(s)
| | - Janusz Jurand Petkowski
- 2Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Clara Sousa-Silva
- 2Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Sara Seager
- 2Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
- 3Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts
- 4Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
40
|
Chen Y, Zheng T, Li J, Cui J, Deng Z, You D, Yang L. Novel Iodine-induced Cleavage Real-time PCR Assay for Accurate Quantification of Phosphorothioate Modified Sites in Bacterial DNA. Sci Rep 2019; 9:7485. [PMID: 31097783 PMCID: PMC6522622 DOI: 10.1038/s41598-019-44011-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/17/2019] [Indexed: 12/16/2022] Open
Abstract
DNA Phosphorothioate (PT), replacing a non-bridging phosphate oxygen atom with a sulfur atom, is one kind of common DNA modification in bacteria. Whole genome scale description of the location and frequency of PT modification is the key to understand its biological function. Herein we developed a novel method, named with iodine-induced cleavage quantitative real-time PCR (IC-qPCR), to evaluate the frequency of PT modification at a given site in bacterial DNA. The efficiency, dynamic range, sensitivity, reproducibility and accuracy of IC-qPCR were well tested and verified employing an E. coli B7A strain as example. The amplification efficiency of IC-qPCR assay ranged from 91% to 99% with a high correlation coefficient ≥0.99. The limit of quantification was determined as low as 10 copies per reaction for the 607710 and 1818096 sites, and 5 copies for the 302695 and 4120753 sites. Based on the developed IC-qPCR method, the modification frequency of four PTs in E. coli B7A was determined with high accuracy, and the results showed that the PT modification was partial and that the modification frequency varied among investigated PT sites. All these results showed that IC-qPCR was suitable for evaluating the PT modification, which would be helpful to further understand the biological function of PT modification.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Tao Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jinli Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jinjie Cui
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Delin You
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Litao Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China.
| |
Collapse
|
41
|
Wang L, Jiang S, Deng Z, Dedon PC, Chen S. DNA phosphorothioate modification-a new multi-functional epigenetic system in bacteria. FEMS Microbiol Rev 2019; 43:109-122. [PMID: 30289455 PMCID: PMC6435447 DOI: 10.1093/femsre/fuy036] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022] Open
Abstract
Synthetic phosphorothioate (PT) internucleotide linkages, in which a nonbridging oxygen is replaced by a sulphur atom, share similar physical and chemical properties with phosphodiesters but confer enhanced nuclease tolerance on DNA/RNA, making PTs a valuable biochemical and pharmacological tool. Interestingly, PT modification was recently found to occur naturally in bacteria in a sequence-selective and RP configuration-specific manner. This oxygen-sulphur swap is catalysed by the gene products of dndABCDE, which constitute a defence barrier with DndFGH in some bacterial strains that can distinguish and attack non-PT-modified foreign DNA, resembling DNA methylation-based restriction-modification (R-M) systems. Despite their similar defensive mechanisms, PT- and methylation-based R-M systems have evolved to target different consensus contexts in the host cell because when they share the same recognition sequences, the protective function of each can be impeded. The redox and nucleophilic properties of PT sulphur render PT modification a versatile player in the maintenance of cellular redox homeostasis, epigenetic regulation and environmental fitness. The widespread presence of dnd systems is considered a consequence of extensive horizontal gene transfer, whereas the lability of PT during oxidative stress and the susceptibility of PT to PT-dependent endonucleases provide possible explanations for the ubiquitous but sporadic distribution of PT modification in the bacterial world.
Collapse
Affiliation(s)
- Lianrong Wang
- Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuhan 430071, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, China
| | - Susu Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, China
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Masschusetts Avenue, Cambridge, Massachusetts, USA
| | - Shi Chen
- Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuhan 430071, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, China
| |
Collapse
|
42
|
Nie P, Li Z, Wang Y, Zhang Y, Zhao M, Luo J, Du S, Deng Z, Chen J, Wang Y, Chen S, Wang L. Gut microbiome interventions in human health and diseases. Med Res Rev 2019; 39:2286-2313. [PMID: 30994937 DOI: 10.1002/med.21584] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/27/2019] [Accepted: 03/24/2019] [Indexed: 02/06/2023]
Abstract
Ongoing studies have determined that the gut microbiota is a major factor influencing both health and disease. Host genetic factors and environmental factors contribute to differences in gut microbiota composition and function. Intestinal dysbiosis is a cause or a contributory cause for diseases in multiple body systems, ranging from the digestive system to the immune, cardiovascular, respiratory, and even nervous system. Investigation of pathogenesis has identified specific species or strains, bacterial genes, and metabolites that play roles in certain diseases and represent potential drug targets. As research progresses, gut microbiome-based diagnosis and therapy are proposed and applied, which might lead to considerable progress in precision medicine. We further discuss the limitations of current studies and potential solutions.
Collapse
Affiliation(s)
- Pengqing Nie
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.,Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Yimeng Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Yubing Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Mengna Zhao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Jie Luo
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shiming Du
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Yunfu Wang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.,Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China.,Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
43
|
Xiong L, Liu S, Chen S, Xiao Y, Zhu B, Gao Y, Zhang Y, Chen B, Luo J, Deng Z, Chen X, Wang L, Chen S. A new type of DNA phosphorothioation-based antiviral system in archaea. Nat Commun 2019; 10:1688. [PMID: 30975999 PMCID: PMC6459918 DOI: 10.1038/s41467-019-09390-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/07/2019] [Indexed: 01/21/2023] Open
Abstract
Archaea and Bacteria have evolved different defence strategies that target virtually all steps of the viral life cycle. The diversified virion morphotypes and genome contents of archaeal viruses result in a highly complex array of archaea-virus interactions. However, our understanding of archaeal antiviral activities lags far behind our knowledges of those in bacteria. Here we report a new archaeal defence system that involves DndCDEA-specific DNA phosphorothioate (PT) modification and the PbeABCD-mediated halt of virus propagation via inhibition of DNA replication. In contrast to the breakage of invasive DNA by DndFGH in bacteria, DndCDEA-PbeABCD does not degrade or cleave viral DNA. The PbeABCD-mediated PT defence system is widespread and exhibits extensive interdomain and intradomain gene transfer events. Our results suggest that DndCDEA-PbeABCD is a new type of PT-based virus resistance system, expanding the known arsenal of defence systems as well as our understanding of host-virus interactions.
Collapse
Affiliation(s)
- Lei Xiong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Siyi Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Si Chen
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, 430023, Wuhan, China
| | - Yao Xiao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Bochen Zhu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Yali Gao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Yujing Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Beibei Chen
- College of Life Sciences, Wuhan University, 430071, Wuhan, China
| | - Jie Luo
- Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
| | - Xiangdong Chen
- College of Life Sciences, Wuhan University, 430071, Wuhan, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China.
- Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China.
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China.
| |
Collapse
|
44
|
Wang F, Wang L, Zou X, Duan S, Li Z, Deng Z, Luo J, Lee SY, Chen S. Advances in CRISPR-Cas systems for RNA targeting, tracking and editing. Biotechnol Adv 2019; 37:708-729. [PMID: 30926472 DOI: 10.1016/j.biotechadv.2019.03.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/21/2022]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems, especially type II (Cas9) systems, have been widely used in gene/genome targeting. Modifications of Cas9 enable these systems to become platforms for precise DNA manipulations. However, the utilization of CRISPR-Cas systems in RNA targeting remains preliminary. The discovery of type VI CRISPR-Cas systems (Cas13) shed light on RNA-guided RNA targeting. Cas13d, the smallest Cas13 protein, with a length of only ~930 amino acids, is a promising platform for RNA targeting compatible with viral delivery systems. Much effort has also been made to develop Cas9, Cas13a and Cas13b applications for RNA-guided RNA targeting. The discovery of new RNA-targeting CRISPR-Cas systems as well as the development of RNA-targeting platforms with Cas9 and Cas13 will promote RNA-targeting technology substantially. Here, we review new advances in RNA-targeting CRISPR-Cas systems as well as advances in applications of these systems in RNA targeting, tracking and editing. We also compare these Cas protein-based technologies with traditional technologies for RNA targeting, tracking and editing. Finally, we discuss remaining questions and prospects for the future.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Xuan Zou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology, Yuseong-gu, 34141 Daejeon, Republic of Korea
| | - Suling Duan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China
| | - Zhiqiang Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China
| | - Jie Luo
- Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology, Yuseong-gu, 34141 Daejeon, Republic of Korea.
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China.
| |
Collapse
|
45
|
Xia S, Chen J, Liu L, Wei Y, Deng Z, Wang L, Chen S. Tight control of genomic phosphorothioate modification by the ATP-modulated autoregulation and reusability of DndB. Mol Microbiol 2019; 111:938-950. [PMID: 30552823 DOI: 10.1111/mmi.14186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2018] [Indexed: 10/27/2022]
Abstract
DNA phosphorothioate (PT) modification was recently identified to occur naturally in diverse bacteria and to be governed by DndABCDE proteins. The nuclease resistance as well as the redox and nucleophilic properties of PT sulfur make PT modification a versatile player in restriction-modification (R-M) defense, epigenetic regulation, environmental fitness and the maintenance of cellular redox homeostasis. In this study, we discovered that tight control of PT levels is mediated by the ATPase activity of DndB. The ATP-binding activity of DndB stimulates the dissociation of the DndB-DNA complex, allowing transcriptional initiation, whereas its ATP hydrolysis activity promotes the conversion of DndB-ATP to free DndB that is capable of rebinding to promoter DNA for transcriptional inhibition. Since sulfur incorporation is an ATP-consuming process, these activities provide an economical way to fine-tune PT modification in an ATP-sensing manner. To our knowledge, this ATP-mediated regulation is a rare example among DNA epigenetic modification systems; the features of autoregulation and the repeated usage of DndB allow the dedicated regulation of PT levels in response to cellular ATP concentrations, providing insight into PT function and its role in physiology.
Collapse
Affiliation(s)
- Sisi Xia
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Jun Chen
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Liqiong Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yue Wei
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| |
Collapse
|
46
|
Chi H, Wang X, Shao Y, Qin Y, Deng Z, Wang L, Chen S. Engineering and modification of microbial chassis for systems and synthetic biology. Synth Syst Biotechnol 2019; 4:25-33. [PMID: 30560208 PMCID: PMC6290258 DOI: 10.1016/j.synbio.2018.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/14/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022] Open
Abstract
Engineering and modifying synthetic microbial chassis is one of the best ways not only to unravel the fundamental principles of life but also to enhance applications in the health, medicine, agricultural, veterinary, and food industries. The two primary strategies for constructing a microbial chassis are the top-down approach (genome reduction) and the bottom-up approach (genome synthesis). Research programs on this topic have been funded in several countries. The 'Minimum genome factory' (MGF) project was launched in 2001 in Japan with the goal of constructing microorganisms with smaller genomes for industrial use. One of the best examples of the results of this project is E. coli MGF-01, which has a reduced-genome size and exhibits better growth and higher threonine production characteristics than the parental strain [1]. The 'cell factory' project was carried out from 1998 to 2002 in the Fifth Framework Program of the EU (European Union), which tried to comprehensively understand microorganisms used in the application field. One of the outstanding results of this project was the elucidation of proteins secreted by Bacillus subtilis, which was summarized as the 'secretome' [2]. The GTL (Genomes to Life) program began in 2002 in the United States. In this program, researchers aimed to create artificial cells both in silico and in vitro, such as the successful design and synthesis of a minimal bacterial genome by John Craig Venter's group [3]. This review provides an update on recent advances in engineering, modification and application of synthetic microbial chassis, with particular emphasis on the value of learning about chassis as a way to better understand life and improve applications.
Collapse
Affiliation(s)
- Haotian Chi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiaoli Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yue Shao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Ying Qin
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| |
Collapse
|
47
|
Petkowski JJ, Bains W, Seager S. Natural Products Containing 'Rare' Organophosphorus Functional Groups. Molecules 2019; 24:E866. [PMID: 30823503 PMCID: PMC6429109 DOI: 10.3390/molecules24050866] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
Phosphorous-containing molecules are essential constituents of all living cells. While the phosphate functional group is very common in small molecule natural products, nucleic acids, and as chemical modification in protein and peptides, phosphorous can form P⁻N (phosphoramidate), P⁻S (phosphorothioate), and P⁻C (e.g., phosphonate and phosphinate) linkages. While rare, these moieties play critical roles in many processes and in all forms of life. In this review we thoroughly categorize P⁻N, P⁻S, and P⁻C natural organophosphorus compounds. Information on biological source, biological activity, and biosynthesis is included, if known. This review also summarizes the role of phosphorylation on unusual amino acids in proteins (N- and S-phosphorylation) and reviews the natural phosphorothioate (P⁻S) and phosphoramidate (P⁻N) modifications of DNA and nucleotides with an emphasis on their role in the metabolism of the cell. We challenge the commonly held notion that nonphosphate organophosphorus functional groups are an oddity of biochemistry, with no central role in the metabolism of the cell. We postulate that the extent of utilization of some phosphorus groups by life, especially those containing P⁻N bonds, is likely severely underestimated and has been largely overlooked, mainly due to the technological limitations in their detection and analysis.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| | - William Bains
- Rufus Scientific, 37 The Moor, Melbourn, Royston, Herts SG8 6ED, UK.
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Physics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
48
|
Structural basis for the recognition of sulfur in phosphorothioated DNA. Nat Commun 2018; 9:4689. [PMID: 30409991 PMCID: PMC6224610 DOI: 10.1038/s41467-018-07093-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/12/2018] [Indexed: 12/23/2022] Open
Abstract
There have been very few reports on protein domains that specifically recognize sulfur. Here we present the crystal structure of the sulfur-binding domain (SBD) from the DNA phosphorothioation (PT)-dependent restriction endonuclease ScoMcrA. SBD contains a hydrophobic surface cavity that is formed by the aromatic ring of Y164, the pyrolidine ring of P165, and the non-polar side chains of four other residues that serve as lid, base, and wall of the cavity. The SBD and PT-DNA undergo conformational changes upon binding. The S187RGRR191 loop inserts into the DNA major groove to make contacts with the bases of the GPSGCC core sequence. Mutating key residues of SBD impairs PT-DNA association. More than 1000 sequenced microbial species from fourteen phyla contain SBD homologs. We show that three of these homologs bind PT-DNA in vitro and restrict PT-DNA gene transfer in vivo. These results show that SBD-like PT-DNA readers exist widely in prokaryotes.
Collapse
|
49
|
Lin KN, Grandhi TSP, Goklany S, Rege K. Chemotherapeutic Drug-Conjugated Microbeads Demonstrate Preferential Binding to Methylated Plasmid DNA. Biotechnol J 2018; 13:e1700701. [DOI: 10.1002/biot.201700701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/25/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Kevin N. Lin
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University; Tempe AZ 85287 USA
| | - Taraka Sai Pavan Grandhi
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University; Tempe AZ 85287 USA
| | - Sheba Goklany
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University; Tempe AZ 85287 USA
| | - Kaushal Rege
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University; Tempe AZ 85287 USA
| |
Collapse
|
50
|
Yan G, Chen X, Du S, Deng Z, Wang L, Chen S. Genetic mechanisms of arsenic detoxification and metabolism in bacteria. Curr Genet 2018; 65:329-338. [PMID: 30349994 DOI: 10.1007/s00294-018-0894-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/25/2018] [Accepted: 10/13/2018] [Indexed: 02/06/2023]
Abstract
Arsenic, distributed pervasively in the natural environment, is an extremely toxic substance which can severely impair the normal functions of living cells. Research on the genetic mechanisms of arsenic metabolism is of great importance for remediating arsenic-contaminated environments. Many organisms, including bacteria, have developed various strategies to tolerate arsenic, by either detoxifying this harmful element or utilizing it for energy generation. This review summarizes arsenic detoxification as well as arsenic respiratory metabolic pathways in bacteria and discusses novel arsenic resistance pathways in various bacterial strains. This knowledge provides insights into the mechanisms of arsenic biotransformation in bacteria. Multiple detoxification strategies among bacteria imply possible functional relationships among different arsenic detoxification/metabolism pathways. In addition, this review sheds light on the bioremediation of arsenic-contaminated environments and prevention of antibiotic resistance.
Collapse
Affiliation(s)
- Ge Yan
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xingxiang Chen
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Shiming Du
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zixin Deng
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Lianrong Wang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Shi Chen
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China. .,Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|