1
|
Argyris GA, Lluch Lafuente A, Tribastone M, Tschaikowski M, Vandin A. Reducing Boolean networks with backward equivalence. BMC Bioinformatics 2023; 24:212. [PMID: 37221494 DOI: 10.1186/s12859-023-05326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/05/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Boolean Networks (BNs) are a popular dynamical model in biology where the state of each component is represented by a variable taking binary values that express, for instance, activation/deactivation or high/low concentrations. Unfortunately, these models suffer from the state space explosion, i.e., there are exponentially many states in the number of BN variables, which hampers their analysis. RESULTS We present Boolean Backward Equivalence (BBE), a novel reduction technique for BNs which collapses system variables that, if initialized with same value, maintain matching values in all states. A large-scale validation on 86 models from two online model repositories reveals that BBE is effective, since it is able to reduce more than 90% of the models. Furthermore, on such models we also show that BBE brings notable analysis speed-ups, both in terms of state space generation and steady-state analysis. In several cases, BBE allowed the analysis of models that were originally intractable due to the complexity. On two selected case studies, we show how one can tune the reduction power of BBE using model-specific information to preserve all dynamics of interest, and selectively exclude behavior that does not have biological relevance. CONCLUSIONS BBE complements existing reduction methods, preserving properties that other reduction methods fail to reproduce, and vice versa. BBE drops all and only the dynamics, including attractors, originating from states where BBE-equivalent variables have been initialized with different activation values The remaining part of the dynamics is preserved exactly, including the length of the preserved attractors, and their reachability from given initial conditions, without adding any spurious behaviours. Given that BBE is a model-to-model reduction technique, it can be combined with further reduction methods for BNs.
Collapse
Affiliation(s)
- Georgios A Argyris
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Alberto Lluch Lafuente
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | | | - Max Tschaikowski
- Department of Computer Science, University of Aalborg, Aalborg, Denmark
| | - Andrea Vandin
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark.
- Department of Excellence EMbeDS and Institute of Economics, Sant'Anna School for Advanced Studies, Pisa, Italy.
| |
Collapse
|
2
|
Exploring the link between chronobiology and drug delivery: effects on cancer therapy. J Mol Med (Berl) 2021; 99:1349-1371. [PMID: 34213595 DOI: 10.1007/s00109-021-02106-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/01/2023]
Abstract
Circadian clock is an impressive timing system responsible for the control of several metabolic, physiological and behavioural processes. Nowadays, the connection between the circadian clock and cancer occurrence and development is consensual. Therefore, the inclusion of circadian timing into cancer therapy may potentially offer a more effective and less toxic approach. This way, chronotherapy has been shown to improve cancer treatment efficacy. Despite this relevant finding, its clinical application is poorly exploited. The conception of novel anticancer drug delivery systems and the combination of chronobiology with nanotechnology may provide a powerful tool to optimize cancer therapy, instigating the incorporation of the circadian timing into clinical practice towards a more personalized drug delivery. This review focuses on the recent advances in the field of cancer chronobiology, on the link between cancer and the disruption of circadian rhythms and on the promising targeted drug nanodelivery approaches aiming the clinical application of cancer chronotherapy.
Collapse
|
3
|
Waizmann T, Bortolussi L, Vandin A, Tribastone M. Improved estimations of stochastic chemical kinetics by finite-state expansion. Proc Math Phys Eng Sci 2021. [DOI: 10.1098/rspa.2020.0964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Stochastic reaction networks are a fundamental model to describe interactions between species where random fluctuations are relevant. The master equation provides the evolution of the probability distribution across the discrete state space consisting of vectors of population counts for each species. However, since its exact solution is often elusive, several analytical approximations have been proposed. The deterministic rate equation (DRE) gives a macroscopic approximation as a compact system of differential equations that estimate the average populations for each species, but it may be inaccurate in the case of nonlinear interaction dynamics. Here we propose finite-state expansion (FSE), an analytical method mediating between the microscopic and the macroscopic interpretations of a stochastic reaction network by coupling the master equation dynamics of a chosen subset of the discrete state space with the mean population dynamics of the DRE. An algorithm translates a network into an expanded one where each discrete state is represented as a further distinct species. This translation exactly preserves the stochastic dynamics, but the DRE of the expanded network can be interpreted as a correction to the original one. The effectiveness of FSE is demonstrated in models that challenge state-of-the-art techniques due to intrinsic noise, multi-scale populations and multi-stability.
Collapse
Affiliation(s)
| | - Luca Bortolussi
- Department of Mathematics and Geosciences, University of Trieste, Trieste 34127, Italy
| | - Andrea Vandin
- Sant’Anna School of Advanced Studies, Pisa 56127, Italy
- Department of Applied Mathematics and Computer Science, DTU Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | | |
Collapse
|
4
|
Ovchinnikov A, Pérez Verona I, Pogudin G, Tribastone M. CLUE: Exact maximal reduction of kinetic models by constrained lumping of differential equations. Bioinformatics 2021; 37:1732-1738. [PMID: 33532849 DOI: 10.1093/bioinformatics/btab010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/13/2020] [Accepted: 01/30/2021] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Detailed mechanistic models of biological processes can pose significant challenges for analysis and parameter estimations due to the large number of equations used to track the dynamics of all distinct configurations in which each involved biochemical species can be found. Model reduction can help tame such complexity by providing a lower-dimensional model in which each macro-variable can be directly related to the original variables. RESULTS We present CLUE, an algorithm for exact model reduction of systems of polynomial differential equations by constrained linear lumping. It computes the smallest dimensional reduction as a linear mapping of the state space such that the reduced model preserves the dynamics of user-specified linear combinations of the original variables. Even though CLUE works with nonlinear differential equations, it is based on linear algebra tools, which makes it applicable to high-dimensional models. Using case studies from the literature, we show how CLUE can substantially lower model dimensionality and help extract biologically intelligible insights from the reduction. AVAILABILITY An implementation of the algorithm and relevant resources to replicate the experiments herein reported are freely available for download at https://github.com/pogudingleb/CLUE. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alexey Ovchinnikov
- Department of Mathematics, CUNY Queens College, Queens, NY, 11367, and CUNY Graduate Center, New York, NY, 10016, USA
| | | | - Gleb Pogudin
- LIX, CNRS, École Polytechnique, Institute Polytechnique de Paris, Palaiseau, 91120, France
| | | |
Collapse
|
5
|
Lahiri SK, Wang C. SeQuaiA: A Scalable Tool for Semi-Quantitative Analysis of Chemical Reaction Networks. COMPUTER AIDED VERIFICATION 2020. [PMCID: PMC7363201 DOI: 10.1007/978-3-030-53288-8_32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical reaction networks (CRNs) play a fundamental role in analysis and design of biochemical systems. They induce continuous-time stochastic systems, whose analysis is a computationally intensive task. We present a tool that implements the recently proposed semi-quantitative analysis of CRN. Compared to the proposed theory, the tool implements the analysis so that it is more flexible and more precise. Further, its GUI offers a wide range of visualization procedures that facilitate the interpretation of the analysis results as well as guidance to refine the analysis. Finally, we define and implement a new notion of “mean” simulations, summarizing the typical behaviours of the system in a way directly comparable to standard simulations produced by other tools.
Collapse
Affiliation(s)
| | - Chao Wang
- University of Southern California, Los Angeles, CA USA
| |
Collapse
|
6
|
Erickson KE, Rukhlenko OS, Shahinuzzaman M, Slavkova KP, Lin YT, Suderman R, Stites EC, Anghel M, Posner RG, Barua D, Kholodenko BN, Hlavacek WS. Modeling cell line-specific recruitment of signaling proteins to the insulin-like growth factor 1 receptor. PLoS Comput Biol 2019; 15:e1006706. [PMID: 30653502 PMCID: PMC6353226 DOI: 10.1371/journal.pcbi.1006706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 01/30/2019] [Accepted: 12/09/2018] [Indexed: 12/27/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) typically contain multiple autophosphorylation sites in their cytoplasmic domains. Once activated, these autophosphorylation sites can recruit downstream signaling proteins containing Src homology 2 (SH2) and phosphotyrosine-binding (PTB) domains, which recognize phosphotyrosine-containing short linear motifs (SLiMs). These domains and SLiMs have polyspecific or promiscuous binding activities. Thus, multiple signaling proteins may compete for binding to a common SLiM and vice versa. To investigate the effects of competition on RTK signaling, we used a rule-based modeling approach to develop and analyze models for ligand-induced recruitment of SH2/PTB domain-containing proteins to autophosphorylation sites in the insulin-like growth factor 1 (IGF1) receptor (IGF1R). Models were parameterized using published datasets reporting protein copy numbers and site-specific binding affinities. Simulations were facilitated by a novel application of model restructuration, to reduce redundancy in rule-derived equations. We compare predictions obtained via numerical simulation of the model to those obtained through simple prediction methods, such as through an analytical approximation, or ranking by copy number and/or KD value, and find that the simple methods are unable to recapitulate the predictions of numerical simulations. We created 45 cell line-specific models that demonstrate how early events in IGF1R signaling depend on the protein abundance profile of a cell. Simulations, facilitated by model restructuration, identified pairs of IGF1R binding partners that are recruited in anti-correlated and correlated fashions, despite no inclusion of cooperativity in our models. This work shows that the outcome of competition depends on the physicochemical parameters that characterize pairwise interactions, as well as network properties, including network connectivity and the relative abundances of competitors. Cells rely on networks of interacting biomolecules to sense and respond to environmental perturbations and signals. However, it is unclear how information is processed to generate appropriate and specific responses to signals, especially given that these networks tend to share many components. For example, receptors that detect distinct ligands and regulate distinct cellular activities commonly interact with overlapping sets of downstream signaling proteins. Here, to investigate the downstream signaling of a well-studied receptor tyrosine kinase (RTK), the insulin-like growth factor 1 (IGF1) receptor (IGF1R), we formulated and analyzed 45 cell line-specific mathematical models, which account for recruitment of 18 different binding partners to six sites of receptor autophosphorylation in IGF1R. The models were parameterized using available protein copy number and site-specific affinity measurements, and restructured to allow for network generation. We find that recruitment is influenced by the protein abundance profile of a cell, with different patterns of recruitment in different cell lines. Furthermore, in a given cell line, we find that pairs of IGF1R binding partners may be recruited in a correlated or anti-correlated fashion. We demonstrate that the simulations of the model have greater predictive power than protein copy number and/or binding affinity data, and that even a simple analytical model cannot reproduce the predicted recruitment ranking obtained via simulations. These findings represent testable predictions and indicate that the outputs of IGF1R signaling depend on cell line-specific properties in addition to the properties that are intrinsic to the biomolecules involved.
Collapse
Affiliation(s)
- Keesha E. Erickson
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | | | - Md Shahinuzzaman
- Department of Chemical and Biochemical Engineering, University of Missouri Science and Technology, Rolla, Missouri, United States of America
| | - Kalina P. Slavkova
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Yen Ting Lin
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Ryan Suderman
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Edward C. Stites
- The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Marian Anghel
- Information Sciences Group, Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Richard G. Posner
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Dipak Barua
- Department of Chemical and Biochemical Engineering, University of Missouri Science and Technology, Rolla, Missouri, United States of America
| | - Boris N. Kholodenko
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
- School of Medicine and Medical Science and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - William S. Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
7
|
A Large-Scale Assessment of Exact Model Reduction in the BioModels Repository. COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY 2019. [DOI: 10.1007/978-3-030-31304-3_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Dalchau N, Szép G, Hernansaiz-Ballesteros R, Barnes CP, Cardelli L, Phillips A, Csikász-Nagy A. Computing with biological switches and clocks. NATURAL COMPUTING 2018; 17:761-779. [PMID: 30524215 PMCID: PMC6244770 DOI: 10.1007/s11047-018-9686-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The complex dynamics of biological systems is primarily driven by molecular interactions that underpin the regulatory networks of cells. These networks typically contain positive and negative feedback loops, which are responsible for switch-like and oscillatory dynamics, respectively. Many computing systems rely on switches and clocks as computational modules. While the combination of such modules in biological systems leads to a variety of dynamical behaviours, it is also driving development of new computing algorithms. Here we present a historical perspective on computation by biological systems, with a focus on switches and clocks, and discuss parallels between biology and computing. We also outline our vision for the future of biological computing.
Collapse
Affiliation(s)
| | | | | | | | - Luca Cardelli
- Microsoft Research, Cambridge, UK
- University of Oxford, Oxford, UK
| | | | - Attila Csikász-Nagy
- King’s College London, London, UK
- Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
9
|
Guaranteed Error Bounds on Approximate Model Abstractions Through Reachability Analysis. QUANTITATIVE EVALUATION OF SYSTEMS 2018. [DOI: 10.1007/978-3-319-99154-2_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|