1
|
Vecchione A, Devlin JC, Tasker C, Ramnarayan VR, Haase P, Conde E, Srivastava D, Atwal GS, Bruhns P, Murphy AJ, Sleeman MA, Limnander A, Lim WK, Asrat S, Orengo JM. IgE plasma cells are transcriptionally and functionally distinct from other isotypes. Sci Immunol 2024; 9:eadm8964. [PMID: 39241058 DOI: 10.1126/sciimmunol.adm8964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/18/2024] [Accepted: 08/08/2024] [Indexed: 09/08/2024]
Abstract
Understanding the phenotypic and transcriptional signature of immunoglobulin E (IgE)-producing cells is fundamental to plasma cell (PC) biology and development of therapeutic interventions for allergy. Here, using a mouse model of intranasal house dust mite (HDM) exposure, we showed that short-lived IgE PCs emerge in lung draining lymph nodes (dLNs) during early exposure (<3 weeks) and long-lived IgE PCs accumulate in the bone marrow (BM) with prolonged exposure (>7 weeks). IgE PCs had distinct surface and gene expression profiles in these different tissues compared with other Ig isotypes. IgE BMPCs up-regulated genes associated with prosurvival and BM homing, whereas IgE dLN PCs expressed genes associated with recent class switching and differentiation. IgE PCs also exhibited higher expression of endoplasmic reticulum (ER) stress and protein coding genes and higher antibody secretion rate when compared with IgG1. Overall, this study highlights the unique developmental path and transcriptional signature of short-lived and long-lived IgE PCs.
Collapse
Affiliation(s)
| | | | - Carley Tasker
- Regeneron Pharmaceuticals, Tarrytown, New York, 10591, USA
| | - Venkat Raman Ramnarayan
- Institut Pasteur, Université Paris Cité, Inserm UMR1222, Antibodies in Therapy and Pathology, 75015 Paris, France
| | - Paul Haase
- Institut Pasteur, Université Paris Cité, Inserm UMR1222, Antibodies in Therapy and Pathology, 75015 Paris, France
| | - Eva Conde
- Regeneron Pharmaceuticals, Tarrytown, New York, 10591, USA
| | | | | | - Pierre Bruhns
- Institut Pasteur, Université Paris Cité, Inserm UMR1222, Antibodies in Therapy and Pathology, 75015 Paris, France
| | | | | | | | - Wei Keat Lim
- Regeneron Pharmaceuticals, Tarrytown, New York, 10591, USA
| | | | - Jamie M Orengo
- Regeneron Pharmaceuticals, Tarrytown, New York, 10591, USA
| |
Collapse
|
2
|
Rahman RS, Wesemann DR. Whence and wherefore IgE? Immunol Rev 2024; 326:48-65. [PMID: 39041740 PMCID: PMC11436312 DOI: 10.1111/imr.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Despite the near ubiquitous presence of Ig-based antibodies in vertebrates, IgE is unique to mammals. How and why it emerged remains mysterious. IgE expression is greatly constrained compared to other IgH isotypes. While other IgH isotypes are relatively abundant, soluble IgE has a truncated half-life, and IgE plasma cells are mostly short-lived. Despite its rarity, IgE is consequential and can trigger life-threatening anaphylaxis. IgE production reflects a dynamic steady state with IgG memory B cells feeding short-lived IgE production. Emerging evidence suggests that IgE may also potentially be produced in longer-lived plasma cells as well, perhaps as an aberrancy stemming from its evolutionary roots from an antibody isotype that likely functioned more like IgG. As a late derivative of an ancient systemic antibody system, the benefits of IgE in mammals likely stems from the antibody system's adaptive recognition and response capability. However, the tendency for massive, systemic, and long-lived production, common to IgH isotypes like IgG, were likely not a good fit for IgE. The evolutionary derivation of IgE from an antibody system that for millions of years was good at antigen de-sensitization to now functioning as a highly specialized antigen-sensitization function required heavy restrictions on antibody production-insufficiency of which may contribute to allergic disease.
Collapse
Affiliation(s)
- Rifat S Rahman
- Department of Internal Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Duane R Wesemann
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Ford EE, Tieri D, Rodriguez OL, Francoeur NJ, Soto J, Kos JT, Peres A, Gibson WS, Silver CA, Deikus G, Hudson E, Woolley CR, Beckmann N, Charney A, Mitchell TC, Yaari G, Sebra RP, Watson CT, Smith ML. FLAIRR-Seq: A Method for Single-Molecule Resolution of Near Full-Length Antibody H Chain Repertoires. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1607-1619. [PMID: 37027017 PMCID: PMC10152037 DOI: 10.4049/jimmunol.2200825] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/14/2023] [Indexed: 04/08/2023]
Abstract
Current Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) using short-read sequencing strategies resolve expressed Ab transcripts with limited resolution of the C region. In this article, we present the near-full-length AIRR-seq (FLAIRR-seq) method that uses targeted amplification by 5' RACE, combined with single-molecule, real-time sequencing to generate highly accurate (99.99%) human Ab H chain transcripts. FLAIRR-seq was benchmarked by comparing H chain V (IGHV), D (IGHD), and J (IGHJ) gene usage, complementarity-determining region 3 length, and somatic hypermutation to matched datasets generated with standard 5' RACE AIRR-seq using short-read sequencing and full-length isoform sequencing. Together, these data demonstrate robust FLAIRR-seq performance using RNA samples derived from PBMCs, purified B cells, and whole blood, which recapitulated results generated by commonly used methods, while additionally resolving H chain gene features not documented in IMGT at the time of submission. FLAIRR-seq data provide, for the first time, to our knowledge, simultaneous single-molecule characterization of IGHV, IGHD, IGHJ, and IGHC region genes and alleles, allele-resolved subisotype definition, and high-resolution identification of class switch recombination within a clonal lineage. In conjunction with genomic sequencing and genotyping of IGHC genes, FLAIRR-seq of the IgM and IgG repertoires from 10 individuals resulted in the identification of 32 unique IGHC alleles, 28 (87%) of which were previously uncharacterized. Together, these data demonstrate the capabilities of FLAIRR-seq to characterize IGHV, IGHD, IGHJ, and IGHC gene diversity for the most comprehensive view of bulk-expressed Ab repertoires to date.
Collapse
Affiliation(s)
- Easton E. Ford
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - David Tieri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Oscar L. Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Nancy J. Francoeur
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Juan Soto
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Justin T. Kos
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Ayelet Peres
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - William S. Gibson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Catherine A. Silver
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Gintaras Deikus
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Elizabeth Hudson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Cassandra R. Woolley
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY
| | - Noam Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Alexander Charney
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Thomas C. Mitchell
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY
| | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Robert P. Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Corey T. Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Melissa L. Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| |
Collapse
|
4
|
Walsh ES, Tollison TS, Brochu HN, Shaw BI, Diveley KR, Chou H, Law L, Kirk AD, Gale M, Peng X. Single-Cell-Based High-Throughput Ig and TCR Repertoire Sequencing Analysis in Rhesus Macaques. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:762-771. [PMID: 34987112 PMCID: PMC8820446 DOI: 10.4049/jimmunol.2100824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/17/2021] [Indexed: 02/03/2023]
Abstract
Recent advancements in microfluidics and high-throughput sequencing technologies have enabled recovery of paired H and L chains of Igs and VDJ and VJ chains of TCRs from thousands of single cells simultaneously in humans and mice. Despite rhesus macaques being one of the most well-studied model organisms for the human adaptive immune response, high-throughput single-cell immune repertoire sequencing assays are not yet available due to the complexity of these polyclonal receptors. We used custom primers that capture all known rhesus macaque Ig and TCR isotypes and chains that are fully compatible with a commercial solution for single-cell immune repertoire profiling. Using these rhesus-specific assays, we sequenced Ig and TCR repertoires in >60,000 cells from cryopreserved rhesus PBMCs, splenocytes, and FACS-sorted B and T cells. We were able to recover every Ig isotype and TCR chain, measure clonal expansion in proliferating T cells, and pair Ig and TCR repertoires with gene expression profiles of the same single cells. Our results establish the ability to perform high-throughput immune repertoire analysis in rhesus macaques at the single-cell level.
Collapse
Affiliation(s)
- Evan S. Walsh
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607,Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC 27695
| | - Tammy S. Tollison
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607
| | - Hayden N. Brochu
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607,Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC 27695
| | - Brian I. Shaw
- Department of Surgery, Duke University, Durham, NC 27710
| | - Kayleigh R. Diveley
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607,Genetics Graduate Program, North Carolina State University, Raleigh, NC 27695
| | - Hsuan Chou
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607
| | - Lynn Law
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Allan D. Kirk
- Department of Surgery, Duke University, Durham, NC 27710
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA 98109,Center for Innate Immunity and Immune Diseases, University of Washington, Seattle, WA 98109,Washington National Primate Research Center, University of Washington, Seattle, WA 98121
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607,Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC 27695,Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
5
|
Udoye CC, Rau CN, Freye SM, Almeida LN, Vera-Cruz S, Othmer K, Korkmaz RÜ, Clauder AK, Lindemann T, Niebuhr M, Ott F, Kalies K, Recke A, Busch H, Fähnrich A, Finkelman FD, Manz RA. B-cell receptor physical properties affect relative IgG1 and IgE responses in mouse egg allergy. Mucosal Immunol 2022; 15:1375-1388. [PMID: 36114245 PMCID: PMC9705252 DOI: 10.1038/s41385-022-00567-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/10/2022] [Accepted: 09/01/2022] [Indexed: 02/04/2023]
Abstract
Mutated and unmutated IgE and IgG play different and partly opposing roles in allergy development, but the mechanisms controlling their relative production are incompletely understood. Here, we analyzed the IgE-response in murine food allergy. Deep sequencing of the complementary-determining region (CDR) repertoires indicated that an ongoing unmutated extrafollicular IgE response coexists with a germinal center response, even after long-lasting allergen challenges. Despite overall IgG1-dominance, a significant proportion of clonotypes contained several-fold more IgE than IgG1. Clonotypes with differential bias to either IgE or IgG1 showed distinct hypermutation and clonal expansion. Hypermutation rates were associated with different physiochemical binding properties of individual B-cell receptors (BCR). Increasing BCR signaling strength inhibited class switching from IgG1 to IgE in vitro, preferentially constraining IgE formation. These data indicate that antigen-binding properties of individual BCRs determine differential IgE hypermutation and IgE versus IgG1 production on the level of single B-cell clones.
Collapse
Affiliation(s)
- Christopher C. Udoye
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Christina N. Rau
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Sarah M. Freye
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Larissa N. Almeida
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Sarah Vera-Cruz
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Kai Othmer
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Rabia Ü. Korkmaz
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Ann-Katrin Clauder
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Timo Lindemann
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Markus Niebuhr
- grid.4562.50000 0001 0057 2672Institute for Anatomy, University of Lübeck, Lübeck, Germany
| | - Fabian Ott
- grid.4562.50000 0001 0057 2672Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Kathrin Kalies
- grid.4562.50000 0001 0057 2672Institute for Anatomy, University of Lübeck, Lübeck, Germany
| | - Andreas Recke
- Department of Dermatology, Allergology and Venereology, University off Lübeck, Lübeck, Germany
| | - Hauke Busch
- grid.4562.50000 0001 0057 2672Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Anke Fähnrich
- grid.4562.50000 0001 0057 2672Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Fred D. Finkelman
- grid.239573.90000 0000 9025 8099Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, University of Cincinnati College of Medicine and the Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Rudolf A. Manz
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
6
|
Wade-Vallance AK, Allen CDC. Intrinsic and extrinsic regulation of IgE B cell responses. Curr Opin Immunol 2021; 72:221-229. [PMID: 34216934 DOI: 10.1016/j.coi.2021.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/26/2021] [Accepted: 06/03/2021] [Indexed: 01/23/2023]
Abstract
Stringent regulation of IgE antibody production is critical for constraining allergic responses. This review discusses recent advances in understanding cell-intrinsic and extrinsic mechanisms that regulate the genesis and fate of IgE B cells. B cell-intrinsic regulation of IgE is orchestrated by the IgE B Cell Receptor (BCR). Through its antigen-independent signaling and low surface expression, the IgE BCR drives IgE B cells to differentiate into short-lived plasma cells and/or undergo apoptosis, restricting IgE-expressing cells from entering long-lived compartments. The pivotal extrinsic regulators of IgE responses are T follicular helper cells (TFH). TFH produce IL-4 and IL-21, which, respectively, are the major activating and inhibitory cytokines for IgE class-switching. Other newly identified T follicular subsets also contribute to IgE regulation. Although IgE responses are normally constrained, recent studies suggest that specific conditions can induce the formation of IgE responses with enhanced affinity or longevity, effectively 'breaking the rules' of IgE regulation.
Collapse
Affiliation(s)
- Adam K Wade-Vallance
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christopher D C Allen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
7
|
SoRelle JA, Chen Z, Wang J, Yue T, Choi JH, Wang K, Zhong X, Hildebrand S, Russell J, Scott L, Xu D, Zhan X, Bu CH, Wang T, Choi M, Tang M, Ludwig S, Zhan X, Li X, Moresco EMY, Beutler B. Dominant atopy risk mutations identified by mouse forward genetic analysis. Allergy 2021; 76:1095-1108. [PMID: 32810290 DOI: 10.1111/all.14564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Atopy, the overall tendency to become sensitized to an allergen, is heritable but seldom ascribed to mutations within specific genes. Atopic individuals develop abnormally elevated IgE responses to immunization with potential allergens. To gain insight into the genetic causes of atopy, we carried out a forward genetic screen for atopy in mice. METHODS We screened mice carrying homozygous and heterozygous N-ethyl-N-nitrosourea (ENU)-induced germline mutations for aberrant antigen-specific IgE and IgG1 production in response to immunization with the model allergen papain. Candidate genes were validated by independent gene mutation. RESULTS Of 31 candidate genes selected for investigation, the effects of mutations in 23 genes on papain-specific IgE or IgG1 were verified. Among the 20 verified genes influencing the IgE response, eight were necessary for the response, while 12 repressed IgE. Nine genes were not previously implicated in the IgE response. Fifteen genes encoded proteins contributing to IgE class switch recombination or B-cell receptor signaling. The precise roles of the five remaining genes (Flcn, Map1lc3b, Me2, Prkd2, and Scarb2) remain to be determined. Loss-of-function mutations in nine of the 12 genes limiting the IgE response were dominant or semi-dominant for the IgE phenotype but did not cause immunodeficiency in the heterozygous state. Using damaging allele frequencies for the corresponding human genes and in silico simulations (Monte Carlo) of undiscovered atopy mutations, we estimated the percentage of humans with heterozygous atopy risk mutations. CONCLUSIONS Up to 37% of individuals may be heterozygous carriers for at least one dominant atopy risk mutation.
Collapse
Affiliation(s)
- Jeffrey A. SoRelle
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
- Department of Pathology University of Texas Southwestern Medical Center Dallas TX USA
| | - Zhe Chen
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Jianhui Wang
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Tao Yue
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Jin Huk Choi
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
- Department of Immunology University of Texas Southwestern Medical Center Dallas TX USA
| | - Kuan‐wen Wang
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Xue Zhong
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Sara Hildebrand
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Jamie Russell
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Lindsay Scott
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Darui Xu
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Xiaowei Zhan
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Chun Hui Bu
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Tao Wang
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
- Department of Population and Data Sciences Quantitative Biomedical Research Center University of Texas Southwestern Medical Center Dallas TX USA
| | - Mihwa Choi
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Miao Tang
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Xiaoming Zhan
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Xiaohong Li
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Eva Marie Y. Moresco
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| |
Collapse
|
8
|
Yang Z, Wu CAM, Targ S, Allen CDC. IL-21 is a broad negative regulator of IgE class switch recombination in mouse and human B cells. J Exp Med 2020; 217:133860. [PMID: 32130409 PMCID: PMC7201927 DOI: 10.1084/jem.20190472] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 11/24/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
IgE antibodies may elicit potent allergic reactions, and their production is tightly controlled. The tendency to generate IgE has been thought to reflect the balance between type 1 and type 2 cytokines, with the latter promoting IgE. Here, we reevaluated this paradigm by a direct cellular analysis, demonstrating that IgE production was not limited to type 2 immune responses yet was generally constrained in vivo. IL-21 was a critical negative regulator of IgE responses, whereas IFN-γ, IL-6, and IL-10 were dispensable. Follicular helper T cells were the primary source of IL-21 that inhibited IgE responses by directly engaging the IL-21 receptor on B cells and triggering STAT3-dependent signaling. We reconciled previous discordant results between mouse and human B cells and revealed that the inhibition of IgE class switch recombination by IL-21 was attenuated by CD40 signaling, whereas IgG1 class switch recombination was potentiated by IL-21 in the context of limited IL-4. These findings establish key features of the extrinsic regulation of IgE production by cytokines.
Collapse
Affiliation(s)
- Zhiyong Yang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA.,Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
| | - Chung-An M Wu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA.,Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
| | - Sasha Targ
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA.,Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
| | - Christopher D C Allen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA.,Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA.,Department of Anatomy, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
9
|
Kanagaratham C, El Ansari YS, Lewis OL, Oettgen HC. IgE and IgG Antibodies as Regulators of Mast Cell and Basophil Functions in Food Allergy. Front Immunol 2020; 11:603050. [PMID: 33362785 PMCID: PMC7759531 DOI: 10.3389/fimmu.2020.603050] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Food allergy is a major health issue, affecting the lives of 8% of U.S. children and their families. There is an urgent need to identify the environmental and endogenous signals that induce and sustain allergic responses to ingested allergens. Acute reactions to foods are triggered by the activation of mast cells and basophils, both of which release inflammatory mediators that lead to a range of clinical manifestations, including gastrointestinal, cutaneous, and respiratory reactions as well as systemic anaphylaxis. Both of these innate effector cell types express the high affinity IgE receptor, FcϵRI, on their surface and are armed for adaptive antigen recognition by very-tightly bound IgE antibodies which, when cross-linked by polyvalent allergen, trigger degranulation. These cells also express inhibitory receptors, including the IgG Fc receptor, FcγRIIb, that suppress their IgE-mediated activation. Recent studies have shown that natural resolution of food allergies is associated with increasing food-specific IgG levels. Furthermore, oral immunotherapy, the sequential administration of incrementally increasing doses of food allergen, is accompanied by the strong induction of allergen-specific IgG antibodies in both human subjects and murine models. These can deliver inhibitory signals via FcγRIIb that block IgE-induced immediate food reactions. In addition to their role in mediating immediate hypersensitivity reactions, mast cells and basophils serve separate but critical functions as adjuvants for type 2 immunity in food allergy. Mast cells and basophils, activated by IgE, are key sources of IL-4 that tilts the immune balance away from tolerance and towards type 2 immunity by promoting the induction of Th2 cells along with the innate effectors of type 2 immunity, ILC2s, while suppressing the development of regulatory T cells and driving their subversion to a pathogenic pro-Th2 phenotype. This adjuvant effect of mast cells and basophils is suppressed when inhibitory signals are delivered by IgG antibodies signaling via FcγRIIb. This review summarizes current understanding of the immunoregulatory effects of mast cells and basophils and how these functions are modulated by IgE and IgG antibodies. Understanding these pathways could provide important insights into innovative strategies for preventing and/or reversing food allergy in patients.
Collapse
Affiliation(s)
- Cynthia Kanagaratham
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Yasmeen S. El Ansari
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Owen L. Lewis
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Hans C. Oettgen
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Schmitt ME, Lutz J, Haase P, Bösl MR, Wienands J, Engels N, Voehringer D. The B-cell antigen receptor of IgE-switched plasma cells regulates memory IgE responses. J Allergy Clin Immunol 2020; 146:642-651.e5. [DOI: 10.1016/j.jaci.2020.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022]
|
11
|
Gowthaman U, Chen JS, Eisenbarth SC. Regulation of IgE by T follicular helper cells. J Leukoc Biol 2020; 107:409-418. [PMID: 31965637 DOI: 10.1002/jlb.3ri1219-425r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022] Open
Abstract
Allergies to food and environmental antigens have steeply grown to epidemic proportions. IgE antibodies are key mediators of allergic disease, including life-threatening anaphylaxis. There is now compelling evidence that one of the hallmarks of anaphylaxis-inducing IgE molecules is their high affinity for allergen, and the cellular pathway to high-affinity IgE is typically through sequential switching of IgG B cells. Further, in contrast to the previously held paradigm that a subset of CD4+ T cells called Th2 cells promotes IgE responses, recent studies suggest that T follicular helper cells are crucial for inducing anaphylactic IgE. Here we discuss recent studies that have enabled us to understand the nature, induction, and regulation of this enigmatic antibody isotype in allergic sensitization.
Collapse
Affiliation(s)
- Uthaman Gowthaman
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jennifer S Chen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
12
|
Levels MJ, Fehres CM, van Baarsen LG, van Uden NO, Germar K, O'Toole TG, Blijdorp IC, Semmelink JF, Doorenspleet ME, Bakker AQ, Krasavin M, Tomilin A, Brouard S, Spits H, Baeten DL, Yeremenko NG. BOB.1 controls memory B-cell fate in the germinal center reaction. J Autoimmun 2019; 101:131-144. [DOI: 10.1016/j.jaut.2019.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 11/30/2022]
|
13
|
Saunders SP, Ma EGM, Aranda CJ, Curotto de Lafaille MA. Non-classical B Cell Memory of Allergic IgE Responses. Front Immunol 2019; 10:715. [PMID: 31105687 PMCID: PMC6498404 DOI: 10.3389/fimmu.2019.00715] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/18/2019] [Indexed: 02/03/2023] Open
Abstract
The long-term effectiveness of antibody responses relies on the development of humoral immune memory. Humoral immunity is maintained by long-lived plasma cells that secrete antigen-specific antibodies, and memory B cells that rapidly respond to antigen re-exposure by generating new plasma cells and memory B cells. Developing effective immunological memory is essential for protection against pathogens, and is the basis of successful vaccinations. IgE responses have evolved for protection against helminth parasites infections and against toxins, but IgE is also a potent mediator of allergic diseases. There has been a dramatic increase in the incidence of allergic diseases in recent decades and this has provided the impetus to study the nature of IgE antibody responses. As will be discussed in depth in this review, the IgE memory response has unique features that distinguish it from classical B cell memory.
Collapse
Affiliation(s)
- Sean P Saunders
- Division of Pulmonary, Critical Care and Sleep Medicine, Laboratory of Allergy and Inflammation, Department of Medicine, New York University, New York, NY, United States
| | - Erica G M Ma
- Division of Pulmonary, Critical Care and Sleep Medicine, Laboratory of Allergy and Inflammation, Department of Medicine, New York University, New York, NY, United States.,Sackler Institute of Graduate Biomedical Sciences, New York University, New York, NY, United States
| | - Carlos J Aranda
- Division of Pulmonary, Critical Care and Sleep Medicine, Laboratory of Allergy and Inflammation, Department of Medicine, New York University, New York, NY, United States
| | - Maria A Curotto de Lafaille
- Division of Pulmonary, Critical Care and Sleep Medicine, Laboratory of Allergy and Inflammation, Department of Medicine, New York University, New York, NY, United States.,Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
14
|
Maity PC, Datta M, Nicolò A, Jumaa H. Isotype Specific Assembly of B Cell Antigen Receptors and Synergism With Chemokine Receptor CXCR4. Front Immunol 2019. [PMID: 30619343 DOI: 10.3389/fimmu.2018.02988.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Expression of the membrane-bound form of the immunoglobulin (Ig) as part of the antigen receptor is indispensable for both the development and the effector function of B cells. Among five known isotypes, IgM and IgD are the common B cell antigen receptors (BCRs) that are co-expressed in naïve B cells. Despite having identical antigen specificity and being associated with the same signaling heterodimer Igα/Igβ (CD79a/CD79b), IgM and IgD-BCR isotypes functionally differ from each other in the manner of antigen binding, the formation of isolated nanoclusters and in their interaction with co-receptors such as CD19 and CXCR4 on the plasma membrane. With recent developments in experimental techniques, it is now possible to investigate the nanoscale organization of the BCR and better understand early events of BCR engagement. Interestingly, the cytoskeleton network beneath the membrane controls the BCR isotype-specific organization and its interaction with co-receptors. BCR triggering results in reorganization of the cytoskeleton network, which is further modulated by isotype-specific signals from co-receptors. For instance, IgD-BCR is closely associated with CXCR4 on mature B cells and this close proximity allows CXCR4 to employ the BCR machinery as signaling hub. In this review, we discuss the functional specificity and nanocluster assembly of BCR isotypes and the consequences of cross-talk between CXCR4 and IgD-BCR. Furthermore, given the role of BCR and CXCR4 signaling in the development and survival of leukemic B cells, we discuss the consequences of the cross-talk between CXCR4 and the BCR for controlling the growth of transformed B cells.
Collapse
Affiliation(s)
| | - Moumita Datta
- Institute of Immunology, Ulm University, Ulm, Germany
| | | | - Hassan Jumaa
- Institute of Immunology, Ulm University, Ulm, Germany
| |
Collapse
|
15
|
Maity PC, Datta M, Nicolò A, Jumaa H. Isotype Specific Assembly of B Cell Antigen Receptors and Synergism With Chemokine Receptor CXCR4. Front Immunol 2019; 9:2988. [PMID: 30619343 PMCID: PMC6305424 DOI: 10.3389/fimmu.2018.02988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
Expression of the membrane-bound form of the immunoglobulin (Ig) as part of the antigen receptor is indispensable for both the development and the effector function of B cells. Among five known isotypes, IgM and IgD are the common B cell antigen receptors (BCRs) that are co-expressed in naïve B cells. Despite having identical antigen specificity and being associated with the same signaling heterodimer Igα/Igβ (CD79a/CD79b), IgM and IgD-BCR isotypes functionally differ from each other in the manner of antigen binding, the formation of isolated nanoclusters and in their interaction with co-receptors such as CD19 and CXCR4 on the plasma membrane. With recent developments in experimental techniques, it is now possible to investigate the nanoscale organization of the BCR and better understand early events of BCR engagement. Interestingly, the cytoskeleton network beneath the membrane controls the BCR isotype-specific organization and its interaction with co-receptors. BCR triggering results in reorganization of the cytoskeleton network, which is further modulated by isotype-specific signals from co-receptors. For instance, IgD-BCR is closely associated with CXCR4 on mature B cells and this close proximity allows CXCR4 to employ the BCR machinery as signaling hub. In this review, we discuss the functional specificity and nanocluster assembly of BCR isotypes and the consequences of cross-talk between CXCR4 and IgD-BCR. Furthermore, given the role of BCR and CXCR4 signaling in the development and survival of leukemic B cells, we discuss the consequences of the cross-talk between CXCR4 and the BCR for controlling the growth of transformed B cells.
Collapse
Affiliation(s)
| | - Moumita Datta
- Institute of Immunology, Ulm University, Ulm, Germany
| | | | - Hassan Jumaa
- Institute of Immunology, Ulm University, Ulm, Germany
| |
Collapse
|
16
|
Kovaltsuk A, Leem J, Kelm S, Snowden J, Deane CM, Krawczyk K. Observed Antibody Space: A Resource for Data Mining Next-Generation Sequencing of Antibody Repertoires. THE JOURNAL OF IMMUNOLOGY 2018; 201:2502-2509. [PMID: 30217829 DOI: 10.4049/jimmunol.1800708] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/19/2018] [Indexed: 11/19/2022]
Abstract
Abs are immune system proteins that recognize noxious molecules for elimination. Their sequence diversity and binding versatility have made Abs the primary class of biopharmaceuticals. Recently, it has become possible to query their immense natural diversity using next-generation sequencing of Ig gene repertoires (Ig-seq). However, Ig-seq outputs are currently fragmented across repositories and tend to be presented as raw nucleotide reads, which means nontrivial effort is required to reuse the data for analysis. To address this issue, we have collected Ig-seq outputs from 55 studies, covering more than half a billion Ab sequences across diverse immune states, organisms (primarily human and mouse), and individuals. We have sorted, cleaned, annotated, translated, and numbered these sequences and make the data available via our Observed Antibody Space (OAS) resource at http://antibodymap.org The data within OAS will be regularly updated with newly released Ig-seq datasets. We believe OAS will facilitate data mining of immune repertoires for improved understanding of the immune system and development of better biotherapeutics.
Collapse
Affiliation(s)
- Aleksandr Kovaltsuk
- Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom; and
| | - Jinwoo Leem
- Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom; and
| | | | | | - Charlotte M Deane
- Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom; and
| | - Konrad Krawczyk
- Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom; and
| |
Collapse
|
17
|
Affiliation(s)
- Niklas Engels
- Institute of Cellular & Molecular Immunology; University Medical Center Göttingen; Göttingen Germany
| | - Jürgen Wienands
- Institute of Cellular & Molecular Immunology; University Medical Center Göttingen; Göttingen Germany
| |
Collapse
|
18
|
Laffleur B, Debeaupuis O, Dalloul Z, Cogné M. B Cell Intrinsic Mechanisms Constraining IgE Memory. Front Immunol 2017; 8:1277. [PMID: 29180995 PMCID: PMC5694035 DOI: 10.3389/fimmu.2017.01277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022] Open
Abstract
Memory B cells and long-lived plasma cells are key elements of adaptive humoral immunity. Regardless of the immunoglobulin class produced, these cells can ensure long-lasting protection but also long-lasting immunopathology, thus requiring tight regulation of their generation and survival. Among all antibody classes, this is especially true for IgE, which stands as the most potent, and can trigger dramatic inflammatory reactions even when present in minute amounts. IgE responses and memory crucially protect against parasites and toxic components of venoms, conferring selective advantages and explaining their conservation in all mammalian species despite a parallel broad spectrum of IgE-mediated immunopathology. Long-term memory of sensitization and anaphylactic responses to allergens constitute the dark side of IgE responses, which can trigger multiple acute or chronic pathologic manifestations, some punctuated with life-threatening events. This Janus face of the IgE response and memory, both necessary and potentially dangerous, thus obviously deserves the most elaborated self-control schemes.
Collapse
Affiliation(s)
- Brice Laffleur
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | | | - Zeinab Dalloul
- UMR 7276 Centre National de la Recherche Scientifique: Contrôle de la Réponse Immune B et des Lymphoproliférations, Université de Limoges, Limoges, France
| | - Michel Cogné
- UMR 7276 Centre National de la Recherche Scientifique: Contrôle de la Réponse Immune B et des Lymphoproliférations, Université de Limoges, Limoges, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|