1
|
Haake M, Reuillard B, Chavarot-Kerlidou M, Costentin C, Artero V. Proton Relays in Molecular Catalysis for Hydrogen Evolution and Oxidation: Lessons From the Mimicry of Hydrogenases and Electrochemical Kinetic Analyses. Angew Chem Int Ed Engl 2024; 63:e202413910. [PMID: 39555743 DOI: 10.1002/anie.202413910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 11/19/2024]
Abstract
The active sites of metalloenzymes involved in small molecules activation often contain pendant bases that act as proton relay promoting proton-coupled electron-transfer processes. Here we focus on hydrogenases and on the reactions they catalyze, i. e. the hydrogen evolution and oxidation reactions. After a short description of these enzymes, we review some of the various biomimetic and bioinspired molecular systems that contain proton relays. We then provide the formal electrochemical framework required to decipher the key role of such proton relay to enhance catalysis in a single direction and discuss the few systems active for H2 evolution for which quantitative kinetic data are available. We finally highlight key parameters required to reach bidirectional catalysis (both hydrogen evolution and hydrogen oxidation catalyzed) and then transition to reversible catalysis (both reactions catalyzed in a narrow potential range) as well as illustrate these features on few systems from the literature.
Collapse
Affiliation(s)
- Matthieu Haake
- Univ. Grenoble. Alpes, CNRS, CEA, IRIG, L, aboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| | - Bertrand Reuillard
- Univ. Grenoble. Alpes, CNRS, CEA, IRIG, L, aboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| | - Murielle Chavarot-Kerlidou
- Univ. Grenoble. Alpes, CNRS, CEA, IRIG, L, aboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| | - Cyrille Costentin
- Département de Chimie Moléculaire, Univ. Grenoble. Alpes, CNRS, 38000, Grenoble, France
| | - Vincent Artero
- Univ. Grenoble. Alpes, CNRS, CEA, IRIG, L, aboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| |
Collapse
|
2
|
Zarcone SR, Zhang Z, Handunneththige S, Ni Z, Bhuvanesh N, Nippe M, Meyer K, Hall MB, Gladysz JA. A Caged Neutral 17-Valence-Electron Iron(I) Radical [Fe(CO) 2(Cl)(P((CH 2) 10) 3P)] •: Synthetic, Structural, Spectroscopic, Redox, and Computational Studies. Inorg Chem 2024; 63:16313-16326. [PMID: 39163584 PMCID: PMC11379347 DOI: 10.1021/acs.inorgchem.4c02275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
UV irradiation of yellow CH2Cl2 solutions of trans-Fe(CO)3(P((CH2)10)3P) (2a) and PMe3 (10 equiv) gives, in addition to the previously reported dibridgehead diphosphine P((CH2)10)3P (46%), a green paramagnetic complex that crystallography shows to be the trigonal-bipyramidal iron(I) radical trans-[Fe(CO)2(Cl)(P((CH2)10)3P)]• (1a•; 31% after workup). This is a rare example of an isolable species of the formula [Fe(CO)4-n(L)n(X)]• (n = 0-3, L = two-electron-donor ligand; X = one-electron-donor ligand). Analogous precursors with longer P(CH2)nP segments (n = 12, 14, 16, 18) give only the demetalated diphosphines, and a rationale is proposed. The magnetic susceptibility of 1a•, assayed by Evans' method and SQUID measurements, indicates a spin (S) of 1/2. Cyclic voltammetry shows that 1a• undergoes a partially reversible one-electron oxidation, but no facile reduction. The UV-visible, EPR, and 57Fe Mössbauer spectra are analyzed in detail. Complex 2a is similarly studied, and, despite the extra valence electron, exhibits a comparable oxidation potential (ΔE1/2 ≤ 0.04 V). The crystal structure shows a cage conformation, solvation level, disorder motif, and unit cell parameters essentially identical to those of 1a•. DFT calculations provide much insight regarding the structural, redox, and spectroscopic properties.
Collapse
Affiliation(s)
- Samuel R Zarcone
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Zihan Zhang
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Suhashini Handunneththige
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Zhen Ni
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Michael Nippe
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Michael B Hall
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - John A Gladysz
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| |
Collapse
|
3
|
Jana M, Zheng X, Le T, Quiroz M, Guererro‐Almaraz P, Darensbourg DJ, Darensbourg MY. Bond Trading: Intramolecular Metal and Ligand Exchange within a NO/Ni/Co Complex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307113. [PMID: 38044312 PMCID: PMC10853699 DOI: 10.1002/advs.202307113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Indexed: 12/05/2023]
Abstract
With the goal of generating hetero-redox levels on metals as well as on nitric oxide (NO), metallodithiolate (N2 S2 )CoIII (NO- ), N2 S2 = N,N- dibenzyl-3,7-diazanonane-1,9-dithiolate, is introduced as ligand to a well-characterized labile [Ni0 (NO)+ ] synthon. The reaction between [Ni0 (NO+ )] and [CoIII (NO- )] has led to a remarkable electronic and ligand redistribution to form a heterobimetallic dinitrosyl cobalt [(N2 S2 )NiII ∙Co(NO)2 ]+ complex with formal two electron oxidation state switches concomitant with the nickel extraction or transfer as NiII into the N2 S2 ligand binding site. To date, this is the first reported heterobimetallic cobalt dinitrosyl complex.
Collapse
Affiliation(s)
- Manish Jana
- Department of ChemistryTexas A&M UniversityCollege StationTX77843USA
| | - Xueyan Zheng
- Department of ChemistryTexas A&M UniversityCollege StationTX77843USA
| | - Trung Le
- Department of ChemistryTexas A&M UniversityCollege StationTX77843USA
| | - Manuel Quiroz
- Department of ChemistryTexas A&M UniversityCollege StationTX77843USA
| | | | | | | |
Collapse
|
4
|
Liao CJ, Tseng YT, Cheng YA, Dayao LA, Iffland-Mühlhaus L, Gee LB, Ribson RD, Chan TS, Apfel UP, Lu TT. Ligand Control of Dinitrosyl Iron Complexes for Selective Superoxide-Mediated Nitric Oxide Monooxygenation and Superoxide-Dioxygen Interconversion. J Am Chem Soc 2023; 145:20389-20402. [PMID: 37683125 DOI: 10.1021/jacs.3c05577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Through nitrosylation of [Fe-S] proteins, or the chelatable iron pool, a dinitrosyl iron unit (DNIU) [Fe(NO)2] embedded in the form of low-molecular-weight/protein-bound dinitrosyl iron complexes (DNICs) was discovered as a metallocofactor assembled under inflammatory conditions with elevated levels of nitric oxide (NO) and superoxide (O2-). In an attempt to gain biomimetic insights into the unexplored transformations of the DNIU under inflammation, we investigated the reactivity toward O2- by a series of DNICs [(NO)2Fe(μ-MePyr)2Fe(NO)2] (1) and [(NO)2Fe(μ-SEt)2Fe(NO)2] (3). During the superoxide-induced conversion of DNIC 1 into DNIC [(K-18-crown-6-ether)2(NO2)][Fe(μ-MePyr)4(μ-O)2(Fe(NO)2)4] (2-K-crown) and a [Fe3+(MePyr)x(NO2)y(O)z]n adduct, stoichiometric NO monooxygenation yielding NO2- occurs without the transient formation of peroxynitrite-derived •OH/•NO2 species. To study the isoelectronic reaction of O2(g) and one-electron-reduced DNIC 1, a DNIC featuring an electronically localized {Fe(NO)2}9-{Fe(NO)2}10 electronic structure, [K-18-crown-6-ether][(NO)2Fe(μ-MePyr)2Fe(NO)2] (1-red), was successfully synthesized and characterized. Oxygenation of DNIC 1-red leads to the similar assembly of DNIC 2-K-crown, of which the electronic structure is best described as paramagnetic with weak antiferromagnetic coupling among the four S = 1/2 {FeIII(NO-)2}9 units and S = 5/2 Fe3+ center. In contrast to DNICs 1 and 1-red, DNICs 3 and [K-18-crown-6-ether][(NO)2Fe(μ-SEt)2Fe(NO)2] (3-red) display a reversible equilibrium of "3 + O2- ⇋ 3-red + O2(g)", which is ascribed to the covalent [Fe(μ-SEt)2Fe] core and redox-active [Fe(NO)2] unit. Based on this study, the supporting/bridging ligands in dinuclear DNIC 1/3 (or 1-red/3-red) control the selective monooxygenation of NO and redox interconversion between O2- and O2 during reaction with O2- (or O2).
Collapse
Affiliation(s)
- Cheng-Jhe Liao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Ting Tseng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-An Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Loise Ann Dayao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Linda Iffland-Mühlhaus
- Department of Chemistry and Biochemistry, Inorganic Chemistry I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Leland B Gee
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ryan D Ribson
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Ulf-Peter Apfel
- Department of Chemistry and Biochemistry, Inorganic Chemistry I, Ruhr-Universität Bochum, 44801 Bochum, Germany
- Department of Electrosynthesis, Fraunhofer UMSICHT, 46047 Oberhausen, Germany
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
5
|
Tseng YT, Pelmenschikov V, Iffland-Mühlhaus L, Calabrese D, Chang YC, Laun K, Pao CW, Sergueev I, Yoda Y, Liaw WF, Chen CH, Hsu IJ, Apfel UP, Caserta G, Lauterbach L, Lu TT. Substrate-Gated Transformation of a Pre-Catalyst into an Iron-Hydride Intermediate [(NO) 2(CO)Fe(μ-H)Fe(CO)(NO) 2] - for Catalytic Dehydrogenation of Dimethylamine Borane. Inorg Chem 2023; 62:769-781. [PMID: 36580657 DOI: 10.1021/acs.inorgchem.2c03278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Continued efforts are made on the development of earth-abundant metal catalysts for dehydrogenation/hydrolysis of amine boranes. In this study, complex [K-18-crown-6-ether][(NO)2Fe(μ-MePyr)(μ-CO)Fe(NO)2] (3-K-crown, MePyr = 3-methylpyrazolate) was explored as a pre-catalyst for the dehydrogenation of dimethylamine borane (DMAB). Upon evolution of H2(g) from DMAB triggered by 3-K-crown, parallel conversion of 3-K-crown into [(NO)2Fe(N,N'-MePyrBH2NMe2)]- (5) and an iron-hydride intermediate [(NO)2(CO)Fe(μ-H)Fe(CO)(NO)2]- (A) was evidenced by X-ray diffraction/nuclear magnetic resonance/infrared/nuclear resonance vibrational spectroscopy experiments and supported by density functional theory calculations. Subsequent transformation of A into complex [(NO)2Fe(μ-CO)2Fe(NO)2]- (6) is synchronized with the deactivated generation of H2(g). Through reaction of complex [Na-18-crown-6-ether][(NO)2Fe(η2-BH4)] (4-Na-crown) with CO(g) as an alternative synthetic route, isolated intermediate [Na-18-crown-6-ether][(NO)2(CO)Fe(μ-H)Fe(CO)(NO)2] (A-Na-crown) featuring catalytic reactivity toward dehydrogenation of DMAB supports a substrate-gated transformation of a pre-catalyst [(NO)2Fe(μ-MePyr)(μ-CO)Fe(NO)2]- (3) into the iron-hydride species A as an intermediate during the generation of H2(g).
Collapse
Affiliation(s)
- Yu-Ting Tseng
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.,Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | - Linda Iffland-Mühlhaus
- Department of Chemistry and Biochemistry, Inorganic Chemistry Ι, Ruhr-Universität Bochum, Bochum 44801, Germany
| | - Donato Calabrese
- Institute of Applied Microbiology, RWTH Aachen University, Aachen 52074, Germany
| | - Yu-Che Chang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Konstantin Laun
- Institut für Chemie, Technische Universität Berlin, Berlin 10623, Germany
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Ilya Sergueev
- Deutsches Elektronen-Synchrotron DESY, Hamburg D-22607, Germany
| | | | - Wen-Feng Liaw
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chien-Hong Chen
- Department of Medical Applied Chemistry, Chung Shan Medical University and Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - I-Jui Hsu
- Department of Molecular Science and Engineering, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Ulf-Peter Apfel
- Department of Chemistry and Biochemistry, Inorganic Chemistry Ι, Ruhr-Universität Bochum, Bochum 44801, Germany.,Department for Electrosynthesis, Fraunhofer UMSICHT, Oberhausen 46047, Germany
| | - Giorgio Caserta
- Institut für Chemie, Technische Universität Berlin, Berlin 10623, Germany
| | - Lars Lauterbach
- Institute of Applied Microbiology, RWTH Aachen University, Aachen 52074, Germany
| | - Tsai-Te Lu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.,Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
6
|
Rutz A, Das CK, Fasano A, Jaenecke J, Yadav S, Apfel UP, Engelbrecht V, Fourmond V, Léger C, Schäfer LV, Happe T. Increasing the O 2 Resistance of the [FeFe]-Hydrogenase CbA5H through Enhanced Protein Flexibility. ACS Catal 2022; 13:856-865. [PMID: 36733639 PMCID: PMC9886219 DOI: 10.1021/acscatal.2c04031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/08/2022] [Indexed: 12/29/2022]
Abstract
The high turnover rates of [FeFe]-hydrogenases under mild conditions and at low overpotentials provide a natural blueprint for the design of hydrogen catalysts. However, the unique active site (H-cluster) degrades upon contact with oxygen. The [FeFe]-hydrogenase fromClostridium beijerinckii (CbA5H) is characterized by the flexibility of its protein structure, which allows a conserved cysteine to coordinate to the active site under oxidative conditions. Thereby, intrinsic cofactor degradation induced by dioxygen is minimized. However, the protection from O2 is only partial, and the activity of the enzyme decreases upon each exposure to O2. By using site-directed mutagenesis in combination with electrochemistry, ATR-FTIR spectroscopy, and molecular dynamics simulations, we show that the kinetics of the conversion between the oxygen-protected inactive state (cysteine-bound) and the oxygen-sensitive active state can be accelerated by replacing a surface residue that is very distant from the active site. This sole exchange of methionine for a glutamate residue leads to an increased resistance of the hydrogenase to dioxygen. With our study, we aim to understand how local modifications of the protein structure can have a crucial impact on protein dynamics and how they can control the reactivity of inorganic active sites through outer sphere effects.
Collapse
Affiliation(s)
- Andreas Rutz
- Photobiotechnology,
Department of Plant Biochemistry, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Chandan K. Das
- Theoretical
Chemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Andrea Fasano
- Laboratoire
de Bioénergétique et Ingénierie des Protéines, CNRS, Aix-Marseille Université, Institut de
Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Jan Jaenecke
- Photobiotechnology,
Department of Plant Biochemistry, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Shanika Yadav
- Inorganic
Chemistry Ι, Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Ulf-Peter Apfel
- Inorganic
Chemistry Ι, Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany,Fraunhofer
UMSICHT, 46047 Oberhausen, Germany
| | - Vera Engelbrecht
- Photobiotechnology,
Department of Plant Biochemistry, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Vincent Fourmond
- Laboratoire
de Bioénergétique et Ingénierie des Protéines, CNRS, Aix-Marseille Université, Institut de
Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Christophe Léger
- Laboratoire
de Bioénergétique et Ingénierie des Protéines, CNRS, Aix-Marseille Université, Institut de
Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Lars V. Schäfer
- Theoretical
Chemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Thomas Happe
- Photobiotechnology,
Department of Plant Biochemistry, Ruhr-Universität
Bochum, 44801 Bochum, Germany,
| |
Collapse
|
7
|
Pathak K, Mishra S, Bairagi S, Rajeshwaree B, Dutta A, Ghosh S. Thiolate-Bridged Heterodinuclear Manganese–Cobalt Complexes with Bridging Hydride Ligands. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kriti Pathak
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Shivankan Mishra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Subhash Bairagi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - B. Rajeshwaree
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sundargopal Ghosh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
8
|
Phipps CA, Hofsommer DT, Toda MJ, Nkurunziza F, Shah B, Spurgeon JM, Kozlowski PM, Buchanan RM, Grapperhaus CA. Ligand-Centered Hydrogen Evolution with Ni(II) and Pd(II)DMTH. Inorg Chem 2022; 61:9792-9800. [PMID: 35687329 DOI: 10.1021/acs.inorgchem.2c01326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we report a pair of electrocatalysts for the hydrogen evolution reaction (HER) based on the noninnocent ligand diacetyl-2-(4-methyl-3-thiosemicarbazone)-3-(2-pyridinehydrazone) (H2DMTH, H2L1). The neutral complexes NiL1 and PdL1 were synthesized and characterized by spectroscopic and electrochemical methods. The complexes contain a non-coordinating, basic hydrazino nitrogen that is protonated during the HER. The pKa of this nitrogen was determined by spectrophotometric titration in acetonitrile to be 12.71 for NiL1 and 13.03 for PdL1. Cyclic voltammograms of both NiL1 and PdL1 in acetonitrile exhibit diffusion-controlled, reversible ligand-centered events at -1.83 and -1.79 V (vs ferrocenium/ferrocene) for NiL1 and PdL1, respectively. A quasi-reversible, ligand-centered event is observed at -2.43 and -2.34 V for NiL1 and PdL1, respectively. The HER activity in acetonitrile was evaluated using a series of neutral and cationic acids for each catalyst. Kinetic isotope effect (KIE) studies suggest that the precatalytic event observed is associated with a proton-coupled electron transfer step. The highest turnover frequency values observed were 6150 s-1 at an overpotential of 0.74 V for NiL1 and 8280 s-1 at an overpotential of 0.44 V for PdL1. Density functional theory (DFT) computations suggest both complexes follow a ligand-centered HER mechanism where the metals remain in the +2 oxidation state.
Collapse
Affiliation(s)
- Christine A Phipps
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Dillon T Hofsommer
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Megan J Toda
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Francois Nkurunziza
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, Kentucky 40292, United States
| | - Bhoomi Shah
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Joshua M Spurgeon
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, Kentucky 40292, United States
| | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Robert M Buchanan
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Craig A Grapperhaus
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
9
|
Sinha S, Tran GN, Na H, Mirica LM. Electrocatalytic H 2 evolution promoted by a bioinspired (N2S2)Ni(II) complex. Chem Commun (Camb) 2022; 58:1143-1146. [PMID: 34981080 DOI: 10.1039/d1cc05139c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bioinspired (N2S2)Ni(II) electrocatalyst is reported that produces H2 from CF3CO2H with a turnover frequency (TOF) of ∼1250 s-1 at low acid concentration (<0.043 M) in MeCN. A mechanism for the H2 production by this electrocatalyst is proposed and its activity is benchmarked against those of other reported molecular Ni H2 evolution electrocatalysts. The involvement of a hemilabile pyridyl group of the N2S2 ligand is proposed to mimic the role of a cysteine residue involved in the biological proton reduction performed by [NiFe] hydrogenases.
Collapse
Affiliation(s)
- Soumalya Sinha
- Department of Chemistry University of Illinois at Urbana Champaign 600 S. Mathews Avenue, Urbana, Illinois 61801, USA.
| | - Giang N Tran
- Department of Chemistry University of Illinois at Urbana Champaign 600 S. Mathews Avenue, Urbana, Illinois 61801, USA.
| | - Hanah Na
- Department of Chemistry University of Illinois at Urbana Champaign 600 S. Mathews Avenue, Urbana, Illinois 61801, USA.
| | - Liviu M Mirica
- Department of Chemistry University of Illinois at Urbana Champaign 600 S. Mathews Avenue, Urbana, Illinois 61801, USA.
| |
Collapse
|
10
|
Tung CY, Tseng YT, Lu TT, Liaw WF. Insight into the Electronic Structure of Biomimetic Dinitrosyliron Complexes (DNICs): Toward the Syntheses of Amido-Bridging Dinuclear DNICs. Inorg Chem 2021; 60:15846-15873. [PMID: 34009960 DOI: 10.1021/acs.inorgchem.1c00566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ubiquitous function of nitric oxide (NO) guided the biological discovery of the natural dinitrosyliron unit (DNIU) [Fe(NO)2] as an intermediate/end product after Fe nitrosylation of nonheme cofactors. Because of the natural utilization of this cofactor for the biological storage and delivery of NO, a bioinorganic study of synthetic dinitrosyliron complexes (DNICs) has been extensively explored in the last 2 decades. The bioinorganic study of DNICs involved the development of synthetic methodology, spectroscopic discrimination, biological application of NO-delivery reactivity, and translational application to the (catalytic) transformation of small molecules. In this Forum Article, we aim to provide a systematic review of spectroscopic and computational insights into the bonding nature within the DNIU [Fe(NO)2] and the electronic structure of different types of DNICs, which highlights the synchronized advance in synthetic methodology and spectroscopic tools. With regard to the noninnocent nature of a NO ligand, spectroscopic and computational tools were utilized to provide qualitative/quantitative assignment of oxidation states of Fe and NO in DNICs with different redox levels and ligation modes as well as to probe the Fe-NO bonding interaction modulated by supporting ligands. Besides the strong antiferromagnetic coupling between high-spin Fe and paramagnetic NO ligands within the covalent DNIU [Fe(NO)2], in polynuclear DNICs, the effects of the Fe···Fe distance, nature of the bridging ligands, and type of bridging modes on the regulation of the magnetic coupling among paramagnetic DNIU [Fe(NO)2] are further reviewed. In the last part of this Forum Article, the sequential reaction of {Fe(NO)2}10 DNIC [(NO)2Fe(AMP)] (1-red) with NO(g), HBF4, and KC8 establishes a synthetic cycle, {Fe(NO)2}9-{Fe(NO)2}9 DNIC [(NO)2Fe(μ-dAMP)2Fe(NO)2] (1) → {Fe(NO)2}9 DNIC [(NO2)Fe(AMP)][BF4] (1-H) → {Fe(NO)2}10 DNIC 1-red → DNIC 1, for the transformation of NO into HNO/N2O. Of importance, the NO-induced transformation of {Fe(NO)2}10 DNIC 1-red and [(NO)2Fe(DTA)] (2-red; DTA = diethylenetriamine) unravels a synthetic strategy for preparation of the {Fe(NO)2}9-{Fe(NO)2}9 DNICs [(NO)2Fe(μ-NHR)2Fe(NO)2] containing amido-bridging ligands, which hold the potential to feature distinctive physical properties, chemical reactivities, and biological applications.
Collapse
Affiliation(s)
- Chi-Yen Tung
- Department of Chemistry, National Tsing Hua University (NTHU), Hsinchu 30013 Taiwan
| | - Yu-Ting Tseng
- Department of Chemistry, National Tsing Hua University (NTHU), Hsinchu 30013 Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University (NTHU), Hsinchu 30013, Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry, National Tsing Hua University (NTHU), Hsinchu 30013 Taiwan
| |
Collapse
|
11
|
Pérez-González A, Yang ZY, Lukoyanov DA, Dean DR, Seefeldt LC, Hoffman BM. Exploring the Role of the Central Carbide of the Nitrogenase Active-Site FeMo-cofactor through Targeted 13C Labeling and ENDOR Spectroscopy. J Am Chem Soc 2021; 143:9183-9190. [PMID: 34110795 DOI: 10.1021/jacs.1c04152] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mo-dependent nitrogenase is a major contributor to global biological N2 reduction, which sustains life on Earth. Its multi-metallic active-site FeMo-cofactor (Fe7MoS9C-homocitrate) contains a carbide (C4-) centered within a trigonal prismatic CFe6 core resembling the structural motif of the iron carbide, cementite. The role of the carbide in FeMo-cofactor binding and activation of substrates and inhibitors is unknown. To explore this role, the carbide has been in effect selectively enriched with 13C, which enables its detailed examination by ENDOR/ESEEM spectroscopies. 13C-carbide ENDOR of the S = 3/2 resting state (E0) is remarkable, with an extremely small isotropic hyperfine coupling constant, Ca = +0.86 MHz. Turnover under high CO partial pressure generates the S = 1/2 hi-CO state, with two CO molecules bound to FeMo-cofactor. This conversion surprisingly leaves the small magnitude of the 13C carbide isotropic hyperfine-coupling constant essentially unchanged, Ca = -1.30 MHz. This indicates that both the E0 and hi-CO states exhibit an exchange-coupling scheme with nearly cancelling contributions to Ca from three spin-up and three spin-down carbide-bound Fe ions. In contrast, the anisotropic hyperfine coupling constant undergoes a symmetry change upon conversion of E0 to hi-CO that may be associated with bonding and coordination changes at Fe ions. In combination with the negligible difference between CFe6 core structures of E0 and hi-CO, these results suggest that in CO-inhibited hi-CO the dominant role of the FeMo-cofactor carbide is to maintain the core structure, rather than to facilitate inhibitor binding through changes in Fe-carbide covalency or stretching/breaking of carbide-Fe bonds.
Collapse
Affiliation(s)
- Ana Pérez-González
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Zhi-Yong Yang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Dmitriy A Lukoyanov
- Department of Chemistry Northwestern University, Evanston, Illinois 60208, United States
| | - Dennis R Dean
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Brian M Hoffman
- Department of Chemistry Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
12
|
Almazahreh LR, Arrigoni F, Abul-Futouh H, El-khateeb M, Görls H, Elleouet C, Schollhammer P, Bertini L, De Gioia L, Rudolph M, Zampella G, Weigand W. Proton Shuttle Mediated by (SCH 2) 2P═O Moiety in [FeFe]-Hydrogenase Mimics: Electrochemical and DFT Studies. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05563] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Laith R. Almazahreh
- ERCOSPLAN Ingenieurbüro Anlagentechnik GmbH Arnstädter Straße 28, 99096 Erfurt, Germany
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldt Str. 8, 07743 Jena, Germany
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Hassan Abul-Futouh
- Department of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130 Amman 11733 Jordan
| | - Mohammad El-khateeb
- Chemistry Department, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldt Str. 8, 07743 Jena, Germany
| | - Catherine Elleouet
- UMR CNRS 6521, Chimie, Electrochimie Moléculaires et Chimie Analytique, Université de Bretagne Occidentale, UFR Sciences et Techniques, Cs 93837, 29238 CEDEX 3 Brest, France
| | - Philippe Schollhammer
- UMR CNRS 6521, Chimie, Electrochimie Moléculaires et Chimie Analytique, Université de Bretagne Occidentale, UFR Sciences et Techniques, Cs 93837, 29238 CEDEX 3 Brest, France
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Manfred Rudolph
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldt Str. 8, 07743 Jena, Germany
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldt Str. 8, 07743 Jena, Germany
| |
Collapse
|
13
|
Amanullah S, Saha P, Nayek A, Ahmed ME, Dey A. Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2nd sphere interactions in catalysis. Chem Soc Rev 2021; 50:3755-3823. [DOI: 10.1039/d0cs01405b] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reduction of oxides and oxoanions of carbon and nitrogen are of great contemporary importance as they are crucial for a sustainable environment.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Paramita Saha
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhijit Nayek
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Md Estak Ahmed
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhishek Dey
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
14
|
Gennari M, Duboc C. Bio-inspired, Multifunctional Metal-Thiolate Motif: From Electron Transfer to Sulfur Reactivity and Small-Molecule Activation. Acc Chem Res 2020; 53:2753-2761. [PMID: 33074643 DOI: 10.1021/acs.accounts.0c00555] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sulfur-rich metalloproteins and metalloenzymes, containing strongly covalent metal-thiolate (cysteinate) or metal-sulfide bonds in their active site, are ubiquitous in nature. The metal-sulfur motif is a highly versatile tool involved in various biological processes: (i) metal storage, transport, and detoxification; (ii) electron transfer; (iii) activation of the sulfur atom to promote different types of S-based reactions including S-alkylation, S-oxygenation, S-nitrosylation, or disulfide or thiyl radicals formation; (iv) activation of small earth-abundant molecules (such as water, dioxygen, superoxide radical anion, carbon oxides, nitrous oxide, and dinitrogen).This Account describes our investigations carried out during the past 10 years on bio-inspired and biomimetic low-nuclearity complexes containing metal-thiolate bonds. The general objective of these structural, spectroscopic, electrochemical, and catalytic studies was to determine structure-properties-function correlations useful to (i) understanding the peculiar features or the mechanism of the mimicked natural systems and/or (ii) reproducing enzymatic reactivities for specific catalytic applications.By employing a unique highly preorganized N2S2-donor ligand with two thiolate functions, in combination with different first-row transition metals (Mn, Fe, Co, Ni, Cu, Zn, or V), we got access to a series of bio-inspired sulfur-rich complexes displaying a widespread spectrum of structures, properties, and functions. We isolated a dicopper(I) complex that, for the first time, mimicked concomitantly the key structural, spectroscopic, and redox features of the biological CuA center, a highly efficient electron transfer agent involved in the respiratory enzyme cytochrome c oxidase. In the field of sulfur activation, we explored (i) sulfur methylation promoted by a Zn-dithiolate complex that mimics Zn-dependent thiolate alkylation proteins and shows different selectivity compared to the Ni and Co congeners and (ii) a series of Co, Fe, and Mn complexes as the first copper-free systems able to promote thiolate/disulfide interconversion mediated by (de)coordination of halides. Concerning metal-centered reactivity, we investigated two families of metal-thiolate catalysts for small-molecule activation, especially relevant in the fields of sustainable fuel production and energy conversion: (i) two isostructural Mn and Fe dinuclear complexes that activate and reduce dioxygen selectively, either to hydrogen peroxide or water as a function of the experimental conditions; (ii) a family of dinuclear MFe (M = Ni or Fe) hydrogenase mimics active for catalytic H2 evolution both in organic solution and on modified electrodes in water.This Account thus illustrates how the versatility of thiolate ligation can support selected functions for transition metal complexes, depending on the nature of the metal, the nuclearity of the complex, the presence and type of co-ligands, the second coordination sphere effects, and the experimental conditions.
Collapse
Affiliation(s)
- Marcello Gennari
- UMR CNRS 5250, Département de Chimie Moléculaire, Univ. Grenoble Alpes, 38000 Grenoble, France
| | - Carole Duboc
- UMR CNRS 5250, Département de Chimie Moléculaire, Univ. Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
15
|
Saratovskikh EA, Martynenko VM, Psikha BL, Sanina NA. Reaction of adenosine triphosphoric acid and tetranitrosyl iron complex [Fe2(S(CH2)2NH3)2(NO)4]SO4·2.5H2O. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
The roles of long-range proton-coupled electron transfer in the directionality and efficiency of [FeFe]-hydrogenases. Proc Natl Acad Sci U S A 2020; 117:20520-20529. [PMID: 32796105 DOI: 10.1073/pnas.2007090117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As paradigms for proton-coupled electron transfer in enzymes and benchmarks for a fully renewable H2 technology, [FeFe]-hydrogenases behave as highly reversible electrocatalysts when immobilized on an electrode, operating in both catalytic directions with minimal overpotential requirement. Using the [FeFe]-hydrogenases from Clostridium pasteurianum (CpI) and Chlamydomonas reinhardtii (CrHydA1) we have conducted site-directed mutagenesis and protein film electrochemistry to determine how efficient catalysis depends on the long-range coupling of electron and proton transfer steps. Importantly, the electron and proton transfer pathways in [FeFe]-hydrogenases are well separated from each other in space. Variants with conservative substitutions (glutamate to aspartate) in either of two positions in the proton-transfer pathway retain significant activity and reveal the consequences of slowing down proton transfer for both catalytic directions over a wide range of pH and potential values. Proton reduction in the variants is impaired mainly by limiting the turnover rate, which drops sharply as the pH is raised, showing that proton capture from bulk solvent becomes critical. In contrast, hydrogen oxidation is affected in two ways: by limiting the turnover rate and by a large overpotential requirement that increases as the pH is raised, consistent with the accumulation of a reduced and protonated intermediate. A unique observation having fundamental significance is made under conditions where the variants still retain sufficient catalytic activity in both directions: An inflection appears as the catalytic current switches direction at the 2H+/H2 thermodynamic potential, clearly signaling a departure from electrocatalytic reversibility as electron and proton transfers begin to be decoupled.
Collapse
|
17
|
Kariyawasam Pathirana KD, Ghosh P, Hsieh CH, Elrod LC, Bhuvanesh N, Darensbourg DJ, Darensbourg MY. Synthetic Metallodithiolato Ligands as Pendant Bases in [Fe IFe I], [Fe I[Fe(NO)] II], and [(μ-H)Fe IIFe II] Complexes. Inorg Chem 2020; 59:3753-3763. [PMID: 32083850 DOI: 10.1021/acs.inorgchem.9b03409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of ligands with specific stereo- and electrochemical requirements that are necessary for catalyst design challenges synthetic chemists in academia and industry. The crucial aza-dithiolate linker in the active site of [FeFe]-H2ase has inspired the development of synthetic analogues that utilize ligands which serve as conventional σ donors with pendant base features for H+ binding and delivery. Several MN2S2 complexes (M = Ni2+, [Fe(NO)]2+, [Co(NO)]2+, etc.) utilize these cis-dithiolates to bind low valent metals and also demonstrate the useful property of hemilability, i.e., alternate between bi- and monodentate ligation. Herein, synthetic efforts have led to the isolation and characterization of three heterotrimetallics that employ metallodithiolato ligand binding to di-iron scaffolds in three redox levels, (μ-pdt)[Fe(CO)3]2, (μ-pdt)[Fe(CO)3][(Fe(NO))II(IMe)(CO)]+, and (μ-pdt)(μ-H)[FeII(CO)2(PMe3)]2+ to generate (μ-pdt)[(FeI(CO)3][FeI(CO)2·NiN2S2] (1), (μ-pdt)[FeI(CO)3][(Fe(NO))II(IMe)(CO)]+ (2), and (μ-pdt)(μ-H)[FeII(CO)2(PMe3)][FeII(CO)(PMe3)·NiN2S2]+ (3) complexes (pdt = 1,3-propanedithiolate, IMe = 1,3-dimethylimidazole-2-ylidene, NiN2S2 = [N,N'-bis(2-mercaptidoethyl)-1,4-diazacycloheptane] nickel(II)). These complexes display efficient metallodithiolato binding to the di-iron scaffold with one thiolate-S, which allows the free unbound thiolate to potentially serve as a built-in pendant base to direct proton binding, promoting a possible Fe-H-···+H-S coupling mechanism for the electrocatalytic hydrogen evolution reaction (HER) in the presence of acids. Ligand substitution studies on 1 indicate an associative/dissociative type reaction mechanism for the replacement of the NiN2S2 ligand, providing insight into the Fe-S bond strength.
Collapse
Affiliation(s)
| | - Pokhraj Ghosh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Chung-H Hsieh
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Lindy Chase Elrod
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Donald J Darensbourg
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Marcetta Y Darensbourg
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
18
|
Inoue S, Yan YN, Yamanishi K, Kataoka Y, Kawamoto T. Photocatalytic and electrocatalytic hydrogen production using nickel complexes supported by hemilabile and non-innocent ligands. Chem Commun (Camb) 2020; 56:2829-2832. [PMID: 32073053 DOI: 10.1039/c9cc09568c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nickel complexes with non-innocent ligands generated by one-electron reduction of octahedral Schiff base nickel(ii) complexes with hemilabile ligands exhibited excellent catalytic activities of over 5000 TONs through a metal-ligand cooperation mechanism for hydrogen evolution from water under visible light irradiation.
Collapse
Affiliation(s)
- Satoshi Inoue
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, 259-1293, Japan.
| | - Yin-Nan Yan
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, 259-1293, Japan.
| | - Katsunori Yamanishi
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, 259-1293, Japan.
| | - Yusuke Kataoka
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Tatsuya Kawamoto
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, 259-1293, Japan.
| |
Collapse
|
19
|
Tang H, Brothers EN, Grapperhaus CA, Hall MB. Electrocatalytic Hydrogen Evolution and Oxidation with Rhenium Tris(thiolate) Complexes: A Competition between Rhenium and Sulfur for Electrons and Protons. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04579] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hao Tang
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | | | - Craig A. Grapperhaus
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
20
|
Arrigoni F, Bertini L, Breglia R, Greco C, De Gioia L, Zampella G. Catalytic H 2 evolution/oxidation in [FeFe]-hydrogenase biomimetics: account from DFT on the interplay of related issues and proposed solutions. NEW J CHEM 2020. [DOI: 10.1039/d0nj03393f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A DFT overview on selected issues regarding diiron catalysts related to [FeFe]-hydrogenase biomimetic research, with implications for both energy conversion and storage strategies.
Collapse
Affiliation(s)
- Federica Arrigoni
- Department of Biotechnology and Biosciences
- University of Milano – Bicocca
- 20126 Milan
- Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences
- University of Milano – Bicocca
- 20126 Milan
- Italy
| | - Raffaella Breglia
- Department of Biotechnology and Biosciences
- University of Milano – Bicocca
- 20126 Milan
- Italy
- Department of Earth and Environmental Sciences
| | - Claudio Greco
- Department of Biotechnology and Biosciences
- University of Milano – Bicocca
- 20126 Milan
- Italy
- Department of Earth and Environmental Sciences
| | - Luca De Gioia
- Department of Biotechnology and Biosciences
- University of Milano – Bicocca
- 20126 Milan
- Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences
- University of Milano – Bicocca
- 20126 Milan
- Italy
| |
Collapse
|
21
|
Pieri C, Bhattacharjee A, Barrozo A, Faure B, Giorgi M, Fize J, Réglier M, Field M, Orio M, Artero V, Hardré R. Hydrogen evolution reaction mediated by an all-sulfur trinuclear nickel complex. Chem Commun (Camb) 2020; 56:11106-11109. [DOI: 10.1039/d0cc04174b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A trinuclear nickel complex with S-based ligands is reported as a bio-inspired model of the [NiFe] hydrogenases' active site. DFT calculations indicate that thiolate and thioether functions are involved as proton relays in the H2 evolution mechanism.
Collapse
Affiliation(s)
- Cyril Pieri
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- iSm2
- Marseille
| | | | | | - Bruno Faure
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- iSm2
- Marseille
| | - Michel Giorgi
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- Marseille
- France
| | - Jennifer Fize
- Univ. Grenoble Alpes
- CNRS
- CEA
- IRIG
- Laboratoire de Chimie et Biologie des Métaux
| | | | - Martin Field
- Univ. Grenoble Alpes
- CNRS
- CEA
- IRIG
- Laboratoire de Chimie et Biologie des Métaux
| | - Maylis Orio
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- iSm2
- Marseille
| | - Vincent Artero
- Univ. Grenoble Alpes
- CNRS
- CEA
- IRIG
- Laboratoire de Chimie et Biologie des Métaux
| | - Renaud Hardré
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- iSm2
- Marseille
| |
Collapse
|
22
|
Wang L, Gennari M, Barrozo A, Fize J, Philouze C, Demeshko S, Meyer F, Orio M, Artero V, Duboc C. Role of the Metal Ion in Bio-Inspired Hydrogenase Models: Investigation of a Homodinuclear FeFe Complex vs Its Heterodinuclear NiFe Analogue. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03212] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lianke Wang
- Institutes of Physical Science and Information Technology, Anhui University, 230601 Hefei, Anhui, P. R. China
- Univ. Grenoble Alpes, UMR CNRS 5250, 38000 Grenoble, France
| | | | - Alexandre Barrozo
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Jennifer Fize
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 38000 Grenoble, France
| | | | - Serhiy Demeshko
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Maylis Orio
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Vincent Artero
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 38000 Grenoble, France
| | - Carole Duboc
- Univ. Grenoble Alpes, UMR CNRS 5250, 38000 Grenoble, France
| |
Collapse
|
23
|
Cronin SP, Mamun AA, Toda MJ, Mashuta MS, Losovyj Y, Kozlowski PM, Buchanan RM, Grapperhaus CA. Utilizing Charge Effects and Minimizing Intramolecular Proton Rearrangement to Improve the Overpotential of a Thiosemicarbazonato Zinc HER Catalyst. Inorg Chem 2019; 58:12986-12997. [PMID: 31503487 DOI: 10.1021/acs.inorgchem.9b01912] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The zinc(II) complex of diacetyl-2-(4-methyl-3-thiosemicarbazone)-3-(2-hydrazonepyridine), ZnL1 (1), was prepared and evaluated as a precatalyst for the hydrogen evolution reaction (HER) under homogeneous conditions in acetonitrile. Complex 1 is protonated on the noncoordinating nitrogen of the hydrazonepyridine moiety to yield the active catalyst Zn(HL1)OAc (2) upon addition of acetic acid. Addition of methyl iodide to 1 yields the corresponding methylated derivative ZnL2I (3). In solution, partial dissociation of the coordinated iodide yields the cationic derivative 3'. Complexes 1-3 were characterized by 1H NMR, FT-IR, and UV-visible spectroscopies. The solid-state structures of 2 and 3 were determined by single crystal X-ray diffraction. HER studies conducted in acetonitrile with acetic acid as the proton source yield a turnover frequency (TOF) of 7700 s-1 for solutions of 1 at an overpotential of 1.27 V and a TOF of 6700 s-1 for solutions of 3 at an overpotential of 0.56 V. For both complexes, the required potential for catalysis, Ecat/2, is larger than the thermodynamic reduction potential, E1/2, indicative of a kinetic barrier attributed to intramolecular proton rearrangement. The effect is larger for solutions of 1 (+440 mV) than for solutions of 3 (+160 mV). Controlled potential coulometry studies were used to determine faradaic efficiencies of 71 and 89% for solutions of 1 and 3, respectively. For both catalysts, extensive cycling of potential under catalytic conditions results in the deposition of a film on the glassy carbon electrode surface that is active as an HER catalyst. Analysis of the film of 3 by X-ray photoelectron spectroscopy indicates the complex remains intact upon deposition. A proposed ligand-centered HER mechanism with 1 as a precatalyst to 2 is supported computationally using density functional theory (DFT). All catalytic intermediates in the mechanism were structurally and energetically characterized with the DFT/B3LYP/6-311g(d,p) in solution phase using a polarizable continuum model (PCM). The thermodynamic feasibility of the mechanism is supported by calculation of equilibrium constants or reduction potentials for each proposed step.
Collapse
Affiliation(s)
- Steve P Cronin
- University of Louisville , Department of Chemistry , 2320 South Brook Street , Louisville , Kentucky 40292 , United States
| | - Abdullah Al Mamun
- University of Louisville , Department of Chemistry , 2320 South Brook Street , Louisville , Kentucky 40292 , United States
| | - Megan J Toda
- University of Louisville , Department of Chemistry , 2320 South Brook Street , Louisville , Kentucky 40292 , United States
| | - Mark S Mashuta
- University of Louisville , Department of Chemistry , 2320 South Brook Street , Louisville , Kentucky 40292 , United States
| | - Yaroslav Losovyj
- Department of Chemistry , Indiana University Bloomington , Bloomington , Indiana 47405 , United States
| | - Pawel M Kozlowski
- University of Louisville , Department of Chemistry , 2320 South Brook Street , Louisville , Kentucky 40292 , United States
| | - Robert M Buchanan
- University of Louisville , Department of Chemistry , 2320 South Brook Street , Louisville , Kentucky 40292 , United States
| | - Craig A Grapperhaus
- University of Louisville , Department of Chemistry , 2320 South Brook Street , Louisville , Kentucky 40292 , United States
| |
Collapse
|
24
|
Arnet NA, Bhuvanesh N, Darensbourg MY. Proton affinity studies of nickel N 2S 2 complexes and control of aggregation. J Biol Inorg Chem 2019; 24:909-917. [PMID: 31175446 DOI: 10.1007/s00775-019-01671-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
Abstract
The thiolate ligands of [NiFe]-H2ase enzymes have been implicated as proton-binding sites for the reduction/oxidation of H+/H2. This study examines the ligand effect on reactivity of NiN2S2 complexes with an array of acids in methanol solution. UV-Vis absorption spectroscopy is utilized to observe the transformation from the monomeric species to a trimetallic complex that is formed after proton-induced ligand dissociation. Nickel complexes with a flexible (propyl and ethyl) N to N linker were found to readily form the trimetallic complex with acids as weak as ammonium (pKa = 10.9 in methanol). A more constrained nickel complex with a diazacycloheptane N to N linker required stronger acids such as 2,2-dichloroacetic acid (pKa = 6.38 in methanol) to form the trimetallic complex and featured the formation of an NiN2S2H+ complex with acetic acid (pKa = 9.63 in methanol). The most strained ligand, which featured a diazacyclohexane backbone, readily dissociated from the nickel center upon mixture with acids with pKa ≤ 9.63 and showed no evidence of a trimetallic species with any acid. This research highlights the dramatic differences in reactivity with proton sources that can be imparted by minor alterations to ligand geometry and strain.
Collapse
Affiliation(s)
- Nicholas A Arnet
- Department of Chemistry, Texas A&M University, College Station, TX, 77840, USA
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, College Station, TX, 77840, USA
| | | |
Collapse
|
25
|
Cho SL, Liao CJ, Lu TT. Synthetic methodology for preparation of dinitrosyl iron complexes. J Biol Inorg Chem 2019; 24:495-515. [DOI: 10.1007/s00775-019-01668-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/15/2019] [Indexed: 12/29/2022]
|
26
|
Chu X, Jin J, Ming B, Pang M, Yu X, Tung CH, Wang W. Bimetallic nickel-cobalt hydrides in H 2 activation and catalytic proton reduction. Chem Sci 2019; 10:761-767. [PMID: 30746109 PMCID: PMC6340403 DOI: 10.1039/c8sc04346a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022] Open
Abstract
The synergism of the electronic properties of nickel and cobalt enables bimetallic NiCo complexes to process H2. The nickel-cobalt hydride [(dppe)Ni(pdt)(H)CoCp*]+ ([1H]+ ) arising from protonation of the reduced state 1 was found to be an efficient electrocatalyst for H2 evolution with Cl2CHCOOH, and the oxidized [Ni(ii)Co(iii)]2+ form is capable of activating H2 to produce [1H]+ . The features of stereodynamics, acid-base properties, redox chemistry and reactivity of these bimetallic NiCo complexes in processing H2 are potentially related to the active site of [NiFe]-H2ases.
Collapse
Affiliation(s)
- Xiaoxiao Chu
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
- School of Chemistry and Materials Science , Ludong University , Yantai , 264025 , China
| | - Jihao Jin
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
| | - Bangrong Ming
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
| | - Maofu Pang
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
| | - Xin Yu
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
| | - Wenguang Wang
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
| |
Collapse
|
27
|
Huang HC, Ching WM, Tseng YT, Chen CH, Lu TT. Transformation of the hydride-containing dinitrosyl iron complex [(NO)2Fe(η2-BH4)]− into [(NO)2Fe(η3-HCS2)]−via reaction with CS2. Dalton Trans 2019; 48:5897-5902. [DOI: 10.1039/c8dt04714f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hydride-insertion reactivity of DNIC [(NO)2Fe(η2-BH4)]− promotes the reductive transformation of CS2 into DNIC [(NO)2Fe(η3-HCS2)]− featuring Fe 3dz2-to-HCS2 π* backbonding interaction.
Collapse
Affiliation(s)
- Huang-Chia Huang
- Department of Chemistry
- Chung Yuan Christian University
- Taoyuan
- Taiwan
| | - Wei-Min Ching
- Instrumentation Center
- National Taiwan Normal University
- Taipei
- Taiwan
| | - Yu-Ting Tseng
- Department of Chemistry
- Chung Yuan Christian University
- Taoyuan
- Taiwan
- Department of Chemistry
| | - Chien-Hong Chen
- Department of Medical Applied Chemistry
- Chung Shan Medical University and Department of Medical Education
- Chung Shan Medical University Hospital
- Taichung 40201
- Taiwan
| | - Tsai-Te Lu
- Department of Chemistry
- Chung Yuan Christian University
- Taoyuan
- Taiwan
- Institute of Biomedical Engineering
| |
Collapse
|
28
|
Ahmed ME, Chattopadhyay S, Wang L, Brazzolotto D, Pramanik D, Aldakov D, Fize J, Morozan A, Gennari M, Duboc C, Dey A, Artero V. Hydrogen Evolution from Aqueous Solutions Mediated by a Heterogenized [NiFe]‐Hydrogenase Model: Low pH Enables Catalysis through an Enzyme‐Relevant Mechanism. Angew Chem Int Ed Engl 2018; 57:16001-16004. [DOI: 10.1002/anie.201808215] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/21/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Md Estak Ahmed
- Indian Association for the Cultivation of Science 700032 Kolkata India
| | | | - Lianke Wang
- Université Grenoble AlpesUMR CNRS 5250Département de Chimie Moléculaire 38000 Grenoble France
| | - Deborah Brazzolotto
- Université Grenoble AlpesUMR CNRS 5250Département de Chimie Moléculaire 38000 Grenoble France
| | - Debajyoti Pramanik
- Université Grenoble Alpes, UMR CNRS 5249, CEALaboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| | - Dmitry Aldakov
- Univ. Grenoble AlpesCNRS, CEA, INAC-SyMMES 38000 Grenoble France
| | - Jennifer Fize
- Université Grenoble Alpes, UMR CNRS 5249, CEALaboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| | - Adina Morozan
- Université Grenoble Alpes, UMR CNRS 5249, CEALaboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| | - Marcello Gennari
- Université Grenoble AlpesUMR CNRS 5250Département de Chimie Moléculaire 38000 Grenoble France
| | - Carole Duboc
- Université Grenoble AlpesUMR CNRS 5250Département de Chimie Moléculaire 38000 Grenoble France
| | - Abhishek Dey
- Indian Association for the Cultivation of Science 700032 Kolkata India
| | - Vincent Artero
- Université Grenoble Alpes, UMR CNRS 5249, CEALaboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| |
Collapse
|
29
|
Ahmed ME, Chattopadhyay S, Wang L, Brazzolotto D, Pramanik D, Aldakov D, Fize J, Morozan A, Gennari M, Duboc C, Dey A, Artero V. Hydrogen Evolution from Aqueous Solutions Mediated by a Heterogenized [NiFe]‐Hydrogenase Model: Low pH Enables Catalysis through an Enzyme‐Relevant Mechanism. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Md Estak Ahmed
- Indian Association for the Cultivation of Science 700032 Kolkata India
| | | | - Lianke Wang
- Université Grenoble AlpesUMR CNRS 5250Département de Chimie Moléculaire 38000 Grenoble France
| | - Deborah Brazzolotto
- Université Grenoble AlpesUMR CNRS 5250Département de Chimie Moléculaire 38000 Grenoble France
| | - Debajyoti Pramanik
- Université Grenoble Alpes, UMR CNRS 5249, CEALaboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| | - Dmitry Aldakov
- Univ. Grenoble AlpesCNRS, CEA, INAC-SyMMES 38000 Grenoble France
| | - Jennifer Fize
- Université Grenoble Alpes, UMR CNRS 5249, CEALaboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| | - Adina Morozan
- Université Grenoble Alpes, UMR CNRS 5249, CEALaboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| | - Marcello Gennari
- Université Grenoble AlpesUMR CNRS 5250Département de Chimie Moléculaire 38000 Grenoble France
| | - Carole Duboc
- Université Grenoble AlpesUMR CNRS 5250Département de Chimie Moléculaire 38000 Grenoble France
| | - Abhishek Dey
- Indian Association for the Cultivation of Science 700032 Kolkata India
| | - Vincent Artero
- Université Grenoble Alpes, UMR CNRS 5249, CEALaboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| |
Collapse
|
30
|
Critical computational analysis illuminates the reductive-elimination mechanism that activates nitrogenase for N 2 reduction. Proc Natl Acad Sci U S A 2018; 115:E10521-E10530. [PMID: 30355772 DOI: 10.1073/pnas.1810211115] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent spectroscopic, kinetic, photophysical, and thermodynamic measurements show activation of nitrogenase for N2 → 2NH3 reduction involves the reductive elimination (re) of H2 from two [Fe-H-Fe] bridging hydrides bound to the catalytic [7Fe-9S-Mo-C-homocitrate] FeMo-cofactor (FeMo-co). These studies rationalize the Lowe-Thorneley kinetic scheme's proposal of mechanistically obligatory formation of one H2 for each N2 reduced. They also provide an overall framework for understanding the mechanism of nitrogen fixation by nitrogenase. However, they directly pose fundamental questions addressed computationally here. We here report an extensive computational investigation of the structure and energetics of possible nitrogenase intermediates using structural models for the active site with a broad range in complexity, while evaluating a diverse set of density functional theory flavors. (i) This shows that to prevent spurious disruption of FeMo-co having accumulated 4[e -/H+] it is necessary to include: all residues (and water molecules) interacting directly with FeMo-co via specific H-bond interactions; nonspecific local electrostatic interactions; and steric confinement. (ii) These calculations indicate an important role of sulfide hemilability in the overall conversion of E 0 to a diazene-level intermediate. (iii) Perhaps most importantly, they explain (iiia) how the enzyme mechanistically couples exothermic H2 formation to endothermic cleavage of the N≡N triple bond in a nearly thermoneutral re/oxidative-addition equilibrium, (iiib) while preventing the "futile" generation of two H2 without N2 reduction: hydride re generates an H2 complex, but H2 is only lost when displaced by N2, to form an end-on N2 complex that proceeds to a diazene-level intermediate.
Collapse
|
31
|
Ghosh P, Ding S, Quiroz M, Bhuvanesh N, Hsieh CH, Palacios PM, Pierce BS, Darensbourg MY, Hall MB. Structural and Electronic Responses to the Three Redox Levels of Fe(NO)N 2 S 2 -Fe(NO) 2. Chemistry 2018; 24:16003-16008. [PMID: 30216575 DOI: 10.1002/chem.201804168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Indexed: 11/10/2022]
Abstract
The nitrosylated diiron complexes, Fe2 (NO)3 , of this study are interpreted as a mono-nitrosyl Fe(NO) unit, MNIU, within an N2 S2 ligand field that serves as a metallodithiolate ligand to a dinitrosyl iron unit, DNIU. The cationic Fe(NO)N2 S2 ⋅Fe(NO)2 + complex, 1+ , of Enemark-Feltham electronic notation {Fe(NO)}7 -{Fe(NO)2 }9 , is readily obtained via myriad synthetic routes, and shown to be spin coupled and diamagnetic. Its singly and doubly reduced forms, {Fe(NO)}7 -{Fe(NO)2 }10 , 10 , and {Fe(NO)}8 -{Fe(NO)2 }10 , 1- , were isolated and characterized. While structural parameters of the DNIU are largely unaffected by redox levels, the MNIU readily responds; the neutral, S= 1 / 2 , complex, 10 , finds the extra electron density added into the DNIU affects the adjacent MNIU as seen by the decrease its Fe-N-O angle (from 171° to 149°). In contrast, addition of the second electron, now into the MNIU, returns the Fe-N-O angle to 171° in 1- . Compensating shifts in FeMNIU distances from the N2 S2 plane (from 0.518 to 0.551 to 0.851 Å) contribute to the stability of the bimetallic complex. These features are addressed by computational studies which indicate that the MNIU in 1- is a triplet-state {Fe(NO)}8 with strong spin polarization in the more linear FeNO unit. Magnetic susceptibility and parallel mode EPR results are consistent with the triplet state assignment.
Collapse
Affiliation(s)
- Pokhraj Ghosh
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX, 77843, USA
| | - Shengda Ding
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX, 77843, USA
| | - Manuel Quiroz
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX, 77843, USA
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX, 77843, USA
| | - Chung-Hung Hsieh
- Department of Chemistry, Tamkang Univesrity, New Taipei City, 25157, Taiwan
| | - Philip M Palacios
- Department of Chemistry, University of Texas at Arlington, 503 W 3rd St, Arlington, TX, 76010, USA
| | - Brad S Pierce
- Department of Chemistry, University of Texas at Arlington, 503 W 3rd St, Arlington, TX, 76010, USA
| | - Marcetta Y Darensbourg
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX, 77843, USA
| | - Michael B Hall
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX, 77843, USA
| |
Collapse
|
32
|
Brazzolotto D, Wang L, Tang H, Gennari M, Queyriaux N, Philouze C, Demeshko S, Meyer F, Orio M, Artero V, Hall MB, Duboc C. Tuning Reactivity of Bioinspired [NiFe]-Hydrogenase Models by Ligand Design and Modeling the CO Inhibition Process. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02830] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Deborah Brazzolotto
- Université Grenoble Alpes, UMR CNRS 5250, Département de Chimie Moléculaire, F-38000 Grenoble, France
- Université Grenoble Alpes, UMR CNRS 5249, CEA, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| | - Lianke Wang
- Université Grenoble Alpes, UMR CNRS 5250, Département de Chimie Moléculaire, F-38000 Grenoble, France
| | - Hao Tang
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - Marcello Gennari
- Université Grenoble Alpes, UMR CNRS 5250, Département de Chimie Moléculaire, F-38000 Grenoble, France
| | - Nicolas Queyriaux
- Université Grenoble Alpes, UMR CNRS 5249, CEA, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| | - Christian Philouze
- Université Grenoble Alpes, UMR CNRS 5250, Département de Chimie Moléculaire, F-38000 Grenoble, France
| | - Serhiy Demeshko
- University of Göttingen, Insitute für Anorganische Chemie, Tammannstrasse 4, D- 37077 Göttingen, Germany
| | - Franc Meyer
- University of Göttingen, Insitute für Anorganische Chemie, Tammannstrasse 4, D- 37077 Göttingen, Germany
| | - Maylis Orio
- Institut des Sciences Moléculaires de Marseille, Aix Marseille Université, CNRS, Centrale Marseille, ISM2 UMR 7313, 13397 Marseille, France
| | - Vincent Artero
- Université Grenoble Alpes, UMR CNRS 5249, CEA, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - Carole Duboc
- Université Grenoble Alpes, UMR CNRS 5250, Département de Chimie Moléculaire, F-38000 Grenoble, France
| |
Collapse
|
33
|
Lu TT, Wang YM, Hung CH, Chiou SJ, Liaw WF. Bioinorganic Chemistry of the Natural [Fe(NO)2] Motif: Evolution of a Functional Model for NO-Related Biomedical Application and Revolutionary Development of a Translational Model. Inorg Chem 2018; 57:12425-12443. [DOI: 10.1021/acs.inorgchem.8b01818] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Yun-Ming Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30013, Taiwan
| | | | - Show-Jen Chiou
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | | |
Collapse
|
34
|
Tai H, Higuchi Y, Hirota S. Comprehensive reaction mechanisms at and near the Ni-Fe active sites of [NiFe] hydrogenases. Dalton Trans 2018. [PMID: 29532823 DOI: 10.1039/c7dt04910b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
[NiFe] hydrogenase (H2ase) catalyzes the oxidation of dihydrogen to two protons and two electrons and/or its reverse reaction. For this simple reaction, the enzyme has developed a sophisticated but intricate mechanism with heterolytic cleavage of dihydrogen (or a combination of a hydride and a proton), where its Ni-Fe active site exhibits various redox states. Recently, thermodynamic parameters of the acid-base equilibrium for activation-inactivation, a new intermediate in the catalytic reaction, and new crystal structures of [NiFe] H2ases have been reported, providing significant insights into the activation-inactivation and catalytic reaction mechanisms of [NiFe] H2ases. This Perspective provides an overview of the reaction mechanisms of [NiFe] H2ases based on these new findings.
Collapse
Affiliation(s)
- Hulin Tai
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan.
| | | | | |
Collapse
|
35
|
Slater JW, Marguet SC, Monaco HA, Shafaat HS. Going beyond Structure: Nickel-Substituted Rubredoxin as a Mechanistic Model for the [NiFe] Hydrogenases. J Am Chem Soc 2018; 140:10250-10262. [PMID: 30016865 DOI: 10.1021/jacs.8b05194] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jeffrey W. Slater
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Sean C. Marguet
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Haleigh A. Monaco
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Hannah S. Shafaat
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
36
|
Pan ZH, Tao YW, He QF, Wu QY, Cheng LP, Wei ZH, Wu JH, Lin JQ, Sun D, Zhang QC, Tian D, Luo GG. The Difference Se Makes: A Bio-Inspired Dppf-Supported Nickel Selenolate Complex Boosts Dihydrogen Evolution with High Oxygen Tolerance. Chemistry 2018; 24:8275-8280. [DOI: 10.1002/chem.201801893] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Zhong-Hua Pan
- Fujian Key Laboratory of Photoelectric Functional Materials; College of Materials Science and Engineering; Huaqiao University; Xiamen 361021 P. R. China
| | - Yun-Wen Tao
- Department of Chemistry; Southern Methodist University; 3215 Daniel Avenue Dallas Texas 75275-0314 United States
| | - Quan-Feng He
- Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Qiao-Yu Wu
- Fujian Key Laboratory of Photoelectric Functional Materials; College of Materials Science and Engineering; Huaqiao University; Xiamen 361021 P. R. China
| | - Li-Ping Cheng
- Fujian Key Laboratory of Photoelectric Functional Materials; College of Materials Science and Engineering; Huaqiao University; Xiamen 361021 P. R. China
| | - Zhan-Hua Wei
- Fujian Key Laboratory of Photoelectric Functional Materials; College of Materials Science and Engineering; Huaqiao University; Xiamen 361021 P. R. China
| | - Ji-Huai Wu
- Fujian Key Laboratory of Photoelectric Functional Materials; College of Materials Science and Engineering; Huaqiao University; Xiamen 361021 P. R. China
| | - Jin-Qing Lin
- Fujian Key Laboratory of Photoelectric Functional Materials; College of Materials Science and Engineering; Huaqiao University; Xiamen 361021 P. R. China
| | - Di Sun
- School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 P. R. China
| | - Qi-Chun Zhang
- School of Materials Science and Engineering; Nanyang Technological University; Singapore 639798 Singapore
| | - Dan Tian
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials; Jiangsu National Synergetic Innovation Center for Advanced Materials; Nanjing Tech. University; 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Geng-Geng Luo
- Fujian Key Laboratory of Photoelectric Functional Materials; College of Materials Science and Engineering; Huaqiao University; Xiamen 361021 P. R. China
| |
Collapse
|
37
|
Biancalana L, Ciancaleoni G, Zacchini S, Monti A, Marchetti F, Pampaloni G. Solvent-Dependent Hemilability of (2-Diphenylphosphino)Phenol in a Ru(II) para-Cymene System. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lorenzo Biancalana
- Università di Pisa, Dipartimento di Chimica e Chimica Industriale, Via Moruzzi 13, I-56124 Pisa, Italy
- CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Gianluca Ciancaleoni
- Università di Pisa, Dipartimento di Chimica e Chimica Industriale, Via Moruzzi 13, I-56124 Pisa, Italy
- CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Stefano Zacchini
- CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy
- Università di Bologna, Dipartimento di Chimica Industriale “Toso Montanari”, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Andrea Monti
- Università di Pisa, Dipartimento di Chimica e Chimica Industriale, Via Moruzzi 13, I-56124 Pisa, Italy
| | - Fabio Marchetti
- Università di Pisa, Dipartimento di Chimica e Chimica Industriale, Via Moruzzi 13, I-56124 Pisa, Italy
- CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Guido Pampaloni
- Università di Pisa, Dipartimento di Chimica e Chimica Industriale, Via Moruzzi 13, I-56124 Pisa, Italy
- CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy
| |
Collapse
|
38
|
Tang H, Hall MB. Biomimetics of [NiFe]-Hydrogenase: Nickel- or Iron-Centered Proton Reduction Catalysis? J Am Chem Soc 2017; 139:18065-18070. [DOI: 10.1021/jacs.7b10425] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hao Tang
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
39
|
Ghosh P, Ding S, Chupik RB, Quiroz M, Hsieh CH, Bhuvanesh N, Hall MB, Darensbourg MY. A matrix of heterobimetallic complexes for interrogation of hydrogen evolution reaction electrocatalysts. Chem Sci 2017; 8:8291-8300. [PMID: 29619175 PMCID: PMC5858031 DOI: 10.1039/c7sc03378h] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/11/2017] [Indexed: 11/21/2022] Open
Abstract
Experimental and computational studies address key questions in a structure-function analysis of bioinspired electrocatalysts for the HER. Combinations of NiN2S2 or [(NO)Fe]N2S2 as donors to (η5-C5H5)Fe(CO)+ or [Fe(NO)2]+/0 generate a series of four bimetallics, gradually "softened" by increasing nitrosylation, from 0 to 3, by the non-innocent NO ligands. The nitrosylated NiFe complexes are isolated and structurally characterized in two redox levels, demonstrating required features of electrocatalysis. Computational modeling of experimental structures and likely transient intermediates that connect the electrochemical events find roles for electron delocalization by NO, as well as Fe-S bond dissociation that produce a terminal thiolate as pendant base well positioned to facilitate proton uptake and transfer. Dihydrogen formation is via proton/hydride coupling by internal S-H+···-H-Fe units of the "harder" bimetallic arrangements with more localized electron density, while softer units convert H-···H-via reductive elimination from two Fe-H deriving from the highly delocalized, doubly reduced [Fe2(NO)3]- derivative. Computational studies also account for the inactivity of a Ni2Fe complex resulting from entanglement of added H+ in a pinched -S δ-···H+··· δ-S- arrangement.
Collapse
Affiliation(s)
- Pokhraj Ghosh
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Shengda Ding
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Rachel B Chupik
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Manuel Quiroz
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Chung-Hung Hsieh
- Department of Chemistry , Tamkang University , New Taipei City , Taiwan 25157
| | - Nattami Bhuvanesh
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Michael B Hall
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | | |
Collapse
|