1
|
Vargas-Pinilla P, S Oliveira Fam B, Medina Tavares G, Lima T, Landau L, Paré P, de Cássia Aleixo Tostes R, Pissinatti A, Falótico T, Costa-Neto C, Maestri R, Bortolini MC. From molecular variations to behavioral adaptations: Unveiling adaptive epistasis in primate oxytocin system. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24947. [PMID: 38783700 DOI: 10.1002/ajpa.24947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Our primary objective was to investigate the variability of oxytocin (OT) and the GAMEN binding motif within the LNPEP oxytocinase in primates. MATERIALS AND METHODS We sequenced the LNPEP segment encompassing the GAMEN motif in 34 Platyrrhini species, with 21 of them also sequenced for the OT gene. Our dataset was supplemented with primate sequences of LNPEP, OT, and the oxytocin receptor (OTR) sourced from public databases. Evolutionary analysis and coevolution predictions were made followed by the macroevolution analysis of relevant amino acids associated with phenotypic traits, such as mating systems, parental care, and litter size. To account for phylogenetic structure, we utilized two distinct statistical tests. Additionally, we calculated binding energies focusing on the interaction between Callithtrix jacchus VAMEN and Pro8OT. RESULTS We identified two novel motifs (AAMEN and VAMEN), challenging the current knowledge of motif conservation in placental mammals. Coevolution analysis demonstrated a correlation between GAMEN, AAMEN, and VAMEN and their corresponding OTs and OTRs. Callithrix jacchus exhibited a higher binding energy between VAMEN and Pro8OT than orthologous molecules found in humans (GAMEN and Leu8OT). DISCUSSION The coevolution of AAMEN and VAMEN with their corresponding OTs and OTRs suggests a functional relationship that could have contributed to specific reproductive and adaptive behaviors, including paternal care, social monogamy, and twin births, prominent traits in Cebidae species, such as marmosets and tamarins. Our findings underscore the coevolution of taxon-specific amino acids among the three studied molecules, shedding light on the oxytocinergic system as an adaptive epistatic repertoire in primates.
Collapse
Affiliation(s)
- Pedro Vargas-Pinilla
- Laboratory of Human and Molecular Evolution, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Farmacologia, Faculdade de Medicina, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Bibiana S Oliveira Fam
- Laboratory of Human and Molecular Evolution, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Gustavo Medina Tavares
- Laboratory of Human and Molecular Evolution, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thaynara Lima
- Laboratory of Human and Molecular Evolution, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luane Landau
- Laboratory of Human and Molecular Evolution, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, USA
| | - Pâmela Paré
- Laboratory of Human and Molecular Evolution, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Tiago Falótico
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, Brazil
| | - Cláudio Costa-Neto
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Renan Maestri
- Laboratório de Ecomorfologia e Macroevolução, Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Cátira Bortolini
- Laboratory of Human and Molecular Evolution, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
2
|
Borges VDF, Galant LS, Kanashiro A, Castanheira FVES, Monteiro VVS, Duarte DÂ, Rodrigues FC, Silva CMDS, Schneider AH, Cebinelli GCM, de Lima MHF, Viola JPDB, Cunha TM, da Costa Neto CM, Alves-Filho JCF, Pupo AS, Cunha FDQ. FK506 impairs neutrophil migration that results in increased polymicrobial sepsis susceptibility. Inflamm Res 2023; 72:203-215. [PMID: 36401631 DOI: 10.1007/s00011-022-01669-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the effects of FK506 on experimental sepsis immunopathology. It investigated the effect of FK506 on leukocyte recruitment to the site of infection, systemic cytokine production, and organ injury in mice with sepsis. METHODS Using a murine cecal ligation and puncture (CLP) peritonitis model, the experiments were performed with wild-type (WT) mice and mice deficient in the gene Nfat1 (Nfat1-/-) in the C57BL/6 background. Animals were treated with 2.0 mg/kg of FK506, subcutaneously, 1 h before the sepsis model, twice a day (12 h/12 h). The number of bacteria colony forming units (CFU) was manually counted. The number of neutrophils in the lungs was estimated by the myeloperoxidase (MPO) assay. The expression of CXCR2 in neutrophils was determined using flow cytometry analysis. The expression of inflammatory cytokines in macrophage was determined using ELISA. The direct effect of FK506 on CXCR2 internalization was evaluated using HEK-293T cells after CXCL2 stimulation by the BRET method. RESULTS FK506 treatment potentiated the failure of neutrophil migration into the peritoneal cavity, resulting in bacteremia and an exacerbated systemic inflammatory response, which led to higher organ damage and mortality rates. Failed neutrophil migration was associated with elevated CXCL2 chemokine plasma levels and lower expression of the CXCR2 receptor on circulating neutrophils compared with non-treated CLP-induced septic mice. FK506 did not directly affect CXCL2-induced CXCR2 internalization by transfected HEK-293 cells or mice neutrophils, despite increasing CXCL2 release by LPS-treated macrophages. Finally, the CLP-induced response of Nfat1-/- mice was similar to those observed in the Nfat1+/+ genotype, suggesting that the FK506 effect is not dependent on the NFAT1 pathway. CONCLUSION Our data indicate that the increased susceptibility to infection of FK506-treated mice is associated with failed neutrophil migration due to the reduced membrane availability of CXCR2 receptors in response to exacerbated levels of circulating CXCL2.
Collapse
Affiliation(s)
- Vanessa de Fátima Borges
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Leticia Selinger Galant
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Alexandre Kanashiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernanda Vargas E Silva Castanheira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Valter Vinícius Silva Monteiro
- Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Diego Ângelo Duarte
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Filipe Camargo Rodrigues
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila Meirelles de Souza Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ayda Henriques Schneider
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Guilherme Cesar Martelossi Cebinelli
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Mikhael Haruo Fernandes de Lima
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Thiago Mattar Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Claudio Miguel da Costa Neto
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - José Carlos Farias Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - André Sampaio Pupo
- Department of Biophysics and Pharmacology, Institute of Biosciences, University of São Paulo State (UNESP), Botucatu, São Paulo, Brazil
| | - Fernando de Queiroz Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil. .,Center for Research in Inflammatory Diseases, CRID, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
3
|
Species differences in the effect of oxytocin on maternal behavior: A model incorporating the potential for allomaternal contributions. Front Neuroendocrinol 2022; 65:100996. [PMID: 35429546 DOI: 10.1016/j.yfrne.2022.100996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022]
Abstract
Oxytocin has historically been linked to processes involved with maternal behavior. However, the relative importance of oxytocin for maternal behavior widely varies among mammalian species, from indispensable to apparently nonessential. This review proposes a new model in which the relative importance of oxytocin for mothering across species is explained by an evolutionary pressure which we term "allomaternal potential", or the degree to which other conspecifics are capable and likely to assist with caregiving. It is notable that in animals where allomaternal potential is high (i.e., many quality helpers are available), oxytocin is decoupled from mothering. However, in animals where allomaternal potential is low (i.e., conspecifics refuse to, or do not provide, quality help), oxytocin is crucial for mothering. We posit that this relationship is a form of kin selection, whereby oxytocin is a signal that leads mothers to preferentially dispense resources to their own young when quality helpers are unlikely.
Collapse
|
4
|
Carter CS. Oxytocin and love: Myths, metaphors and mysteries. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 9:100107. [PMID: 35755926 PMCID: PMC9216351 DOI: 10.1016/j.cpnec.2021.100107] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
Oxytocin is a peptide molecule with a multitude of physiological and behavioral functions. Based on its association with reproduction - including social bonding, sexual behavior, birth and maternal behavior - oxytocin also has been called "the love hormone." This essay specifically examines association and parallels between oxytocin and love. However, many myths and gaps in knowledge remain concerning both. A few of these are described here and we hypothesize that the potential benefits of both love and oxytocin may be better understood in light of interactions with more ancient systems, including specifically vasopressin and the immune system. Oxytocin is anti-inflammatory and is associated with recently evolved, social solutions to a variety of challenges necessary for mammalian survival and reproduction. The shared functions of oxytocin and love have profound implications for health and longevity, including the prevention and treatment of excess inflammation and related disorders, especially those occurring in early life and during periods of chronic threat or disease.
Collapse
Affiliation(s)
- C. Sue Carter
- Kinsey Institute, Indiana University, Bloomington, USA
- Department of Psychology, University of Virginia, Charlottesville, USA
| |
Collapse
|
5
|
Muratspahić E, Gattringer J, Gruber CW. Use of BRET to Measure β-Arrestin Recruitment at Oxytocin and Vasopressin Receptors. Methods Mol Biol 2022; 2384:221-229. [PMID: 34550577 DOI: 10.1007/978-1-0716-1759-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bioluminescence resonance energy transfer (BRET) is a cutting-edge biophysical technique used for exploring G protein-coupled receptor (GPCR) pharmacology. BRET relies on the nonradiative energy transfer from a luciferase energy donor to an acceptor fluorophore after oxidation of a luciferase substrate. This energy transfer occurs only if the donor and acceptor are within close proximity. Over the past few years, BRET has been successfully applied to study GPCR oligomerization as well as interactions of receptors with G proteins, G protein-coupled receptor kinases (GRKs), or β-arrestins. Herein, we describe how BRET can be applied to study signaling at the oxytocin receptor (OTR) and vasopressin receptors, thereby enabling the identification of (biased) ligands and molecular probes for investigating receptor functionality.
Collapse
Affiliation(s)
- Edin Muratspahić
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jasmin Gattringer
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Christian W Gruber
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Duarte DA, Parreiras-E-Silva LT, Oliveira EB, Bouvier M, Costa-Neto CM. Angiotensin II Type 1 Receptor Tachyphylaxis Is Defined by Agonist Residence Time. Hypertension 2021; 79:115-125. [PMID: 34739768 DOI: 10.1161/hypertensionaha.121.17977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several GPCRs (G-protein-coupled receptors) have been reported to exhibit tachyphylaxis, which is an acute loss of functional receptor response after repeated stimuli with an agonist. GPCRs are important clinical targets for a wide range of disorders. Therefore, elucidation of the ligand features that contribute to receptor tachyphylaxis and signaling events underlying this phenomenon is important for drug discovery and development. In this study, we examined the role of ligand-binding kinetics in the tachyphylaxis of AT1R (angiotensin II type 1 receptor) using bioluminescence resonance energy transfer assays to monitor signaling events under both kinetic and equilibrium conditions. We investigated AT1R signal transduction and translocation promoted by the endogenous tachyphylactic agonist Ang II (angiotensin II) and its analogs, described previously for inducing reduced receptor tachyphylaxis. Estimation of binding kinetic parameters of the ligands revealed that the residence time of Ang II was higher than that of the analogs, resulting in more sustained Gq protein activation and recruitment of β-arrestin than that promoted by the analogs. Furthermore, we observed that Ang II led to more sustained internalization of the receptor, thereby retarding its recycling to the plasma membrane and preventing further receptor responses. These results show that the apparent lack of tachyphylaxis in the studied analogs resulted from their short residence time at the AT1R. In addition, our data highlight the relevance of complete characterization of novel GPCR drug candidates, taking into account their receptor binding kinetics as well.
Collapse
Affiliation(s)
- Diego A Duarte
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil (D.A.D., L.T.P.-e.-S., E.B.O., C.M.C.-N.)
| | - Lucas T Parreiras-E-Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil (D.A.D., L.T.P.-e.-S., E.B.O., C.M.C.-N.)
| | - Eduardo B Oliveira
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil (D.A.D., L.T.P.-e.-S., E.B.O., C.M.C.-N.)
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, QC, Canada (M.B.)
| | - Claudio M Costa-Neto
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil (D.A.D., L.T.P.-e.-S., E.B.O., C.M.C.-N.)
| |
Collapse
|
7
|
Paré P, Reales G, Paixão-Côrtes VR, Vargas-Pinilla P, Viscardi LH, Fam B, Pissinatti A, Santos FR, Bortolini MC. Molecular evolutionary insights from PRLR in mammals. Gen Comp Endocrinol 2021; 309:113791. [PMID: 33872604 DOI: 10.1016/j.ygcen.2021.113791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
Prolactin (PRL) is a pleiotropic neurohormone secreted by the mammalian pituitary gland into the blood, thus reaching many tissues and organs beyond the brain. PRL binds to its receptor, PRLR, eliciting a molecular signaling cascade. This system modulates essential mammalian behaviors and promotes notable modifications in the reproductive female tissues and organs. Here, we explore how the intracellular domain of PRLR (PRLR-ICD) modulates the expression of the PRLR gene. Despite differences in the reproductive strategies between eutherian and metatherian mammals, there is no clear distinction between PRLR-ICD functional motifs. However, we found selection signatures that showed differences between groups, with many conserved functional elements strongly maintained through purifying selection across the class Mammalia. We observed a few residues under relaxed selection, the levels of which were more pronounced in Eutheria and particularly striking in primates (Simiiformes), which could represent a pre-adaptive genetic element protected from purifying selection. Alternative, new motifs, such as YLDP (318-321) and others with residues Y283 and Y290, may already be functional. These motifs would have been co-opted in primates as part of a complex genetic repertoire related to some derived adaptive phenotypes, but these changes would have no impact on the primordial functions that characterize the mammals as a whole and that are related to the PRL-PRLR system.
Collapse
Affiliation(s)
- Pamela Paré
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Guillermo Reales
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Vanessa R Paixão-Côrtes
- Laboratório de Biologia Evolutiva e Genômica (LABEG), Programa de Pós-Graduação em Biodiversidade e Evolução, Instituto de Biologia, Universidade Federal da Bahia (UFBA), Salvador, BA, Brazil
| | - Pedro Vargas-Pinilla
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Faculdade de Medicina de Ribeirão Preto, Departamento de Bioquímica e Imunologia, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas Henriques Viscardi
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Bibiana Fam
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Fabrício R Santos
- Laboratório de Biodiversidade e Evolução Molecular, Departamento de Genética, Ecologia e Evolução da Universidade Federal de Minas Gerais (UFMG), Belo-Horizonte, MG, Brazil.
| | - Maria Cátira Bortolini
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Simões SC, Balico-Silva AL, Parreiras-E-Silva LT, Bitencourt ALB, Bouvier M, Costa-Neto CM. Signal Transduction Profiling of Angiotensin II Type 1 Receptor With Mutations Associated to Atrial Fibrillation in Humans. Front Pharmacol 2021; 11:600132. [PMID: 33424609 PMCID: PMC7786401 DOI: 10.3389/fphar.2020.600132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/18/2020] [Indexed: 11/24/2022] Open
Abstract
The AT1 receptor (AT1R) has a major role in the Renin-Angiotensin System, being involved in several physiological events including blood pressure control and electrolyte balance. The AT1R is a member of the G protein coupled receptors (GPCR) family, classically known to couple Gαq and engage β-arrestin recruitment. Both G protein and arrestin signaling pathways are involved in modulation of different downstream kinases. A previous study reported that mutations in the AT1R (A244S and I103T-A244S) were positively correlated with higher risk of atrial fibrillation in men. Based on that report, we aimed to investigate if these mutations, including I103T only, could affect AT1R signal transduction profile, and consequently, implicate in atrial fibrillation outcome. To address that, we engineered an AT1R carrying the above-mentioned mutations, and functionally evaluated different signaling pathways. Phosphokinase profiler array to assess the mutations downstream effects on kinases and kinase substrates phosphorylation levels was used. Our results show that the I103T-A244S mutant receptor presents decreased β-arrestin 2 recruitment, which could lead to a harmful condition of sustained Gαq signaling. Moreover, the phosphokinase profiler array revealed that the same mutation led to downstream modulation of kinase pathways that are linked to physiological responses such as fibrous tissue formation, apoptosis and cell proliferation.
Collapse
Affiliation(s)
- Sarah C Simões
- Ribeirao Preto Medical School, Department of Biochemistry and Immunology, University of São Paulo, Ribeirao Preto, Brazil
| | - André L Balico-Silva
- Ribeirao Preto Medical School, Department of Biochemistry and Immunology, University of São Paulo, Ribeirao Preto, Brazil
| | - Lucas T Parreiras-E-Silva
- Ribeirao Preto Medical School, Department of Biochemistry and Immunology, University of São Paulo, Ribeirao Preto, Brazil
| | - André L B Bitencourt
- Ribeirao Preto Medical School, Department of Biochemistry and Immunology, University of São Paulo, Ribeirao Preto, Brazil
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine and Institute for Research in Immunology and Cancer, University of Montréal, Montréal, QC, Canada
| | - Claudio M Costa-Neto
- Ribeirao Preto Medical School, Department of Biochemistry and Immunology, University of São Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
9
|
Campbell SK, Cortés-Ortiz L. Oxytocin amino acid variation within Neotropical primates: new genetic variants in hormone and receptor sequences and evidence for evolutionary forces driving this unexpected diversity. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Oxytocin is a mammalian neuropeptide hormone that mediates behaviours important to reproduction. Despite almost universal amino acid sequence conservation across most groups of mammals, several unique forms have been reported across Neotropical primates. To explore sequence diversity, we investigated the genes encoding oxytocin and its receptor across the Atelidae, which was known to contain at least three unique oxytocin sequences. Additionally, we included the genus Cebus, within the Cebidae, to further explore the ubiquity of the Pro8 variant in this family. We found a novel amino acid variant (Val3) within the Atelidae radiation, bringing the total number of oxytocin sequences within Neotropical primates to seven. Analyses of physicochemical properties revealed conservative substitutions that are likely tolerated within the selective constraints imposed by receptor binding. Furthermore, we report radical substitutions at the eighth codon and evidence for co-evolution between Pro8 and a ligand-binding region of the oxytocin receptor in the Atelidae, supporting the notion that this variant may affect binding specificity. Overall, we suggest that selective constraint on binding specificity may maintain proper oxytocin function and that the diversification of amino acid sequence is likely due to a variety of processes such as relaxed constraint, neutral mutation, positive selection and coevolution.
Collapse
Affiliation(s)
- Susanna K Campbell
- Department of Ecology and Evolutionary Biology, The University of Michigan, Ann Arbor, MI, USA
| | - Liliana Cortés-Ortiz
- Department of Ecology and Evolutionary Biology, The University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Creeth HDJ, John RM. The placental programming hypothesis: Placental endocrine insufficiency and the co-occurrence of low birth weight and maternal mood disorders. Placenta 2020; 98:52-59. [PMID: 33039032 DOI: 10.1016/j.placenta.2020.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022]
Abstract
Polypeptide hormones and steroid hormones, either expressed by the placenta or dependant on the placenta for their synthesis, are key to driving adaptations in the mother during pregnancy that support growth in utero. These adaptations include changes in maternal behaviour that take place in pregnancy and after the birth to ensure that offspring receive appropriate care and nutrition. Placentally-derived hormones implicated in the programming of maternal caregiving in rodents include prolactin-related hormones and steroid hormones. Neuromodulators produced by the placenta may act directly on the fetus to support brain development. A number of imprinted genes function antagonistically in the placenta to regulate the development of key placental endocrine lineages expressing these hormones. Gain-in-expression of the normally maternally expressed gene Phlda2 or loss-of-function of the normally paternally expressed gene Peg3 results in fewer endocrine cells in the placenta, and pups are born low birth weight. Importantly, wild type dams carrying these genetically altered pups display alterations in their behaviour with decreased focus on nurturing (Phlda2) or heightened anxiety (Peg3). These same genes may regulate placental hormones in human pregnancies, with the potential to influence birth weight and maternal mood. Consequently, the aberrant expression of imprinted genes in the placenta may underlie the reported co-occurrence of low birth weight with maternal prenatal depression.
Collapse
Affiliation(s)
- H D J Creeth
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - R M John
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
11
|
Duerrauer L, Muratspahić E, Gattringer J, Keov P, Mendel HC, Pfleger KDG, Muttenthaler M, Gruber CW. I8-arachnotocin-an arthropod-derived G protein-biased ligand of the human vasopressin V 2 receptor. Sci Rep 2019; 9:19295. [PMID: 31848378 PMCID: PMC6917733 DOI: 10.1038/s41598-019-55675-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
The neuropeptides oxytocin (OT) and vasopressin (VP) and their G protein-coupled receptors OTR, V1aR, V1bR, and V2R form an important and widely-distributed neuroendocrine signaling system. In mammals, this signaling system regulates water homeostasis, blood pressure, reproduction, as well as social behaviors such as pair bonding, trust and aggression. There exists high demand for ligands with differing pharmacological profiles to study the physiological and pathological functions of the individual receptor subtypes. Here, we present the pharmacological characterization of an arthropod (Metaseiulus occidentalis) OT/VP-like nonapeptide across the human OT/VP receptors. I8-arachnotocin is a full agonist with respect to second messenger signaling at human V2R (EC50 34 nM) and V1bR (EC50 1.2 µM), a partial agonist at OTR (EC50 790 nM), and a competitive antagonist at V1aR [pA2 6.25 (558 nM)]. Intriguingly, I8-arachnotocin activated the Gαs pathway of V2R without recruiting either β-arrestin-1 or β-arrestin-2. I8-arachnotocin might thus be a novel pharmacological tool to study the (patho)physiological relevance of β-arrestin-1 or -2 recruitment to the V2R. These findings furthermore highlight arthropods as a novel, vast and untapped source for the discovery of novel pharmacological probes and potential drug leads targeting neurohormone receptors.
Collapse
Affiliation(s)
- Leopold Duerrauer
- Institute of Pharmacology, Center for Pharmacology and Physiology, Medical University of Vienna, Vienna, Austria
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Edin Muratspahić
- Institute of Pharmacology, Center for Pharmacology and Physiology, Medical University of Vienna, Vienna, Austria
| | - Jasmin Gattringer
- Institute of Pharmacology, Center for Pharmacology and Physiology, Medical University of Vienna, Vienna, Austria
| | - Peter Keov
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Helen C Mendel
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Kevin D G Pfleger
- Centre for Medical Research, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christian W Gruber
- Institute of Pharmacology, Center for Pharmacology and Physiology, Medical University of Vienna, Vienna, Austria.
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
12
|
Leu 8 and Pro 8 oxytocin agonism differs across human, macaque, and marmoset vasopressin 1a receptors. Sci Rep 2019; 9:15480. [PMID: 31664130 PMCID: PMC6820730 DOI: 10.1038/s41598-019-52024-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022] Open
Abstract
Oxytocin (OXT) is an important neuromodulator of social behaviors via activation of both oxytocin receptors (OXTR) and vasopressin (AVP) 1a receptors (AVPR1a). Marmosets are neotropical primates with a modified OXT ligand (Pro8-OXT), and this ligand shows significant coevolution with traits including social monogamy and litter size. Pro8-OXT produces more potent and efficacious responses at primate OXTR and stronger behavioral effects than the consensus mammalian OXT ligand (Leu8-OXT). Here, we tested whether OXT/AVP ligands show differential levels of crosstalk at primate AVPR1a. We measured binding affinities and Ca2+ signaling responses of AVP, Pro8-OXT and Leu8-OXT at human, macaque, and marmoset AVPR1a. We found that AVP binds with higher affinity than OXT across AVPR1a, and marmoset AVPR1a show a 10-fold lower OXT binding affinity compared to human and macaque AVPR1a. Both Leu8-OXT and Pro8-OXT produce a less efficacious response than AVP at human AVPR1a and higher efficacious response than AVP at marmoset AVPR1a. These data suggest that OXT might partially antagonize endogenous human AVPR1a signaling and enhance marmoset AVPR1a signaling. These findings aid in further understanding inconsistencies observed following systemic intranasal administration of OXT and provide important insights into taxon-specific differences in nonapeptide ligand/receptor coevolution and behavior.
Collapse
|
13
|
Creeth HDJ, McNamara GI, Isles AR, John RM. Imprinted genes influencing the quality of maternal care. Front Neuroendocrinol 2019; 53:100732. [PMID: 30553874 DOI: 10.1016/j.yfrne.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/15/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022]
Abstract
In mammals successful rearing imposes a cost on later reproductive fitness specifically on the mother creating the potential for parental conflict. Loss of function of three imprinted genes in the dam results in deficits in maternal care suggesting that, like maternal nutrients, maternal care is a resource over which the parental genomes are in conflict. The induction of maternal care is a complex, highly regulated process and it is unsurprising that many gene disruptions and environmental adversities result in maternal care deficits. However, recent compelling evidence for a more purposeful imprinting phenomenon comes from observing alterations in the mother's behaviour when expression of the imprinted genes Phlda2 and Peg3 has been manipulated solely in the offspring. This explicit demonstration that imprinted genes expressed in the offspring influence maternal behaviour lends significant weight to the hypothesis that maternal care is a resource that has been manipulated by the paternal genome.
Collapse
Affiliation(s)
- H D J Creeth
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - G I McNamara
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - A R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff CF24 4HQ, UK
| | - R M John
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
14
|
Oxytocin/vasopressin-like peptide inotocin regulates cuticular hydrocarbon synthesis and water balancing in ants. Proc Natl Acad Sci U S A 2019; 116:5597-5606. [PMID: 30842287 PMCID: PMC6431230 DOI: 10.1073/pnas.1817788116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Inotocin, the oxytocin/vasopressin-like peptide, is widely conserved in arthropods; however, little is known about its molecular function. Here, we show that, in ants, the expression levels of inotocin and its receptor are correlated with the age of workers and their behavior. We also demonstrate that inotocin signaling is involved in desiccation resistance by regulating the synthesis of cuticular hydrocarbons. We propose that the up-regulation of inotocin and its receptor as workers age and switch tasks from nursing to foraging is a key physiological adaption to survive drier environments outside of the nest. Oxytocin/vasopressin-like peptides are important regulators of physiology and social behavior in vertebrates. However, the function of inotocin, the homologous peptide in arthropods, remains largely unknown. Here, we show that the level of expression of inotocin and inotocin receptor are correlated with task allocation in the ant Camponotus fellah. Both genes are up-regulated when workers age and switch tasks from nursing to foraging. in situ hybridization revealed that inotocin receptor is specifically expressed in oenocytes, which are specialized cells synthesizing cuticular hydrocarbons which function as desiccation barriers in insects and for social recognition in ants. dsRNA injection targeting inotocin receptor, together with pharmacological treatments using three identified antagonists blocking inotocin signaling, revealed that inotocin signaling regulates the expression of cytochrome P450 4G1 (CYP4G1) and the synthesis of cuticular hydrocarbons, which play an important role in desiccation resistance once workers initiate foraging.
Collapse
|
15
|
Pierce ML, Mehrotra S, Mustoe AC, French JA, Murray TF. A Comparison of the Ability of Leu 8- and Pro 8-Oxytocin to Regulate Intracellular Ca 2+ and Ca 2+-Activated K + Channels at Human and Marmoset Oxytocin Receptors. Mol Pharmacol 2019; 95:376-385. [PMID: 30739093 DOI: 10.1124/mol.118.114744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/30/2019] [Indexed: 02/02/2023] Open
Abstract
The neurohypophyseal hormone oxytocin (OT) regulates biologic functions in both peripheral tissues and the central nervous system. In the central nervous system, OT influences social processes, including peer relationships, maternal-infant bonding, and affiliative social relationships. In mammals, the nonapeptide OT structure is highly conserved with leucine in the eighth position (Leu8-OT). In marmosets (Callithrix), a nonsynonymous nucleotide substitution in the OXT gene codes for proline in the eighth residue position (Pro8-OT). OT binds to its cognate G protein-coupled receptor (OTR) and exerts diverse effects, including stimulation (Gs) or inhibition (Gi/o) of adenylyl cyclase, stimulation of potassium channel currents (Gi), and activation of phospholipase C (Gq). Chinese hamster ovary cells expressing marmoset or human oxytocin receptors (mOTRs or hOTRs, respectively) were used to characterize OT signaling. At the mOTR, Pro8-OT was more efficacious than Leu8-OT in measures of Gq activation, with both peptides displaying subnanomolar potencies. At the hOTR, neither the potency nor efficacy of Pro8-OT and Leu8-OT differed with respect to Gq signaling. In both mOTR- and hOTR-expressing cells, Leu8-OT was more potent and modestly more efficacious than Pro8-OT in inducing hyperpolarization. In mOTR cells, Leu8-OT-induced hyperpolarization was modestly inhibited by pretreatment with pertussis toxin (PTX), consistent with a minor role for Gi/o activation; however, the Pro8-OT response in mOTR and hOTR cells was PTX insensitive. These findings are consistent with membrane hyperpolarization being largely mediated by a Gq signaling mechanism leading to Ca2+-dependent activation of K+ channels. Evaluation of the influence of apamin, charybdotoxin, paxilline, and TRAM-34 demonstrated involvement of both intermediate and large conductance Ca2+-activated K+ channels.
Collapse
Affiliation(s)
- Marsha L Pierce
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska (M.L.P., S.M., T.F.M.); and Department of Psychology, University of Nebraska, Omaha, Nebraska (A.C.M., J.A.F.)
| | - Suneet Mehrotra
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska (M.L.P., S.M., T.F.M.); and Department of Psychology, University of Nebraska, Omaha, Nebraska (A.C.M., J.A.F.)
| | - Aaryn C Mustoe
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska (M.L.P., S.M., T.F.M.); and Department of Psychology, University of Nebraska, Omaha, Nebraska (A.C.M., J.A.F.)
| | - Jeffrey A French
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska (M.L.P., S.M., T.F.M.); and Department of Psychology, University of Nebraska, Omaha, Nebraska (A.C.M., J.A.F.)
| | - Thomas F Murray
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska (M.L.P., S.M., T.F.M.); and Department of Psychology, University of Nebraska, Omaha, Nebraska (A.C.M., J.A.F.)
| |
Collapse
|
16
|
Targeting the Oxytocin System: New Pharmacotherapeutic Approaches. Trends Pharmacol Sci 2019; 40:22-37. [DOI: 10.1016/j.tips.2018.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/27/2018] [Accepted: 11/01/2018] [Indexed: 12/27/2022]
|
17
|
Mustoe A, Taylor JH, French JA. Oxytocin structure and function in New World monkeys: from pharmacology to behavior. Integr Zool 2018; 13:634-654. [PMID: 29436774 PMCID: PMC6089668 DOI: 10.1111/1749-4877.12318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxytocin (OT) is a hypothalamic nonapeptide that mediates a host of physiological and behavioral processes including reproductive physiology and social attachments. While the OT sequence structure is highly conserved among mammals, New World monkeys (NWMs) represent an unusual "hot spot" in OT structure variability among mammals. At least 6 distinct OT ligand variants among NWMs exist, yet it is currently unclear whether these evolved structural changes result in meaningful functional consequences. NWMs offer a new area to explore how these modifications to OT and its canonical G-protein coupled OT receptor (OTR) may mediate specific cellular, physiological and behavioral outcomes. In this review, we highlight relationships between OT ligand and OTR structural variability, specifically examining coevolution between OT ligands, OTRs, and physiological and behavioral phenotypes across NWMs. We consider whether these evolved modifications to the OT structure alter pharmacological profiles at human and marmoset OTRs, including changes to receptor binding, intracellular signaling and receptor internalization. Finally, we evaluate whether exogenous manipulation using OT variants in marmoset monkeys differentially enhance or impair behavioral processes involved in social relationships between pairmates, opposite-sex strangers, and parents and their offspring. Overall, it appears that changes to OT ligands in NWMs result in important changes ranging from cellular signaling to broad measures of social behavior.
Collapse
Affiliation(s)
- Aaryn Mustoe
- Program in Neuroscience and Behavior, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Jack H Taylor
- Program in Neuroscience and Behavior, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Jeffrey A French
- Program in Neuroscience and Behavior, University of Nebraska at Omaha, Omaha, Nebraska, USA
| |
Collapse
|
18
|
Cavanaugh J, Mustoe A, French JA. Oxytocin regulates reunion affiliation with a pairmate following social separation in marmosets. Am J Primatol 2018; 80:e22750. [PMID: 29527695 PMCID: PMC6133767 DOI: 10.1002/ajp.22750] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 12/13/2022]
Abstract
While separation from significant social partners produces a host of neurobiological and behavioral perturbations, including behavioral distress and increased glucocorticoid production, positive social interactions upon reunion are critical for the reestablishment of normative relationship dynamics and the attenuation of the biobehavioral stress response. The hormone oxytocin has critical and pervasive roles in reproductive and behavioral processes across the lifespan, and plays a particularly prominent role in social bonding. In this study, we examined the extent that oxytocin modulates interactions with a pairmate following separation challenges that varied in both social context (isolation; separation) and duration (long; short), in marmosets. We demonstrated that the impact of pharmacological manipulations of the oxytocin system on the expression of affiliation upon reunion depended on both the context and duration of the separation challenge. Specifically, marmosets treated with an oxytocin antagonist spent less time in proximity with their pairmate upon reunion following a long-separation challenge. During the short-separation challenge, marmosets engaged in more social gaze when separated with an opposite-sex stranger, but not when separated with their mate. Furthermore, marmosets that received the most social gaze from opposite-sex strangers spent the most time in proximity with their long-term mate upon reunion. We also showed that marmosets treated with an OT agonist received increased levels of gaze from opposite-sex strangers, but not from their mate. Overall, these results suggest that marmosets are sensitive to the nature of the social interactions during separation, and subsequently alter their expression of affiliation upon reunion with their long-term mate. These findings further implicate oxytocin as a bond-enhancing molecule that regulates the reestablishment of normative levels of affiliation with a mate following separation, and add to the emerging literature that suggests the OT system underlies critical behavioral processes that contribute to the preservation of long-lasting social bonds.
Collapse
Affiliation(s)
- Jon Cavanaugh
- Department of Psychology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Aaryn Mustoe
- Department of Psychology, University of Nebraska at Omaha, Omaha, Nebraska
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Jeffrey A. French
- Department of Psychology, University of Nebraska at Omaha, Omaha, Nebraska
| |
Collapse
|
19
|
Taylor JH, Schulte NA, French JA, Toews ML. Binding Characteristics of Two Oxytocin Variants and Vasopressin at Oxytocin Receptors from Four Primate Species with Different Social Behavior Patterns. J Pharmacol Exp Ther 2018; 367:101-107. [PMID: 30068728 DOI: 10.1124/jpet.118.250852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023] Open
Abstract
A clade of New World monkeys (NWMs) exhibits considerable diversity in both oxytocin (OT) ligand and oxytocin receptor (OTR) structure. Most notable is the variant Pro8-OT, with proline instead of leucine at the eighth position, resulting in a rigid bend in the peptide backbone. A higher proportion of species that express Pro8-OT also engage in biparental care and social monogamy. When marmosets (genus Callithrix), a biparental and monogamous Pro8-OT NWM species, are administered the ancestral Leu8-OT, there is no change in social behavior compared with saline treatment. However, when Pro8-OT is administered, marmosets' sociosexual and prosocial behaviors are altered. The studies here tested the hypothesis that OTR binding affinities and OT-induced intracellular Ca2+ potencies would favor the native OT ligand in OTRs from four primate species, each representing a unique combination of ancestral lineage, breeding system, and native OT ligand: humans (Leu8-OT, monogamous, apes), macaques (Leu8-OT, nonmonogamous, Old World monkey), marmosets (Pro8-OT, monogamous, NWM), and titi monkeys (Leu8-OT, monogamous, NWM). OTRs were expressed in immortalized Chinese hamster ovary cells and tested for intact-cell binding affinities for Pro8-OT, Leu8-OT, and arginine vasopressin (AVP), as well as intracellular Ca2+ signaling after stimulation with Pro8-OT, Leu8-OT, and AVP. Contrary to our hypothesis, Pro8-OT bound at modestly higher affinities and stimulated calcium signaling at modestly higher potencies compared with Leu8-OT in all four primate OTRs. Thus, differences downstream from a ligand-receptor binding event are more likely to explain the different behavioral responses to these two ligands.
Collapse
Affiliation(s)
- Jack H Taylor
- Departments of Psychology (J.H.T., J.A.F.) and Biology (J.A.F.), Callitrichid Research Center, University of Nebraska at Omaha, Omaha, Nebraska; and Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska (N.A.S., M.L.T.)
| | - Nancy A Schulte
- Departments of Psychology (J.H.T., J.A.F.) and Biology (J.A.F.), Callitrichid Research Center, University of Nebraska at Omaha, Omaha, Nebraska; and Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska (N.A.S., M.L.T.)
| | - Jeffrey A French
- Departments of Psychology (J.H.T., J.A.F.) and Biology (J.A.F.), Callitrichid Research Center, University of Nebraska at Omaha, Omaha, Nebraska; and Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska (N.A.S., M.L.T.)
| | - Myron L Toews
- Departments of Psychology (J.H.T., J.A.F.) and Biology (J.A.F.), Callitrichid Research Center, University of Nebraska at Omaha, Omaha, Nebraska; and Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska (N.A.S., M.L.T.)
| |
Collapse
|
20
|
Maternal care boosted by paternal imprinting in mammals. PLoS Biol 2018; 16:e2006599. [PMID: 30063711 PMCID: PMC6067684 DOI: 10.1371/journal.pbio.2006599] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022] Open
Abstract
In mammals, mothers are the primary caregiver, programmed, in part, by hormones produced during pregnancy. High-quality maternal care is essential for the survival and lifelong health of offspring. We previously showed that the paternally silenced imprinted gene pleckstrin homology-like domain family A member 2 (Phlda2) functions to negatively regulate a single lineage in the mouse placenta called the spongiotrophoblast, a major source of hormones in pregnancy. Consequently, the offspring's Phlda2 gene dosage may influence the quality of care provided by the mother. Here, we show that wild-type (WT) female mice exposed to offspring with three different doses of the maternally expressed Phlda2 gene-two active alleles, one active allele (the extant state), and loss of function-show changes in the maternal hypothalamus and hippocampus during pregnancy, regions important for maternal-care behaviour. After birth, WT dams exposed in utero to offspring with the highest Phlda2 dose exhibit decreased nursing and grooming of pups and increased focus on nest building. Conversely, 'paternalised' dams, exposed to the lowest Phlda2 dose, showed increased nurturing of their pups, increased self-directed behaviour, and a decreased focus on nest building, behaviour that was robustly maintained in the absence of genetically modified pups. This work raises the intriguing possibility that imprinting of Phlda2 contributed to increased maternal care during the evolution of mammals.
Collapse
|
21
|
Reales G, Paixão-Côrtes VR, Cybis GB, Gonçalves GL, Pissinatti A, Salzano FM, Bortolini MC. Serotonin, behavior, and natural selection in New World monkeys. J Evol Biol 2018; 31:1180-1192. [DOI: 10.1111/jeb.13295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/16/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Guillermo Reales
- Departamento de Genética; Instituto de Biociências; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| | | | - Gabriela B. Cybis
- Departamento de Estatística; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| | - Gislene L. Gonçalves
- Departamento de Genética; Instituto de Biociências; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| | | | - Francisco M. Salzano
- Departamento de Genética; Instituto de Biociências; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| | - Maria Cátira Bortolini
- Departamento de Genética; Instituto de Biociências; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| |
Collapse
|
22
|
Benítez ME, Sosnowski MJ, Tomeo OB, Brosnan SF. Urinary oxytocin in capuchin monkeys: Validation and the influence of social behavior. Am J Primatol 2018; 80:e22877. [DOI: 10.1002/ajp.22877] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Marcela E. Benítez
- Department of Psychology; Georgia State University; Atlanta Georgia
- Language Research Center; Georgia State University; Atlanta Georgia
- Center for Behavioral Neuroscience; Georgia State University; Atlanta Georgia
| | - Meghan J. Sosnowski
- Department of Psychology; Georgia State University; Atlanta Georgia
- Language Research Center; Georgia State University; Atlanta Georgia
| | - Olivia B. Tomeo
- Department of Psychology; Georgia State University; Atlanta Georgia
- Language Research Center; Georgia State University; Atlanta Georgia
| | - Sarah F. Brosnan
- Department of Psychology; Georgia State University; Atlanta Georgia
- Language Research Center; Georgia State University; Atlanta Georgia
- Center for Behavioral Neuroscience; Georgia State University; Atlanta Georgia
- Neuroscience Institute; Georgia State University; Atlanta Georgia
| |
Collapse
|
23
|
Yang W, Zhang N, Shi B, Zhang S, Zhang L, Zhang W. Isotocin Regulates Growth Hormone but Not Prolactin Release From the Pituitary of Ricefield Eels. Front Endocrinol (Lausanne) 2018; 9:166. [PMID: 29706934 PMCID: PMC5906535 DOI: 10.3389/fendo.2018.00166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/28/2018] [Indexed: 12/21/2022] Open
Abstract
The neurohypophyseal hormone oxytocin (Oxt) has been shown to stimulate prolactin (Prl) synthesis and release from the adenohypophysis in rats. However, little is known about the functional roles of Oxt-like neuropeptides in the adenohypophysis of non-mammalian vertebrates. In this study, cDNAs encoding ricefield eel oxytocin-like receptors (Oxtlr), namely isotocin (Ist) receptor 1 (Istr1) and 2 (Istr2), were isolated and specific antisera were generated, respectively. RT-PCR and Western blot analysis detected the presence of both Istr1 and Istr2 in the brain and pituitary, but differential expression in some peripheral tissues, including the liver and kidney, where only Istr1 was detected. In the pituitary, immunoreactive Istr1 and Istr2 were differentially distributed, with the former mainly in adenohypophyseal cell layers adjacent to the neurohypophysis, whereas the latter in peripheral areas of the adenohypophysis. Double immunofluorescent images showed that immunostaining of Istr1, but not Istr2 was localized to growth hormone (Gh) cells, but neither of them was expressed in Prl cells. Ist inhibited Gh release in primary pituitary cells of ricefield eels and increased Gh contents in the pituitary gland of ricefield eels at 6 h after in vivo administration. Ist inhibition of Gh release is probably mediated by cAMP, PKC/DAG, and IP3/Ca2+ pathways. In contrast, Ist did not affect either prl gene expression or Prl contents in primary pituitary cells. Results of this study demonstrated that Ist may not be involved in the regulation of Prl, but inhibit Gh release via Istr1 rather than Istr2 in ricefield eels, and provided evidence for the direct regulation of Gh cells by oxytocin-like neuropeptides in the pituitary of non-mammalian vertebrates.
Collapse
Affiliation(s)
- Wei Yang
- School of Life Sciences, Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
| | - Ning Zhang
- School of Life Sciences, Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
| | - Boyang Shi
- School of Life Sciences, Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
| | - Shen Zhang
- School of Life Sciences, Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
| | - Lihong Zhang
- School of Life Sciences, Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
- Biology Department, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Lihong Zhang, ; Weimin Zhang,
| | - Weimin Zhang
- School of Life Sciences, Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
- Biology Department, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Lihong Zhang, ; Weimin Zhang,
| |
Collapse
|