1
|
Talukdar D, Gole B. Foldamer-Based Mechanoresponsive Materials: Molecular Nanoarchitectonics to Advanced Functions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18791-18805. [PMID: 39051976 DOI: 10.1021/acs.langmuir.4c01252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Artificial molecules that respond to external stimuli such as light, heat, chemical signals, and mechanical force have garnered significant interest due to their tunable functions, variable optical properties, and mechanical responses. Particularly, mechanoresponsive materials featuring molecules that respond to mechanical stress or show force-induced optical changes have been intriguing due to their extraordinary functions. Despite the promising potential of many such materials reported in the past, practical applications have remained limited, primarily because their functions often depend on irreversible covalent bond rupture. Foldamers, oligomers that fold into well-defined secondary structures, offer an alternative class of mechanoactive motifs. These molecules can reversibly sustain mechanical stress and efficiently dissipate energy by transitioning between folded and unfolded states. This review focuses on the emerging properties of foldamer-based mechanoresponsive materials. We begin by highlighting the mechanical responses of foldamers in their molecular form, which have been primarily investigated using single-molecule force spectroscopy and other analytical methods. Following this, we provide a detailed survey of the current trends in foldamer-appended polymers, emphasizing their emerging mechanical and mechanochromic properties. Subsequently, we present an overview of the state-of-the-art advancements in foldamer-appended polymers, showcasing significant reports in this field. This review covers some of the most recent advances in this direction and draws a perspective for further development.
Collapse
Affiliation(s)
- Dhrubajyoti Talukdar
- Biomimetic Supramolecular Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Greater Noida, Uttar Pradesh 201314, India
| | - Bappaditya Gole
- Biomimetic Supramolecular Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
2
|
Lostao A, Lim K, Pallarés MC, Ptak A, Marcuello C. Recent advances in sensing the inter-biomolecular interactions at the nanoscale - A comprehensive review of AFM-based force spectroscopy. Int J Biol Macromol 2023; 238:124089. [PMID: 36948336 DOI: 10.1016/j.ijbiomac.2023.124089] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Biomolecular interactions underpin most processes inside the cell. Hence, a precise and quantitative understanding of molecular association and dissociation events is crucial, not only from a fundamental perspective, but also for the rational design of biomolecular platforms for state-of-the-art biomedical and industrial applications. In this context, atomic force microscopy (AFM) appears as an invaluable experimental technique, allowing the measurement of the mechanical strength of biomolecular complexes to provide a quantitative characterization of their interaction properties from a single molecule perspective. In the present review, the most recent methodological advances in this field are presented with special focus on bioconjugation, immobilization and AFM tip functionalization, dynamic force spectroscopy measurements, molecular recognition imaging and theoretical modeling. We expect this work to significantly aid in grasping the principles of AFM-based force spectroscopy (AFM-FS) technique and provide the necessary tools to acquaint the type of data that can be achieved from this type of experiments. Furthermore, a critical assessment is done with other nanotechnology techniques to better visualize the future prospects of AFM-FS.
Collapse
Affiliation(s)
- Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain; Fundación ARAID, Aragón, Spain.
| | - KeeSiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Ishikawa 920-1192, Japan
| | - María Carmen Pallarés
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Arkadiusz Ptak
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Poznan 60-925, Poland
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain.
| |
Collapse
|
3
|
Willis-Fox N, Watchorn-Rokutan E, Rognin E, Daly R. Technology pull: scale-up of polymeric mechanochemical force sensors. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
4
|
Chen X, Chen H, Fraser Stoddart J. The Story of the Little Blue Box: A Tribute to Siegfried Hünig. Angew Chem Int Ed Engl 2023; 62:e202211387. [PMID: 36131604 PMCID: PMC10099103 DOI: 10.1002/anie.202211387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 02/02/2023]
Abstract
The tetracationic cyclophane, cyclobis(paraquat-p-phenylene), also known as the little blue box, constitutes a modular receptor that has facilitated the discovery of many host-guest complexes and mechanically interlocked molecules during the past 35 years. Its versatility in binding small π-donors in its tetracationic state, as well as forming trisradical tricationic complexes with viologen radical cations in its doubly reduced bisradical dicationic state, renders it valuable for the construction of various stimuli-responsive materials. Since the first reports in 1988, the little blue box has been featured in over 500 publications in the literature. All this research activity would not have been possible without the seminal contributions carried out by Siegfried Hünig, who not only pioneered the syntheses of viologen-containing cyclophanes, but also revealed their rich redox chemistry in addition to their ability to undergo intramolecular π-dimerization. This Review describes how his pioneering research led to the design and synthesis of the little blue box, and how this redox-active host evolved into the key component of molecular shuttles, switches, and machines.
Collapse
Affiliation(s)
- Xiao‐Yang Chen
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
| | - Hongliang Chen
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
| | - J. Fraser Stoddart
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
- School of ChemistryUniversity of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
5
|
|
6
|
Feng L, Astumian RD, Stoddart JF. Controlling dynamics in extended molecular frameworks. Nat Rev Chem 2022; 6:705-725. [PMID: 37117491 DOI: 10.1038/s41570-022-00412-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 11/09/2022]
Abstract
Molecular machines are essential dynamic components for fuel production, cargo delivery, information storage and processing in living systems. Scientists have demonstrated that they can design and synthesize artificial molecular machines that operate efficiently in isolation - for example, at high dilution in solution - fuelled by chemicals, electricity or light. To organize the spatial arrangement and motion of these machines within close proximity to one another in solid frameworks, such that useful macroscopic work can be performed, remains a challenge in both chemical and materials science. In this Review, we summarize the progress that has been made during the past decade in organizing dynamic molecular entities in such solid frameworks. Emerging applications of these dynamic smart materials in the contexts of molecular recognition, optoelectronics, drug delivery, photodynamic therapy and water desalination are highlighted. Finally, we review recent work on a new non-equilibrium adsorption phenomenon for which we have coined the term mechanisorption. The ability to use external energy to drive directional processes in mechanized extended frameworks augurs well for the future development of artificial molecular factories.
Collapse
|
7
|
Rico-Pasto M, Alemany A, Ritort F. Force-Dependent Folding Kinetics of Single Molecules with Multiple Intermediates and Pathways. J Phys Chem Lett 2022; 13:1025-1032. [PMID: 35072478 PMCID: PMC9882750 DOI: 10.1021/acs.jpclett.1c03521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Most single-molecule studies derive the kinetic rates of native, intermediate, and unfolded states from equilibrium hopping experiments. Here, we apply the Kramers kinetic diffusive model to derive the force-dependent kinetic rates of intermediate states from nonequilibrium pulling experiments. From the kinetic rates, we also extract the force-dependent kinetic barriers and the equilibrium folding energies. We apply our method to DNA hairpins with multiple folding pathways and intermediates. The experimental results agree with theoretical predictions. Furthermore, the proposed nonequilibrium single-molecule approach permits us to characterize kinetic and thermodynamic properties of native, unfolded, and intermediate states that cannot be derived from equilibrium hopping experiments.
Collapse
Affiliation(s)
- Marc Rico-Pasto
- Small
Biosystems Lab, Condensed Matter Physics Department, University of Barcelona, C/Martí i Franqués 1, Barcelona, 08028, Spain
| | - Anna Alemany
- Department
of Anatomy and Embryology, Leiden University
Medical Center, Leiden, 2333ZC, The Netherlands
| | - Felix Ritort
- Small
Biosystems Lab, Condensed Matter Physics Department, University of Barcelona, C/Martí i Franqués 1, Barcelona, 08028, Spain
| |
Collapse
|
8
|
Sarkar A. Biosensing, Characterization of Biosensors, and Improved Drug Delivery Approaches Using Atomic Force Microscopy: A Review. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.798928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Since its invention, atomic force microscopy (AFM) has come forth as a powerful member of the “scanning probe microscopy” (SPM) family and an unparallel platform for high-resolution imaging and characterization for inorganic and organic samples, especially biomolecules, biosensors, proteins, DNA, and live cells. AFM characterizes any sample by measuring interaction force between the AFM cantilever tip (the probe) and the sample surface, and it is advantageous over other SPM and electron micron microscopy techniques as it can visualize and characterize samples in liquid, ambient air, and vacuum. Therefore, it permits visualization of three-dimensional surface profiles of biological specimens in the near-physiological environment without sacrificing their native structures and functions and without using laborious sample preparation protocols such as freeze-drying, staining, metal coating, staining, or labeling. Biosensors are devices comprising a biological or biologically extracted material (assimilated in a physicochemical transducer) that are utilized to yield electronic signal proportional to the specific analyte concentration. These devices utilize particular biochemical reactions moderated by isolated tissues, enzymes, organelles, and immune system for detecting chemical compounds via thermal, optical, or electrical signals. Other than performing high-resolution imaging and nanomechanical characterization (e.g., determining Young’s modulus, adhesion, and deformation) of biosensors, AFM cantilever (with a ligand functionalized tip) can be transformed into a biosensor (microcantilever-based biosensors) to probe interactions with a particular receptors of choice on live cells at a single-molecule level (using AFM-based single-molecule force spectroscopy techniques) and determine interaction forces and binding kinetics of ligand receptor interactions. Targeted drug delivery systems or vehicles composed of nanoparticles are crucial in novel therapeutics. These systems leverage the idea of targeted delivery of the drug to the desired locations to reduce side effects. AFM is becoming an extremely useful tool in figuring out the topographical and nanomechanical properties of these nanoparticles and other drug delivery carriers. AFM also helps determine binding probabilities and interaction forces of these drug delivery carriers with the targeted receptors and choose the better agent for drug delivery vehicle by introducing competitive binding. In this review, we summarize contributions made by us and other researchers so far that showcase AFM as biosensors, to characterize other sensors, to improve drug delivery approaches, and to discuss future possibilities.
Collapse
|
9
|
Chen S, Su D, Jia C, Li Y, Li X, Guo X, Leigh DA, Zhang L. Real-time observation of the dynamics of an individual rotaxane molecular shuttle using a single-molecule junction. Chem 2022. [DOI: 10.1016/j.chempr.2021.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Masai H, Oka Y, Terao J. Precision synthesis of linear oligorotaxanes and polyrotaxanes achieving well-defined positions and numbers of cyclic components on the axle. Chem Commun (Camb) 2021; 58:1644-1660. [PMID: 34927653 DOI: 10.1039/d1cc03507j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Interest in macromolecules has increased because of their functional properties, which can be tuned using precise organic synthetic methods. For example, desired functions have been imparted by controlling the nanoscale structures of such macromolecules. In particular, compounds with interlocked structures, including rotaxanes, have attracted attention because of their unique supramolecular structures. In such supramolecular structures, the mobility and freedom of the macrocycles are restricted by an axle and dependent on those of other macrocycles, which imparts unique functions to these threaded structures. Recently, methods for the ultrafine engineering and synthesis, as well as functions, of "defined" rotaxane structures that are not statistically dispersed on the axle (i.e., control over the number and position of cyclic molecules) have been reported. Various synthetic strategies allow access to such well-defined linear oligo- and polyrotaxanes, including [1]rotaxanes and [n]rotaxanes (mostly n > 3). These state-of-the-art synthetic methods have resulted in unique functions of these oligo-and polyrotaxane materials. Herein, we review the effective synthetic protocols and functions of precisely constructed one-dimensional oligomers and polymers bearing defined threaded structures, and discuss the latest reports and trends.
Collapse
Affiliation(s)
- Hiroshi Masai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Japan.
| | - Yuki Oka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Japan.
| | - Jun Terao
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Japan.
| |
Collapse
|
11
|
Devaux F, Li X, Sluysmans D, Maurizot V, Bakalis E, Zerbetto F, Huc I, Duwez AS. Single-molecule mechanics of synthetic aromatic amide helices: Ultrafast and robust non-dissipative winding. Chem 2021. [DOI: 10.1016/j.chempr.2021.02.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Hanozin E, Mignolet B, Martens J, Berden G, Sluysmans D, Duwez AS, Stoddart JF, Eppe G, Oomens J, De Pauw E, Morsa D. Radical-Pairing Interactions in a Molecular Switch Evidenced by Ion Mobility Spectrometry and Infrared Ion Spectroscopy. Angew Chem Int Ed Engl 2021; 60:10049-10055. [PMID: 33561311 PMCID: PMC8251753 DOI: 10.1002/anie.202014728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/07/2021] [Indexed: 12/11/2022]
Abstract
The digital revolution sets a milestone in the progressive miniaturization of working devices and in the underlying advent of molecular machines. Foldamers involving mechanically entangled components with modular secondary structures are among the most promising designs for molecular switch‐based applications. Characterizing the nature and dynamics of their intramolecular network following the application of a stimulus is the key to their performance. Here, we use non‐dissociative electron transfer as a reductive stimulus in the gas phase and probe the consecutive co‐conformational transitions of a donor‐acceptor oligorotaxane foldamer using electrospray mass spectrometry interfaced with ion mobility and infrared ion spectroscopy. A comparison of collision cross section distributions for analogous closed‐shell and radical molecular ions sheds light on their respective formation energetics, while variations in their respective infrared absorption bands evidence changes in intramolecular organization as the foldamer becomes more compact. These differences are compatible with the advent of radical‐pairing interactions.
Collapse
Affiliation(s)
- Emeline Hanozin
- Mass Spectrometry Laboratory, UR MolSys, University of Liège, 4000, Liège, Belgium
| | - Benoit Mignolet
- Theoretical Physical Chemistry, UR MolSys, University of Liège, 4000, Liège, Belgium
| | - Jonathan Martens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525, ED, Nijmegen, The Netherlands
| | - Giel Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525, ED, Nijmegen, The Netherlands
| | - Damien Sluysmans
- NanoChemistry and Molecular Systems, UR MolSys, University of Liège, 4000, Liège, Belgium
| | - Anne-Sophie Duwez
- NanoChemistry and Molecular Systems, UR MolSys, University of Liège, 4000, Liège, Belgium
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China.,School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, UR MolSys, University of Liège, 4000, Liège, Belgium
| | - Jos Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525, ED, Nijmegen, The Netherlands.,van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 908, 1098XH, Amsterdam, The Netherlands
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, UR MolSys, University of Liège, 4000, Liège, Belgium
| | - Denis Morsa
- Mass Spectrometry Laboratory, UR MolSys, University of Liège, 4000, Liège, Belgium.,Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525, ED, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Hanozin E, Mignolet B, Martens J, Berden G, Sluysmans D, Duwez A, Stoddart JF, Eppe G, Oomens J, De Pauw E, Morsa D. Radical‐Pairing Interactions in a Molecular Switch Evidenced by Ion Mobility Spectrometry and Infrared Ion Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Emeline Hanozin
- Mass Spectrometry Laboratory UR MolSys University of Liège 4000 Liège Belgium
| | - Benoit Mignolet
- Theoretical Physical Chemistry UR MolSys University of Liège 4000 Liège Belgium
| | - Jonathan Martens
- Institute for Molecules and Materials FELIX Laboratory Radboud University Toernooiveld 7 6525 ED Nijmegen The Netherlands
| | - Giel Berden
- Institute for Molecules and Materials FELIX Laboratory Radboud University Toernooiveld 7 6525 ED Nijmegen The Netherlands
| | - Damien Sluysmans
- NanoChemistry and Molecular Systems UR MolSys University of Liège 4000 Liège Belgium
| | - Anne‐Sophie Duwez
- NanoChemistry and Molecular Systems UR MolSys University of Liège 4000 Liège Belgium
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University Evanston IL 60208 USA
- Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| | - Gauthier Eppe
- Mass Spectrometry Laboratory UR MolSys University of Liège 4000 Liège Belgium
| | - Jos Oomens
- Institute for Molecules and Materials FELIX Laboratory Radboud University Toernooiveld 7 6525 ED Nijmegen The Netherlands
- van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 908 1098XH Amsterdam The Netherlands
| | - Edwin De Pauw
- Mass Spectrometry Laboratory UR MolSys University of Liège 4000 Liège Belgium
| | - Denis Morsa
- Mass Spectrometry Laboratory UR MolSys University of Liège 4000 Liège Belgium
- Institute for Molecules and Materials FELIX Laboratory Radboud University Toernooiveld 7 6525 ED Nijmegen The Netherlands
| |
Collapse
|
14
|
Cao W, Dong C, Kim S, Hou D, Tai W, Du L, Im W, Zhang XF. Biomechanical characterization of SARS-CoV-2 spike RBD and human ACE2 protein-protein interaction. Biophys J 2021; 120:1011-1019. [PMID: 33607086 PMCID: PMC7886630 DOI: 10.1016/j.bpj.2021.02.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/31/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
The current COVID-19 pandemic has led to a devastating impact across the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (the virus causing COVID-19) is known to use the receptor-binding domain (RBD) at viral surface spike (S) protein to interact with the angiotensin-converting enzyme 2 (ACE2) receptor expressed on many human cell types. The RBD-ACE2 interaction is a crucial step to mediate the host cell entry of SARS-CoV-2. Recent studies indicate that the ACE2 interaction with the SARS-CoV-2 S protein has a higher affinity than its binding with the structurally identical S protein of SARS-CoV-1, the virus causing the 2002-2004 SARS outbreak. However, the biophysical mechanism behind such binding affinity difference is unclear. This study utilizes combined single-molecule force spectroscopy and steered molecular dynamics (SMD) simulation approaches to quantify the specific interactions between SARS-CoV-2 or SARS-CoV-1 RBD and ACE2. Depending on the loading rates, the unbinding forces between SARS-CoV-2 RBD and ACE2 range from 70 to 105 pN and are 30-40% higher than those of SARS-CoV-1 RBD and ACE2 under similar loading rates. SMD results indicate that SARS-CoV-2 RBD interacts with the N-linked glycan on Asn90 of ACE2. This interaction is mostly absent in the SARS-CoV-1 RBD-ACE2 complex. During the SMD simulations, the extra RBD-N-glycan interaction contributes to a greater force and prolonged interaction lifetime. The observation is confirmed by our experimental force spectroscopy study. After removing N-linked glycans on ACE2, its mechanical binding strength with SARS-CoV-2 RBD decreases to a similar level of the SARS-CoV-1 RBD-ACE2 interaction. Together, the study uncovers the mechanism behind the difference in ACE2 binding between SARS-CoV-2 and SARS-CoV-1 and could help develop new strategies to block SARS-CoV-2 entry.
Collapse
Affiliation(s)
| | - Chuqiao Dong
- Department of Mechanical Engineering and Mechanics
| | - Seonghan Kim
- Departments of Biological Sciences, Chemistry, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania
| | | | - Wanbo Tai
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York
| | - Wonpil Im
- Department of Bioengineering; Departments of Biological Sciences, Chemistry, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania.
| | - X Frank Zhang
- Department of Bioengineering; Department of Mechanical Engineering and Mechanics.
| |
Collapse
|
15
|
Sluysmans D, Lussis P, Fustin CA, Bertocco A, Leigh DA, Duwez AS. Real-Time Fluctuations in Single-Molecule Rotaxane Experiments Reveal an Intermediate Weak Binding State during Shuttling. J Am Chem Soc 2021; 143:2348-2352. [PMID: 33417442 DOI: 10.1021/jacs.0c12161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report on the use of atomic force microscopy (AFM) to identify and characterize an intermediate state in macrocycle shuttling in a hydrogen bonded amide-based molecular shuttle. The [2]rotaxane consists of a benzylic amide macrocycle mechanically locked onto a thread that bears both fumaramide and succinic amide-ester sites, each of which can bind to the macrocycle through up to four intercomponent hydrogen bonds. Using AFM-based single-molecule force spectroscopy, we mechanically triggered the translocation of the ring between the two principal binding sites ("stations") on the axle. Equilibrium fluctuations reveal another interacting site involving the two oxygen atoms in the middle of the thread. We characterized the ring occupancy distribution over time, which confirms the intermediate in both shuttling directions. The study provides evidence of weak hydrogen bonds that are difficult to detect using other methods and shows how the composition of the thread can significantly influence the shuttling dynamics by slowing down the ring motion between the principal binding sites. More generally, the study illustrates the utility that single-molecule experiments, such as force spectroscopy, can offer for elucidating the structure and dynamics of synthetic molecular machines.
Collapse
Affiliation(s)
- Damien Sluysmans
- UR MolSys, University of Liege, Sart-Tilman, B6a, 4000 Liege, Belgium
| | - Perrine Lussis
- UR MolSys, University of Liege, Sart-Tilman, B6a, 4000 Liege, Belgium
| | - Charles-André Fustin
- Bio and Soft Matter Division (BSMA), Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, Place L. Pasteur 1 and Croix du Sud 1, Louvain-la-Neuve B-1348, Belgium
| | - Andrea Bertocco
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Anne-Sophie Duwez
- UR MolSys, University of Liege, Sart-Tilman, B6a, 4000 Liege, Belgium
| |
Collapse
|
16
|
Zhai H, Zhang W, Wang L, Putnis CV. Dynamic force spectroscopy for quantifying single-molecule organo–mineral interactions. CrystEngComm 2021. [DOI: 10.1039/d0ce00949k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Organo–mineral interactions have long been the focus in the fields of biomineralization and geomineralization, since such interactions not only modulate the dynamics of crystal nucleation and growth but may also change crystal phases, morphologies, and structures.
Collapse
Affiliation(s)
- Hang Zhai
- College of Resources and Environment
- Huazhong Agricultural University
- Wuhan 430070
- China
- Department of Plant and Environmental Sciences
| | - Wenjun Zhang
- College of Resources and Environment
- Huazhong Agricultural University
- Wuhan 430070
- China
| | - Lijun Wang
- College of Resources and Environment
- Huazhong Agricultural University
- Wuhan 430070
- China
| | - Christine V. Putnis
- Institut für Mineralogie
- University of Münster
- 48149 Münster
- Germany
- School of Molecular and Life Science
| |
Collapse
|
17
|
Li WX, Yin YF, Duan HY, Liu LJ, Kong LC, Zhan TG, Zhang KD. An orthogonal photoresponsive tristable [3]rotaxane with non-destructive readout. Org Chem Front 2021. [DOI: 10.1039/d0qo01441a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An orthogonal photoresponsive [3]rotaxane is constructed by introducing two orthogonal photoswitchable azobenzene binding sites, and it features reversible photoregulated tristate absorption spectral changes with non-destructive readout capability.
Collapse
Affiliation(s)
- Wan-Xia Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Yong-Fei Yin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Hong-Ying Duan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Li-Juan Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Li-Chun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Tian-Guang Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Kang-Da Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| |
Collapse
|
18
|
Sluysmans D, Zhang L, Li X, Garci A, Stoddart JF, Duwez AS. Viologen Tweezers to Probe the Force of Individual Donor–Acceptor π-Interactions. J Am Chem Soc 2020; 142:21153-21159. [DOI: 10.1021/jacs.0c10339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Damien Sluysmans
- Research Unit MolSys, NanoChem, University of Liege, Sart-Tilman, B6a, Liege 4000, Belgium
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Xuesong Li
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Amine Garci
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Institute for Molecular Design and Synthesis, Tianjin University, Tianjin 300072, China
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Anne-Sophie Duwez
- Research Unit MolSys, NanoChem, University of Liege, Sart-Tilman, B6a, Liege 4000, Belgium
| |
Collapse
|
19
|
Cheng SC, Wang CH, Lin YC, Tsuchido Y, Suzaki Y, Sei Y, Kuo TS, Horie M. Photoinduced Mechanical Motions of Pseudorotaxane Crystals Composed of Azobenzene and Ferrocenyl Groups on an Axle and a Crown Ether Ring. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50002-50010. [PMID: 33089689 DOI: 10.1021/acsami.0c15171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work describes the design and characterization of photoresponsive dynamic pseudorotaxane crystals composed of azobenzene and ferrocenyl groups in an ammonium cation axle component threaded through dibenzo[24]crown-8 ether rings. Pseudorotaxanes provide flexibility for cis and trans isomerization of azobenzene groups in a crystal state, enabling reversible bending motions under alternating 360 and 445 nm laser irradiation. For such bending motions, strained azobenzene structures were essential; these motifs were obtained by increasing the bulkiness of the substituents on the axle and ring molecules. In addition, the crystals showed photosalient effects, such as jumping motions, under 445 nm laser irradiation. These motions were assisted by the photoabsorption of the ferrocenyl group, which converted 445 nm laser light into heat. The maximum lifting weight accompanied by the photoinduced mechanical motion of a particular crystal was estimated to be 9600 times the crystal weight. These pseudorotaxane crystals exhibit promising features for applications in micro-nanometer-sized miniature mechanical devices.
Collapse
Affiliation(s)
- Shao-Chi Cheng
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Chi-Hsien Wang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Yi-Chia Lin
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Yoshitaka Tsuchido
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuji Suzaki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Yoshihisa Sei
- Open Facility Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Ting-Shen Kuo
- Department of Chemistry, National Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Masaki Horie
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| |
Collapse
|
20
|
Schäfer K, Diezemann G. Force-dependent folding pathways in mechanically interlocked calixarene dimers via atomistic force quench simulations. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1743886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ken Schäfer
- Institut für Physikalische Chemie, Universität Mainz, Mainz, Germany
| | - Gregor Diezemann
- Institut für Physikalische Chemie, Universität Mainz, Mainz, Germany
| |
Collapse
|
21
|
Hartmann MJ, Singh Y, Vanden-Eijnden E, Hocky GM. Infinite switch simulated tempering in force (FISST). J Chem Phys 2020; 152:244120. [DOI: 10.1063/5.0009280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
| | - Yuvraj Singh
- Department of Chemistry, New York University, New York, New York 10003, USA
| | - Eric Vanden-Eijnden
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA
| | - Glen M. Hocky
- Department of Chemistry, New York University, New York, New York 10003, USA
| |
Collapse
|
22
|
Sluysmans D, Willet N, Thevenot J, Lecommandoux S, Duwez AS. Single-molecule mechanical unfolding experiments reveal a critical length for the formation of α-helices in peptides. NANOSCALE HORIZONS 2020; 5:671-678. [PMID: 32226978 DOI: 10.1039/d0nh00036a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
α-Helix is the most predominant secondary structure in proteins and supports many functions in biological machineries. The conformation of the helix is dictated by many factors such as its primary sequence, intramolecular interactions, or the effect of the close environment. Several computational studies have proposed that there is a critical maximum length for the formation of intact compact helical structures, supporting the fact that most intact α-helices in proteins are constituted of a small number of amino acids. To obtain a detailed picture on the formation of α-helices in peptides and their mechanical stability, we have synthesized a long homopolypeptide of about 90 amino acids, poly(γ-benzyl-l-glutamate), and investigated its mechanical behaviour by AFM-based single-molecule force spectroscopy. The characteristic plateaus observed in the force-extension curves reveal the unfolding of a series of small helices (from 1 to 4) of about 20 amino acid residues connected to each other, rather than a long helix of 90 residues. Our results suggest the formation of a tertiary structure made of short helices with kinks, instead of an intact compact helical structure for sequences of more than 20 amino acid residues. To our knowledge, this is the first experimental evidence supporting the concept of a helical critical length previously proposed by several computational studies.
Collapse
Affiliation(s)
- Damien Sluysmans
- Molecular Systems Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium.
| | - Nicolas Willet
- Molecular Systems Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium. and Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - Julie Thevenot
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | | | - Anne-Sophie Duwez
- Molecular Systems Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium.
| |
Collapse
|
23
|
Zhang M, Shvetsova O, De Bo G. Expedient Synthesis of Heterobifunctional Triarylmethane Stoppers for Macromolecular Rotaxanes. J Org Chem 2020; 85:2770-2774. [PMID: 31971804 DOI: 10.1021/acs.joc.9b03063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Increasingly complex rotaxane-based molecular devices are interfaced with polymers and surfaces, but suitable bifunctional stoppering groups are lacking. Here, we report a two-step, high-yielding synthesis toward a new class of heterobifunctional triarylmethane stoppers. They possess hydroxyl and ester groups for further functionalization as well as halogen substituents conferring a diagnostic spectroscopic signature. Their utility was demonstrated with the synthesis of a chain-centered macromolecular rotaxane. This new stopper architecture should prove useful to connect rotaxanes with polymers and surfaces for applications in polymer mechanochemistry, single-molecule force spectroscopy, smart materials, and molecular machines.
Collapse
Affiliation(s)
- Min Zhang
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
| | - Olga Shvetsova
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
| | - Guillaume De Bo
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
| |
Collapse
|
24
|
Zhou HY, Zong QS, Han Y, Chen CF. Recent advances in higher order rotaxane architectures. Chem Commun (Camb) 2020; 56:9916-9936. [PMID: 32638726 DOI: 10.1039/d0cc03057k] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite dramatic advances in the template-directed synthesis of archetypal [2]rotaxanes, higher order rotaxanes with multiple molecular components (rings or dumbbells) are relatively daunting subjects owing to their synthetic challenges. With unique interlocked architectures, higher order rotaxanes have found applications in artificial molecular machines. In this feature article, we will focus on the recent advances in higher order rotaxanes with well-defined structures. Different types of rotaxane architectures will be described, and their synthetic approaches will be highlighted. Moreover, the stimuli-responsive molecular motion with increasing complexity in these diverse architectures will also be discussed.
Collapse
Affiliation(s)
- He-Ye Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian-Shou Zong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Hanozin E, Morsa D, De Pauw E. Two-Parameter Power Formalism for Structural Screening of Ion Mobility Trends: Applied Study on Artificial Molecular Switches. J Phys Chem A 2019; 123:8043-8052. [PMID: 31449411 DOI: 10.1021/acs.jpca.9b06121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent literature provides increasing samples of structural studies relying on ion mobility coupled to mass spectrometry in view of characterizing gas-phase conformation and energetics properties of biomolecular ions. A typical framework consists in experimentally monitoring the collisional cross sections for various experimental conditions and using them as references to select appropriate candidate structures issued from theoretical modeling. Although it has proved successful for structural assignment, this process is resource costly and lengthy, namely due to intricacies in the selection of appropriate input geometries. In the present work, we propose simplified methodologies dedicated to the systematic screening of ion mobility data acquired on systems built from repetitive subunits and detail their application to challenging artificial molecular switch systems. Capitalizing on coarse-grained design, we first demonstrate how the assimilation of subunits into adequately assembled building-blocks can be used for fast assignments of a system topology. Further focusing on topology-specific differential ion mobility trends, we show that the building-block assemblies can be fused into single fully convex solid figure models, i.e., sphere and cylinder, whose projected areas follow a two-parameter power formalism A × nB. We show that the fitting parameters A and B were assigned as structural descriptors respectively associated with the dimensions of each constitutive subunit, i.e., size parameter, and with their assembled tridimensional arrangement, i.e., shape parameter. The present work provides a ready-to-use method for the screening of IM-MS data sets that is expected to facilitate the eventual design of input structures whenever advanced modeling calculations are required.
Collapse
Affiliation(s)
- Emeline Hanozin
- Mass Spectrometry Laboratory, MolSys Research Unit , University of Liège , 4000 Liège , Belgium
| | - Denis Morsa
- Mass Spectrometry Laboratory, MolSys Research Unit , University of Liège , 4000 Liège , Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit , University of Liège , 4000 Liège , Belgium
| |
Collapse
|
26
|
Sluysmans D, Stoddart JF. The Burgeoning of Mechanically Interlocked Molecules in Chemistry. TRENDS IN CHEMISTRY 2019. [DOI: 10.1016/j.trechm.2019.02.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Dynamics of individual molecular shuttles under mechanical force. Nat Commun 2018; 9:4512. [PMID: 30375395 PMCID: PMC6207653 DOI: 10.1038/s41467-018-06905-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/02/2018] [Indexed: 11/24/2022] Open
Abstract
Molecular shuttles are the basis of some of the most advanced synthetic molecular machines. In these devices a macrocycle threaded onto a linear component shuttles between different portions of the thread in response to external stimuli. Here, we use optical tweezers to measure the mechanics and dynamics of individual molecular shuttles in aqueous conditions. Using DNA as a handle and as a single molecule reporter, we measure thousands of individual shuttling events and determine the force-dependent kinetic rates of the macrocycle motion and the main parameters governing the energy landscape of the system. Our findings could open avenues for the real-time characterization of synthetic devices at the single molecule level, and provide crucial information for designing molecular machinery able to operate under physiological conditions. Molecular shuttles are bi-stable and stimuli-responsive systems that are considered potential elements for molecular machinery. Here, the authors use optical tweezers to measure the force dependent real-time kinetics of individual molecular shuttles under aqueous conditions.
Collapse
|
28
|
|
29
|
Zhang M, De Bo G. Impact of a Mechanical Bond on the Activation of a Mechanophore. J Am Chem Soc 2018; 140:12724-12727. [DOI: 10.1021/jacs.8b08590] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Min Zhang
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Guillaume De Bo
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|