1
|
Faber NR, Xu X, Chen J, Hou S, Du J, Pannebakker BA, Zwaan BJ, van den Heuvel J, Champer J. Improving the suppressive power of homing gene drive by co-targeting a distant-site female fertility gene. Nat Commun 2024; 15:9249. [PMID: 39461949 PMCID: PMC11513003 DOI: 10.1038/s41467-024-53631-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Gene drive technology has the potential to address major biological challenges. Well-studied homing suppression drives have been shown to be highly efficient in Anopheles mosquitoes, but for other organisms, lower rates of drive conversion prevent elimination of the target population. To tackle this issue, we propose a gene drive design that has two targets: a drive homing site where drive conversion takes place, and a distant site where cleavage induces population suppression. We model this design and find that the two-target system allows suppression to occur over a much wider range of drive conversion efficiency. Specifically, the cutting efficiency now determines the suppressive power of the drive, rather than the conversion efficiency as in standard suppression drives. We construct a two-target drive in Drosophila melanogaster and show that both components of the gene drive function successfully. However, cleavage in the embryo from maternal deposition as well as fitness costs in female drive heterozygotes both remain significant challenges for both two-target and standard suppression drives. Overall, our improved gene drive design has the potential to ease problems associated with homing suppression gene drives for many species where drive conversion is less efficient.
Collapse
Affiliation(s)
- Nicky R Faber
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands.
| | - Xuejiao Xu
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| | - Jingheng Chen
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| | - Shibo Hou
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| | - Jie Du
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| | - Bart A Pannebakker
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Bas J Zwaan
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Joost van den Heuvel
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
2
|
Yan Y, Ahmed HMM, Wimmer EA, Schetelig MF. Biotechnology-enhanced genetic controls of the global pest Drosophila suzukii. Trends Biotechnol 2024:S0167-7799(24)00249-X. [PMID: 39327106 DOI: 10.1016/j.tibtech.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
Spotted wing Drosophila (Drosophila suzukii Matsumura, or SWD), an insect pest of soft-skinned fruits native to East Asia, has rapidly spread worldwide in the past 15 years. Genetic controls such as sterile insect technique (SIT) have been considered for the environmentally friendly and cost-effective management of this pest. In this review, we provide the latest developments for the genetic control strategies of SWD, including sperm-marking strains, CRISPR-based sex-ratio distortion, neoclassical genetic sexing strains, transgenic sexing strains, a sex-sorting incompatible male system, precision-guided SIT, and gene drives based on synthetic Maternal effect dominant embryonic arrest (Medea) or homing CRISPR systems. These strategies could either enhance the efficacy of traditional SIT or serve as standalone methods for the sustainable control of SWD.
Collapse
Affiliation(s)
- Ying Yan
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstraße 2, 35394 Gießen, Germany.
| | - Hassan M M Ahmed
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany; Department of Crop Protection, Faculty of Agriculture - University of Khartoum, Postal code 13314 Khartoum North, Sudan
| | - Ernst A Wimmer
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Marc F Schetelig
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstraße 2, 35394 Gießen, Germany
| |
Collapse
|
3
|
Zhao Y, Li L, Wei L, Wang Y, Han Z. Advancements and Future Prospects of CRISPR-Cas-Based Population Replacement Strategies in Insect Pest Management. INSECTS 2024; 15:653. [PMID: 39336621 PMCID: PMC11432399 DOI: 10.3390/insects15090653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Population replacement refers to the process by which a wild-type population of insect pests is replaced by a population possessing modified traits or abilities. Effective population replacement necessitates a gene drive system capable of spreading desired genes within natural populations, operating under principles akin to super-Mendelian inheritance. Consequently, releasing a small number of genetically edited insects could potentially achieve population control objectives. Currently, several gene drive approaches are under exploration, including the newly adapted CRISPR-Cas genome editing system. Multiple studies are investigating methods to engineer pests that are incapable of causing crop damage or transmitting vector-borne diseases, with several notable successful examples documented. This review summarizes the recent advancements of the CRISPR-Cas system in the realm of population replacement and provides insights into research methodologies, testing protocols, and implementation strategies for gene drive techniques. The review also discusses emerging trends and prospects for establishing genetic tools in pest management.
Collapse
Affiliation(s)
- Yu Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Longfeng Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Liangzi Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yifan Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhilin Han
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
4
|
Zhang S, Champer J. Performance characteristics allow for confinement of a CRISPR toxin-antidote gene drive for population suppression in a reaction-diffusion model. Proc Biol Sci 2024; 291:20240500. [PMID: 38889790 DOI: 10.1098/rspb.2024.0500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/26/2024] [Indexed: 06/20/2024] Open
Abstract
Gene drive alleles that can bias their own inheritance could engineer populations for control of disease vectors, invasive species and agricultural pests. There are successful examples of suppression drives and confined modification drives, but developing confined suppression drives has proven more difficult. However, CRISPR-based toxin-antidote dominant embryo (TADE) suppression drive may fill this niche. It works by targeting and disrupting a haplolethal target gene in the germline with its gRNAs while rescuing this target. It also disrupts a female fertility gene by driving insertion or additional gRNAs. Here, we used a reaction-diffusion model to assess drive performance in continuous space, where outcomes can be substantially different from those in panmictic populations. We measured drive wave speed and found that moderate fitness costs or target gene disruption in the early embryo from maternally deposited nuclease can eliminate the drive's ability to form a wave of advance. We assessed the required release size, and finally we investigated migration corridor scenarios. It is often possible for the drive to suppress one population and then persist in the corridor without invading the second population, a potentially desirable outcome. Thus, even imperfect variants of TADE suppression drive may be excellent candidates for confined population suppression.
Collapse
Affiliation(s)
- Shijie Zhang
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University , Beijing 100871, People's Republic of China
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University , Beijing 100871, People's Republic of China
| |
Collapse
|
5
|
Du J, Chen W, Jia X, Xu X, Yang E, Zhou R, Zhang Y, Metzloff M, Messer PW, Champer J. Germline Cas9 promoters with improved performance for homing gene drive. Nat Commun 2024; 15:4560. [PMID: 38811556 PMCID: PMC11137117 DOI: 10.1038/s41467-024-48874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 05/16/2024] [Indexed: 05/31/2024] Open
Abstract
Gene drive systems could be a viable strategy to prevent pathogen transmission or suppress vector populations by propagating drive alleles with super-Mendelian inheritance. CRISPR-based homing gene drives convert wild type alleles into drive alleles in heterozygotes with Cas9 and gRNA. It is thus desirable to identify Cas9 promoters that yield high drive conversion rates, minimize the formation rate of resistance alleles in both the germline and the early embryo, and limit somatic Cas9 expression. In Drosophila, the nanos promoter avoids leaky somatic expression, but at the cost of high embryo resistance from maternally deposited Cas9. To improve drive efficiency, we test eleven Drosophila melanogaster germline promoters. Some achieve higher drive conversion efficiency with minimal embryo resistance, but none completely avoid somatic expression. However, such somatic expression often does not carry detectable fitness costs for a rescue homing drive targeting a haplolethal gene, suggesting somatic drive conversion. Supporting a 4-gRNA suppression drive, one promoter leads to a low drive equilibrium frequency due to fitness costs from somatic expression, but the other outperforms nanos, resulting in successful suppression of the cage population. Overall, these Cas9 promoters hold advantages for homing drives in Drosophila species and may possess valuable homologs in other organisms.
Collapse
Affiliation(s)
- Jie Du
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China.
| | - Weizhe Chen
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xihua Jia
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Xuejiao Xu
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Emily Yang
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ruizhi Zhou
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Yuqi Zhang
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Matt Metzloff
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
6
|
Chae K, Contreras B, Romanowski JS, Dawson C, Myles KM, Adelman ZN. Transgene removal using an in cis programmed homing endonuclease via single-strand annealing in the mosquito Aedes aegypti. Commun Biol 2024; 7:660. [PMID: 38811748 PMCID: PMC11137009 DOI: 10.1038/s42003-024-06348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
While gene drive strategies have been proposed to aid in the control of mosquito-borne diseases, additional genome engineering technologies may be required to establish a defined end-of-product-life timeline. We previously demonstrated that single-strand annealing (SSA) was sufficient to program the scarless elimination of a transgene while restoring a disrupted gene in the disease vector mosquito Aedes aegypti. Here, we extend these findings by establishing that complete transgene removal (four gene cassettes comprising ~8-kb) can be programmed in cis. Reducing the length of the direct repeat from 700-bp to 200-bp reduces, but does not eliminate, SSA activity. In contrast, increasing direct repeat length to 1.5-kb does not increase SSA rates, suggesting diminishing returns above a certain threshold size. Finally, we show that while the homing endonuclease Y2-I-AniI triggered both SSA and NHEJ at significantly higher rates than I-SceI at one genomic locus (P5-EGFP), repair events are heavily skewed towards NHEJ at another locus (kmo), suggesting the nuclease used and the genomic region targeted have a substantial influence on repair outcomes. Taken together, this work establishes the feasibility of engineering temporary transgenes in disease vector mosquitoes, while providing critical details concerning important operational parameters.
Collapse
Affiliation(s)
- Keun Chae
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Bryan Contreras
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Joseph S Romanowski
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Chanell Dawson
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Kevin M Myles
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Zach N Adelman
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
7
|
Wang H, Ying J, Mao Z, Wang B, Ye Z, Chen Y, Chen J, Zhang C, Li J, Zhuo J. Identification and functional analysis of the female determiner gene in the bean bug, Riptortus pedestris. PEST MANAGEMENT SCIENCE 2024; 80:1240-1248. [PMID: 37934463 DOI: 10.1002/ps.7853] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/21/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Homing-based gene drives targeting sex-specific lethal genes have been used for genetic control. Additionally, understanding insect sex determination provides new targets for managing insect pests. While sex determination mechanisms in holometabolous insects have been thoroughly studied and employed in pest control, the study of the sex determination pathway in hemimetabolous insects is limited to only a few species. Riptortus pedestris (Fabricius; Hemiptera: Heteroptera), commonly known as the bean bug, is a significant pest for soybeans. Nonetheless, the mechanism of its sex determination and the target gene for genetic control are not well understood. RESULTS We identified Rpfmd as the female determiner gene in the sex determination pathway of R. pedestris. Rpfmd encodes a female-specific serine/arginine-rich protein of 436 amino acids and one non-sex-specific short protein of 98 amino acids. Knockdown of Rpfmd in R. pedestris nymphs caused death of molting females with masculinized somatic morphology but did not affect male development. Knockdown of Rpfmd in newly emerged females inhibited ovary development, while maternal-mediated RNA interference (RNAi) knockdown of Rpfmd expression resulted in male-only offspring. Transcriptome sequencing revealed that Rpfmd regulates X chromosome dosage compensation and influences various biological processes in females but has no significant effect on males. Moreover, RNAi mediated knockdown of Rpfmd-C had no influence on the development of R. pedestris, suggesting that Rpfmd regulates sex determination through female-specific splicing isoforms. We also found that Rpfmd pre-mRNA alternative splicing regulation starts at the 24-h embryo stage, indicating the activation of sex differentiation. CONCLUSION Our study confirms that Rpfmd, particularly its female-specific isoform (Rpfmd-F), is the female determiner gene that regulates sex differentiation in R. pedestris. Knockdown of Rpfmd results in female-specific lethality without affecting males, making it a promising target for genetic control of this soybean pest throughout its development stages. Additionally, our findings improve the understanding of the sex-determination mechanism in hemimetabolous insects. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Haiqiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jinjun Ying
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zeping Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Biyun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zhuangxin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Youyuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chuanxi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Junmin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jichong Zhuo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
8
|
Meccariello A, Hou S, Davydova S, Fawcett JD, Siddall A, Leftwich PT, Krsticevic F, Papathanos PA, Windbichler N. Gene drive and genetic sex conversion in the global agricultural pest Ceratitis capitata. Nat Commun 2024; 15:372. [PMID: 38191463 PMCID: PMC10774415 DOI: 10.1038/s41467-023-44399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Homing-based gene drives are recently proposed interventions promising the area-wide, species-specific genetic control of harmful insect populations. Here we characterise a first set of gene drives in a tephritid agricultural pest species, the Mediterranean fruit fly Ceratitis capitata (medfly). Our results show that the medfly is highly amenable to homing-based gene drive strategies. By targeting the medfly transformer gene, we also demonstrate how CRISPR-Cas9 gene drive can be coupled to sex conversion, whereby genetic females are transformed into fertile and harmless XX males. Given this unique malleability of sex determination, we modelled gene drive interventions that couple sex conversion and female sterility and found that such approaches could be effective and tolerant of resistant allele selection in the target population. Our results open the door for developing gene drive strains for the population suppression of the medfly and related tephritid pests by co-targeting female reproduction and shifting the reproductive sex ratio towards males. They demonstrate the untapped potential for gene drives to tackle agricultural pests in an environmentally friendly and economical way.
Collapse
Affiliation(s)
- Angela Meccariello
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - Shibo Hou
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Serafima Davydova
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | | | - Alexandra Siddall
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Flavia Krsticevic
- Department of Entomology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Philippos Aris Papathanos
- Department of Entomology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | | |
Collapse
|
9
|
Raban R, Marshall JM, Hay BA, Akbari OS. Manipulating the Destiny of Wild Populations Using CRISPR. Annu Rev Genet 2023; 57:361-390. [PMID: 37722684 PMCID: PMC11064769 DOI: 10.1146/annurev-genet-031623-105059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Genetic biocontrol aims to suppress or modify populations of species to protect public health, agriculture, and biodiversity. Advancements in genome engineering technologies have fueled a surge in research in this field, with one gene editing technology, CRISPR, leading the charge. This review focuses on the current state of CRISPR technologies for genetic biocontrol of pests and highlights the progress and ongoing challenges of using these approaches.
Collapse
Affiliation(s)
- Robyn Raban
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - John M Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, California, USA
| | - Omar S Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
10
|
Pan M, Champer J. Making waves: Comparative analysis of gene drive spread characteristics in a continuous space model. Mol Ecol 2023; 32:5673-5694. [PMID: 37694511 DOI: 10.1111/mec.17131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
With their ability to rapidly increase in frequency, gene drives can be used to modify or suppress target populations after an initial release of drive individuals. Recent advances have revealed many possibilities for different types of drives, and several of these have been realized in experiments. These drives have advantages and disadvantages related to their ease of construction, confinement and capacity to be used for modification or suppression. Though characteristics of these drives have been explored in modelling studies, assessment in continuous space environments has been limited, often focusing on outcomes rather than fundamental properties. Here, we conduct a comparative analysis of many different gene drive types that have the capacity to form a wave of advance in continuous space using individual-based simulations in continuous space. We evaluate the drive wave speed as a function of drive performance and ecological parameters, which reveals substantial differences between drive performance in panmictic versus spatial environments. In particular, we find that suppression drive waves are uniquely vulnerable to fitness costs and undesired CRISPR cleavage activity in embryos by maternal deposition. Some drives, however, retain robust performance even with widely varying efficiency parameters. To gain a better understanding of drive waves, we compare their panmictic performance and find that the rate of wild-type allele removal is correlated with drive wave speed, though this is also affected by other factors. Overall, our results provide a useful resource for understanding the performance of drives in spatially continuous environments, which may be most representative of potential drive deployment in many relevant scenarios.
Collapse
Affiliation(s)
- Mingzuyu Pan
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
11
|
Jia Z, Hasi S, Zhan D, Hou B, Vogl C, Burger PA. Genome and Transcriptome Analyses Facilitate Genetic Control of Wohlfahrtia magnifica, a Myiasis-Causing Flesh Fly. INSECTS 2023; 14:620. [PMID: 37504626 PMCID: PMC10380434 DOI: 10.3390/insects14070620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
Myiasis caused by Wohlfahrtia magnifica is a widespread parasitic infestation in mammals. The infested host suffers from damage as the developing larvae feed on its tissues. For the control of myiasis infestation, genetic methods have been shown to be effective and promising as an alternative to insecticides. Combining genome, isoform sequencing (Iso-Seq), and RNA sequencing (RNA-seq) data, we isolated and characterized two sex-determination genes, W. magnifica transformer (Wmtra) and W. magnifica transformer2 (Wmtra2), whose orthologs in a number of insect pests have been utilized to develop genetic control approaches. Wmtra transcripts are sex-specifically spliced; only the female transcript encodes a full-length functional protein, while the male transcript encodes a truncated and non-functional polypeptide due to the presence of the male-specific exon containing multiple in-frame stop codons. The existence of five predicted TRA/TRA2 binding sites in the male-specific exon and the surrounding intron of Wmtra, as well as the presence of an RNA-recognition motif in WmTRA2 may suggest the auto-regulation of Wmtra by its own protein interacting with WmTRA2. This results in the skipping of the male-specific exon and translation of the full-length functional protein only in females. Our comparative study in dipteran species showed that both the WmTRA and WmTRA2 proteins exhibit a high degree of similarity to their orthologs in the myiasis-causing blow flies. Additionally, transcriptome profiling performed between adult females and adult males reported 657 upregulated and 365 downregulated genes. Functional analysis showed that among upregulated genes those related to meiosis and mitosis Gene Ontology (GO) terms were enriched, while, among downregulated genes, those related to muscle cell development and aerobic metabolic processes were enriched. Among the female-biased gene set, we detected five candidate genes, vasa (vas), nanos (nanos), bicoid (bcd), Bicaudal C (BicC), and innexin5 (inx5). The promoters of these genes may be able to upregulate Cas9 expression in the germline in Cas9-based homing gene drive systems as established in some flies and mosquitoes. The isolation and characterization of these genes is an important step toward the development of genetic control programs against W. magnifica infestation.
Collapse
Affiliation(s)
- Zhipeng Jia
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160 Vienna, Austria
| | - Surong Hasi
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Deng Zhan
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bin Hou
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Claus Vogl
- Institute of Animal Breeding and Genetics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Pamela A Burger
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160 Vienna, Austria
| |
Collapse
|
12
|
Chae K, Overcash JM, Dawson C, Valentin C, Tsujimoto H, Myles KM, Adelman ZN. CRISPR-based gene editing of non-homologous end joining factors biases DNA repair pathway choice toward single-strand annealing in Aedes aegypti. CURRENT RESEARCH IN BIOTECHNOLOGY 2023; 5:100133. [PMID: 37475832 PMCID: PMC10357993 DOI: 10.1016/j.crbiot.2023.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
To maintain genome stability, eukaryotic cells orchestrate DNA repair pathways to process DNA double-strand breaks (DSBs) that result from diverse developmental or environmental stimuli. Bias in the selection of DSB repair pathways, either non-homologous end joining (NHEJ) or homology-directed repair (HDR), is also critical for efficient gene editing and for homing-based gene drive approaches developed for the control of disease-transmitting vector mosquitoes. However, little is understood about DNA repair homeostasis in the mosquito genome. Here, we utilized CRISPR/Cas9 to generate indel mutant strains for core NHEJ factors ku80, DNA ligase IV (lig4), and DNA-PKcs in the mosquito Aedes aegypti and evaluated the corresponding effects on DNA repair. In a plasmid-based assay, disruption of ku80 or lig4, but not DNA-PKcs, reduced both NHEJ and SSA. However, a transgenic reporter strain-based test revealed that those mutations significantly biased DNA repair events toward SSA. Interestingly, ku80 mutation also significantly increased the end joining rate by a yet-characterized mechanism in males. Our study provides evidence that the core NHEJ factors have an antagonistic effect on SSA-based DSB repair of the Ae. aegypti genome. Down-modulating the NHEJ pathway can enhance the efficiency of nuclease-based genetic control approaches, as most of those operate by homology-based repair processes along with extensive DNA end resection that is antagonized by NHEJ.
Collapse
Affiliation(s)
- Keun Chae
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States
| | - Justin M. Overcash
- U.S. Department of Agriculture-Animal and Plant Health Inspection Service (USDA-APHIS), Biotechnology Regulatory Services, Riverdale, MD 20737, United States
| | - Chanell Dawson
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States
| | - Collin Valentin
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States
| | - Hitoshi Tsujimoto
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States
| | - Kevin M. Myles
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States
| | - Zach N. Adelman
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
13
|
Frieß JL, Lalyer CR, Giese B, Simon S, Otto M. Review of gene drive modelling and implications for risk assessment of gene drive organisms. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2023.110285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
14
|
Zhu Y, Champer J. Simulations Reveal High Efficiency and Confinement of a Population Suppression CRISPR Toxin-Antidote Gene Drive. ACS Synth Biol 2023; 12:809-819. [PMID: 36825354 DOI: 10.1021/acssynbio.2c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Though engineered gene drives hold great promise for spreading through and suppressing populations of disease vectors or invasive species, complications such as resistance alleles and spatial population structure can prevent their success. Additionally, most forms of suppression drives, such as homing drives or driving Y chromosomes, will generally spread uncontrollably between populations with even small levels of migration. The previously proposed CRISPR-based toxin-antidote system called toxin-antidote dominant embryo (TADE) suppression drive could potentially address the issues of confinement and resistance. However, it is a relatively weak form of drive compared to homing drives, which might make it particularly vulnerable to spatial population structure. In this study, we investigate TADE suppression drive using individual-based simulations in a continuous spatial landscape. We find that the drive is actually more confined than in simple models without space, even in its most efficient form with low cleavage rate in embryos from maternally deposited Cas9. Furthermore, the drive performed well in continuous space scenarios if the initial release requirements were met, suppressing the population in a timely manner without being severely affected by chasing, a phenomenon in which wild-type individuals avoid the drive by recolonizing empty areas. At higher embryo cut rates, the drive loses its ability to spread, but a single, widespread release can often still induce rapid population collapse. Thus, if TADE suppression gene drives can be successfully constructed, they may play an important role in control of disease vectors and invasive species when stringent confinement to target populations is desired.
Collapse
Affiliation(s)
- Yutong Zhu
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Asad M, Liu D, Chen J, Yang G. Applications of gene drive systems for population suppression of insect pests. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:724-733. [PMID: 36043456 DOI: 10.1017/s0007485322000268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Population suppression is an effective way for controlling insect pests and disease vectors, which cause significant damage to crop and spread contagious diseases to plants, animals and humans. Gene drive systems provide innovative opportunities for the insect pests population suppression by driving genes that impart fitness costs on populations of pests or disease vectors. Different gene-drive systems have been developed in insects and applied for their population suppression. Here, different categories of gene drives such as meiotic drive (MD), under-dominance (UD), homing endonuclease-based gene drive (HEGD) and especially the CRISPR/Cas9-based gene drive (CCGD) were reviewed, including the history, types, process and mechanisms. Furthermore, the advantages and limitations of applying different gene-drive systems to suppress the insect population were also summarized. This review provides a foundation for developing a specific gene-drive system for insect population suppression.
Collapse
Affiliation(s)
- Muhammad Asad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Dan Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Jing Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
16
|
Morianou I, Crisanti A, Nolan T, Hammond AM. CRISPR-Mediated Cassette Exchange (CriMCE): A Method to Introduce and Isolate Precise Marker-Less Edits. CRISPR J 2022; 5:868-876. [PMID: 36378258 DOI: 10.1089/crispr.2022.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The introduction of small unmarked edits to the genome of insects is essential to study the molecular underpinnings of important biological traits, such as resistance to insecticides and genetic control strategies. Advances in CRISPR genome engineering have made this possible, but prohibitively laborious for most laboratories due to low rates of editing and the lack of a selectable marker. To facilitate the generation and isolation of precise marker-less edits we have developed a two-step method based on CRISPR-mediated cassette exchange (CriMCE) of a marked placeholder for a variant of interest. This strategy can be used to introduce a wider range of potential edits compared with previous approaches while consolidating the workflow. We present proof-of-principle that CriMCE is a powerful tool by engineering three single nucleotide polymorphism variants into the genome of Anopheles gambiae, with 5-41 × higher rates of editing than homology-directed repair or prime editing.
Collapse
Affiliation(s)
- Ioanna Morianou
- Department of Life Sciences, Imperial College London, London, United Kingdom; S.r.l., Terni, Italy
| | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, London, United Kingdom; S.r.l., Terni, Italy.,Department of Molecular Medicine, University of Padova, Padua, Italy; S.r.l., Terni, Italy
| | - Tony Nolan
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; S.r.l., Terni, Italy
| | - Andrew M Hammond
- Department of Life Sciences, Imperial College London, London, United Kingdom; S.r.l., Terni, Italy.,Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA; and S.r.l., Terni, Italy.,Biocentis, S.r.l., Terni, Italy
| |
Collapse
|
17
|
Sychla A, Feltman NR, Hutchison WD, Smanski MJ. Modeling-informed Engineered Genetic Incompatibility strategies to overcome resistance in the invasive Drosophila suzukii. FRONTIERS IN INSECT SCIENCE 2022; 2:1063789. [PMID: 38468757 PMCID: PMC10926386 DOI: 10.3389/finsc.2022.1063789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/01/2022] [Indexed: 03/13/2024]
Abstract
Engineered Genetic Incompatibility (EGI) is an engineered extreme underdominance genetic system wherein hybrid animals are not viable, functioning as a synthetic speciation event. There are several strategies in which EGI could be leveraged for genetic biocontrol of pest populations. We used an agent-based model of Drosophila suzukii (Spotted Wing Drosophila) to determine how EGI would fare with high rates of endemic genetic resistance alleles. We discovered a surprising failure mode wherein field-generated females convert an incompatible male release program into a population replacement gene drive. Local suppression could still be attained in two seasons by tailoring the release strategy to take advantage of this effect, or alternatively in one season by altering the genetic design of release agents. We show in this work that data from modeling can be utilized to recognize unexpected emergent phenomena and a priori inform genetic biocontrol treatment design to increase efficacy.
Collapse
Affiliation(s)
- Adam Sychla
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN, United States
- Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| | - Nathan R. Feltman
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN, United States
- Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| | - William D. Hutchison
- Department of Entomology, University of Minnesota, Saint Paul, MN, United States
| | - Michael J. Smanski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN, United States
- Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
18
|
Verkuijl SAN, Gonzalez E, Li M, Ang JXD, Kandul NP, Anderson MAE, Akbari OS, Bonsall MB, Alphey L. A CRISPR endonuclease gene drive reveals distinct mechanisms of inheritance bias. Nat Commun 2022; 13:7145. [PMID: 36414618 PMCID: PMC9681865 DOI: 10.1038/s41467-022-34739-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
CRISPR/Cas gene drives can bias transgene inheritance through different mechanisms. Homing drives are designed to replace a wild-type allele with a copy of a drive element on the homologous chromosome. In Aedes aegypti, the sex-determining locus is closely linked to the white gene, which was previously used as a target for a homing drive element (wGDe). Here, through an analysis using this linkage we show that in males inheritance bias of wGDe did not occur by homing, rather through increased propagation of the donor drive element. We test the same wGDe drive element with transgenes expressing Cas9 with germline regulatory elements sds3, bgcn, and nup50. We only find inheritance bias through homing, even with the identical nup50-Cas9 transgene. We propose that DNA repair outcomes may be more context dependent than anticipated and that other previously reported homing drives may, in fact, bias their inheritance through other mechanisms.
Collapse
Affiliation(s)
- Sebald A N Verkuijl
- Mathematical Ecology Research Group, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | - Estela Gonzalez
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Ming Li
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joshua X D Ang
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Nikolay P Kandul
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michelle A E Anderson
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Omar S Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michael B Bonsall
- Mathematical Ecology Research Group, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK.
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
| |
Collapse
|
19
|
Garrood WT, Cuber P, Willis K, Bernardini F, Page NM, Haghighat-Khah RE. Driving down malaria transmission with engineered gene drives. Front Genet 2022; 13:891218. [PMID: 36338968 PMCID: PMC9627344 DOI: 10.3389/fgene.2022.891218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022] Open
Abstract
The last century has witnessed the introduction, establishment and expansion of mosquito-borne diseases into diverse new geographic ranges. Malaria is transmitted by female Anopheles mosquitoes. Despite making great strides over the past few decades in reducing the burden of malaria, transmission is now on the rise again, in part owing to the emergence of mosquito resistance to insecticides, antimalarial drug resistance and, more recently, the challenges of the COVID-19 pandemic, which resulted in the reduced implementation efficiency of various control programs. The utility of genetically engineered gene drive mosquitoes as tools to decrease the burden of malaria by controlling the disease-transmitting mosquitoes is being evaluated. To date, there has been remarkable progress in the development of CRISPR/Cas9-based homing endonuclease designs in malaria mosquitoes due to successful proof-of-principle and multigenerational experiments. In this review, we examine the lessons learnt from the development of current CRISPR/Cas9-based homing endonuclease gene drives, providing a framework for the development of gene drive systems for the targeted control of wild malaria-transmitting mosquito populations that overcome challenges such as with evolving drive-resistance. We also discuss the additional substantial works required to progress the development of gene drive systems from scientific discovery to further study and subsequent field application in endemic settings.
Collapse
Affiliation(s)
- William T. Garrood
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Piotr Cuber
- Department of Molecular Biology, Core Research Laboratories, Natural History Museum, London, United Kingdom
| | - Katie Willis
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Federica Bernardini
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nicole M. Page
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | |
Collapse
|
20
|
Langmüller AM, Champer J, Lapinska S, Xie L, Metzloff M, Champer SE, Liu J, Xu Y, Du J, Clark AG, Messer PW. Fitness effects of CRISPR endonucleases in Drosophila melanogaster populations. eLife 2022; 11:e71809. [PMID: 36135925 PMCID: PMC9545523 DOI: 10.7554/elife.71809] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 provides a highly efficient and flexible genome editing technology with numerous potential applications ranging from gene therapy to population control. Some proposed applications involve the integration of CRISPR/Cas9 endonucleases into an organism's genome, which raises questions about potentially harmful effects to the transgenic individuals. One example for which this is particularly relevant are CRISPR-based gene drives conceived for the genetic alteration of entire populations. The performance of such drives can strongly depend on fitness costs experienced by drive carriers, yet relatively little is known about the magnitude and causes of these costs. Here, we assess the fitness effects of genomic CRISPR/Cas9 expression in Drosophila melanogaster cage populations by tracking allele frequencies of four different transgenic constructs that allow us to disentangle 'direct' fitness costs due to the integration, expression, and target-site activity of Cas9, from fitness costs due to potential off-target cleavage. Using a maximum likelihood framework, we find that a model with no direct fitness costs but moderate costs due to off-target effects fits our cage data best. Consistent with this, we do not observe fitness costs for a construct with Cas9HF1, a high-fidelity version of Cas9. We further demonstrate that using Cas9HF1 instead of standard Cas9 in a homing drive achieves similar drive conversion efficiency. These results suggest that gene drives should be designed with high-fidelity endonucleases and may have implications for other applications that involve genomic integration of CRISPR endonucleases.
Collapse
Affiliation(s)
- Anna M Langmüller
- Department of Computational Biology, Cornell UniversityIthacaUnited States
- Institut für Populationsgenetik, Vetmeduni ViennaViennaAustria
- Vienna Graduate School of Population Genetics, Vetmeduni ViennaViennaAustria
| | - Jackson Champer
- Department of Computational Biology, Cornell UniversityIthacaUnited States
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking UniversityBeijingChina
| | - Sandra Lapinska
- Department of Computational Biology, Cornell UniversityIthacaUnited States
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Lin Xie
- Department of Computational Biology, Cornell UniversityIthacaUnited States
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Matthew Metzloff
- Department of Computational Biology, Cornell UniversityIthacaUnited States
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Samuel E Champer
- Department of Computational Biology, Cornell UniversityIthacaUnited States
| | - Jingxian Liu
- Department of Computational Biology, Cornell UniversityIthacaUnited States
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Yineng Xu
- Department of Computational Biology, Cornell UniversityIthacaUnited States
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Jie Du
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking UniversityBeijingChina
| | - Andrew G Clark
- Department of Computational Biology, Cornell UniversityIthacaUnited States
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Philipp W Messer
- Department of Computational Biology, Cornell UniversityIthacaUnited States
| |
Collapse
|
21
|
Asad M, Liu D, Li J, Chen J, Yang G. Development of CRISPR/Cas9-Mediated Gene-Drive Construct Targeting the Phenotypic Gene in Plutella xylostella. Front Physiol 2022; 13:938621. [PMID: 35845988 PMCID: PMC9277308 DOI: 10.3389/fphys.2022.938621] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
The gene-drive system can ensure that desirable traits are transmitted to the progeny more than the normal Mendelian segregation. The clustered regularly interspersed palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mediated gene-drive system has been demonstrated in dipteran insect species, including Drosophila and Anopheles, not yet in other insect species. Here, we have developed a single CRISPR/Cas9-mediated gene-drive construct for Plutella xylostella, a highly-destructive lepidopteran pest of cruciferous crops. The gene-drive construct was developed containing a Cas9 gene, a marker gene (EGFP) and a gRNA sequence targeting the phenotypic marker gene (Pxyellow) and site-specifically inserted into the P. xylostella genome. This homing-based gene-drive copied ∼12 kb of a fragment containing Cas9 gene, gRNA, and EGFP gene along with their promoters to the target site. Overall, 6.67%–12.59% gene-drive efficiency due to homology-directed repair (HDR), and 80.93%–86.77% resistant-allele formation due to non-homologous-end joining (NHEJ) were observed. Furthermore, the transgenic progeny derived from male parents showed a higher gene-drive efficiency compared with transgenic progeny derived from female parents. This study demonstrates the feasibility of the CRISPR/Cas9-mediated gene-drive construct in P. xylostella that inherits the desired traits to the progeny. The finding of this study provides a foundation to develop an effective CRISPR/Cas9-mediated gene-drive system for pest control.
Collapse
Affiliation(s)
- Muhammad Asad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Dan Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Jianwen Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Jing Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Guang Yang,
| |
Collapse
|
22
|
Abstract
Insects have evolved highly diverse genetic sex-determination mechanisms and a relatively balanced male to female sex ratio is generally expected. However, selection may shift the optimal sex ratio while meiotic drive and endosymbiont manipulation can result in sex ratio distortion (SRD). Recent advances in sex chromosome genomics and CRISPR/Cas9-mediated genome editing brought significant insights into the molecular regulators of sex determination in an increasing number of insects and provided new ways to engineer SRD. We review these advances and discuss both naturally occurring and engineered SRD in the context of the Anthropocene. We emphasize SRD-mediated biological control of insects to help improve One Health, sustain agriculture, and conserve endangered species.
Collapse
Affiliation(s)
- Austin Compton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
23
|
Liu P, Zheng W, Qiao J, Li Z, Deng Z, Yuan Y, Zhang H. Early embryonic transcriptomes of Zeugodacus tau provide insight into sex determination and differentiation genes. INSECT SCIENCE 2022; 29:915-931. [PMID: 34553826 DOI: 10.1111/1744-7917.12974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Zeugodacus tau (Walker) is an invasive pest. The sterile insect technique is an environment-friendly method for pest control. Understanding the mechanism of sex determination will contribute to improving efficiency of this technique. In this study, we identified the transformer (tra) gene in Z. tau. One female-specific and two male-specific isoforms of tra were found in Z. tau, and the male-specific splicing pattern of tra was found to occur 5 h after egg laying. We performed transcriptome sequencing at 1 h (E1), 5 h (E5), and 9 h (E9) after egg laying and obtained high-quality transcriptome libraries of early embryo development. We identified 13 297 and 11 713 differentially expressed genes (DEGs) from E5 versus E1 and E9 versus E1 comparisons, respectively. To explore the potential functions of the DEGs during embryonic development, Gene Ontology, Clusters of Orthologous Groups of proteins, and Kyoto Encyclopedia of Genes and Genomes analyses were performed. Twenty-six genes potentially involved in sex determination or differentiation, including Maleness-on-the-Y (MoY), were identified in Z. tau. To verify the transcriptome results, 15 genes were selected for quantitative real-time PCR validation. The results were consistent with the transcriptome sequencing results. Moreover, U2 small nuclear riboprotein auxiliary factor (U2AF-50), female lethal d (fl(2)d), and virilizer (vir) were highly expressed at E5, indicating that they may be related to the sex-specific splicing of tra. Further functional analysis is needed to confirm this speculation. Our data provide an insight into the mechanism underlying sex determination and differentiation in tephritid species.
Collapse
Affiliation(s)
- Peipei Liu
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Center for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenping Zheng
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Center for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiao Qiao
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Center for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziniu Li
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Center for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhurong Deng
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Center for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yimin Yuan
- College of Environmental Design, Wuhan Institute of Design and Sciences, Wuhan, China
| | - Hongyu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Center for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Yang E, Metzloff M, Langmüller AM, Xu X, Clark AG, Messer PW, Champer J. A homing suppression gene drive with multiplexed gRNAs maintains high drive conversion efficiency and avoids functional resistance alleles. G3 (BETHESDA, MD.) 2022; 12:jkac081. [PMID: 35394026 PMCID: PMC9157102 DOI: 10.1093/g3journal/jkac081] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/30/2022] [Indexed: 11/14/2022]
Abstract
Gene drives are engineered alleles that can bias inheritance in their favor, allowing them to spread throughout a population. They could potentially be used to modify or suppress pest populations, such as mosquitoes that spread diseases. CRISPR/Cas9 homing drives, which copy themselves by homology-directed repair in drive/wild-type heterozygotes, are a powerful form of gene drive, but they are vulnerable to resistance alleles that preserve the function of their target gene. Such resistance alleles can prevent successful population suppression. Here, we constructed a homing suppression drive in Drosophila melanogaster that utilized multiplexed gRNAs to inhibit the formation of functional resistance alleles in its female fertility target gene. The selected gRNA target sites were close together, preventing reduction in drive conversion efficiency. The construct reached a moderate equilibrium frequency in cage populations without apparent formation of resistance alleles. However, a moderate fitness cost prevented elimination of the cage population, showing the importance of using highly efficient drives in a suppression strategy, even if resistance can be addressed. Nevertheless, our results experimentally demonstrate the viability of the multiplexed gRNAs strategy in homing suppression gene drives.
Collapse
Affiliation(s)
- Emily Yang
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Matthew Metzloff
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Anna M Langmüller
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
- Vienna Graduate School of Population Genetics, 1210 Wien, Austria
| | - Xuejiao Xu
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Andrew G Clark
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jackson Champer
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
25
|
Metzloff M, Yang E, Dhole S, Clark AG, Messer PW, Champer J. Experimental demonstration of tethered gene drive systems for confined population modification or suppression. BMC Biol 2022; 20:119. [PMID: 35606745 PMCID: PMC9128227 DOI: 10.1186/s12915-022-01292-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Homing gene drives hold great promise for the genetic control of natural populations. However, current homing systems are capable of spreading uncontrollably between populations connected by even marginal levels of migration. This could represent a substantial sociopolitical barrier to the testing or deployment of such drives and may generally be undesirable when the objective is only local population control, such as suppression of an invasive species outside of its native range. Tethered drive systems, in which a locally confined gene drive provides the CRISPR nuclease needed for a homing drive, could provide a solution to this problem, offering the power of a homing drive and confinement of the supporting drive. RESULTS Here, we demonstrate the engineering of a tethered drive system in Drosophila, using a regionally confined CRISPR Toxin-Antidote Recessive Embryo (TARE) drive to support modification and suppression homing drives. Each drive was able to bias inheritance in its favor, and the TARE drive was shown to spread only when released above a threshold frequency in experimental cage populations. After the TARE drive had established in the population, it facilitated the spread of a subsequently released split homing modification drive (to all individuals in the cage) and of a homing suppression drive (to its equilibrium frequency). CONCLUSIONS Our results show that the tethered drive strategy is a viable and easily engineered option for providing confinement of homing drives to target populations.
Collapse
Affiliation(s)
- Matthew Metzloff
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Emily Yang
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Sumit Dhole
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Andrew G Clark
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jackson Champer
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA.
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
- Present Address: Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
26
|
Propagation of seminal toxins through binary expression gene drives could suppress populations. Sci Rep 2022; 12:6332. [PMID: 35428855 PMCID: PMC9012762 DOI: 10.1038/s41598-022-10327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
Gene drives can be highly effective in controlling a target population by disrupting a female fertility gene. To spread across a population, these drives require that disrupted alleles be largely recessive so as not to impose too high of a fitness penalty. We argue that this restriction may be relaxed by using a double gene drive design to spread a split binary expression system. One drive carries a dominant lethal/toxic effector alone and the other a transactivator factor, without which the effector will not act. Only after the drives reach sufficiently high frequencies would individuals have the chance to inherit both system components and the effector be expressed. We explore through mathematical modeling the potential of this design to spread dominant lethal/toxic alleles and suppress populations. We show that this system could be implemented to spread engineered seminal proteins designed to kill females, making it highly effective against polyandrous populations.
Collapse
|
27
|
Verkuijl SAN, Ang JXD, Alphey L, Bonsall MB, Anderson MAE. The Challenges in Developing Efficient and Robust Synthetic Homing Endonuclease Gene Drives. Front Bioeng Biotechnol 2022; 10:856981. [PMID: 35419354 PMCID: PMC8996256 DOI: 10.3389/fbioe.2022.856981] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Making discrete and precise genetic changes to wild populations has been proposed as a means of addressing some of the world's most pressing ecological and public health challenges caused by insect pests. Technologies that would allow this, such as synthetic gene drives, have been under development for many decades. Recently, a new generation of programmable nucleases has dramatically accelerated technological development. CRISPR-Cas9 has improved the efficiency of genetic engineering and has been used as the principal effector nuclease in different gene drive inheritance biasing mechanisms. Of these nuclease-based gene drives, homing endonuclease gene drives have been the subject of the bulk of research efforts (particularly in insects), with many different iterations having been developed upon similar core designs. We chart the history of homing gene drive development, highlighting the emergence of challenges such as unintended repair outcomes, "leaky" expression, and parental deposition. We conclude by discussing the progress made in developing strategies to increase the efficiency of homing endonuclease gene drives and mitigate or prevent unintended outcomes.
Collapse
Affiliation(s)
- Sebald A. N. Verkuijl
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Joshua X. D. Ang
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
| | | | | |
Collapse
|
28
|
Wang GH, Du J, Chu CY, Madhav M, Hughes GL, Champer J. Symbionts and gene drive: two strategies to combat vector-borne disease. Trends Genet 2022; 38:708-723. [PMID: 35314082 DOI: 10.1016/j.tig.2022.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 01/26/2023]
Abstract
Mosquitoes bring global health problems by transmitting parasites and viruses such as malaria and dengue. Unfortunately, current insecticide-based control strategies are only moderately effective because of high cost and resistance. Thus, scalable, sustainable, and cost-effective strategies are needed for mosquito-borne disease control. Symbiont-based and genome engineering-based approaches provide new tools that show promise for meeting these criteria, enabling modification or suppression approaches. Symbiotic bacteria like Wolbachia are maternally inherited and manipulate mosquito host reproduction to enhance their vertical transmission. Genome engineering-based gene drive methods, in which mosquitoes are genetically altered to spread drive alleles throughout wild populations, are also proving to be a potentially powerful approach in the laboratory. Here, we review the latest developments in both symbionts and gene drive-based methods. We describe some notable similarities, as well as distinctions and obstacles, relating to these promising technologies.
Collapse
Affiliation(s)
- Guan-Hong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jie Du
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Chen Yi Chu
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Mukund Madhav
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
29
|
Cook F, Bull JJ, Gomulkiewicz R. Gene drive escape from resistance depends on mechanism and ecology. Evol Appl 2022; 15:721-734. [PMID: 35603023 PMCID: PMC9108321 DOI: 10.1111/eva.13358] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
Gene drives can potentially be used to suppress pest populations, and the advent of CRISPR technology has made it feasible to engineer them in many species, especially insects. What remains largely unknown for implementations is whether antidrive resistance will evolve to block the population suppression. An especially serious threat to some kinds of drive is mutations in the CRISPR cleavage sequence that block the action of CRISPR, but designs have been proposed to avoid this type of resistance. Various types of resistance at loci away from the cleavage site remain a possibility, which is the focus here. It is known that modest‐effect suppression drives can essentially “outrun” unlinked resistance even when that resistance is present from the start. We demonstrate here how the risk of evolving (unlinked) resistance can be further reduced without compromising overall suppression by introducing multiple suppression drives or by designing drives with specific ecological effects. However, we show that even modest‐effect suppression drives remain vulnerable to the evolution of extreme levels of inbreeding, which halt the spread of the drive without actually interfering with its mechanism. The landscape of resistance evolution against suppression drives is therefore complex, but avenues exist for enhancing gene drive success.
Collapse
Affiliation(s)
- Forest Cook
- School of Electrical Engineering & Computer Science Washington State University Pullman WA 99164 USA
| | - James J. Bull
- Dept of Biological Sciences University of Idaho Moscow ID 83843 USA
| | | |
Collapse
|
30
|
Lewis IC, Yan Y, Finnigan GC. Analysis of a Cas12a-based gene-drive system in budding yeast. Access Microbiol 2022; 3:000301. [PMID: 35024561 PMCID: PMC8749140 DOI: 10.1099/acmi.0.000301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
The discovery and adaptation of CRISPR/Cas systems within molecular biology has provided advances across biological research, agriculture and human health. Genomic manipulation through use of a CRISPR nuclease and programmed guide RNAs has become a common and widely accessible practice. The identification and introduction of new engineered variants and orthologues of Cas9 as well as alternative CRISPR systems such as the type V group have provided additional molecular options for editing. These include distinct PAM requirements, staggered DNA double-strand break formation, and the ability to multiplex guide RNAs from a single expression construct. Use of CRISPR/Cas has allowed for the construction and testing of a powerful genetic architecture known as a gene drive within eukaryotic model systems. Our previous work developed a drive within budding yeast using Streptococcus pyogenes Cas9. Here, we installed the type V Francisella novicida Cas12a (Cpf1) nuclease gene and its corresponding guide RNA to power a highly efficient artificial gene drive in diploid yeast. We examined the consequence of altering guide length or introduction of individual mutational substitutions to the crRNA sequence. Cas12a-dependent gene-drive function required a guide RNA of at least 18 bp and could not tolerate most changes within the 5' end of the crRNA.
Collapse
Affiliation(s)
- Isabel C Lewis
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.,Present address: School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yao Yan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Gregory C Finnigan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
31
|
Siddall A, Harvey-Samuel T, Chapman T, Leftwich PT. Manipulating Insect Sex Determination Pathways for Genetic Pest Management: Opportunities and Challenges. Front Bioeng Biotechnol 2022; 10:867851. [PMID: 35837548 PMCID: PMC9274970 DOI: 10.3389/fbioe.2022.867851] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
Sex determination pathways in insects are generally characterised by an upstream primary signal, which is highly variable across species, and that regulates the splicing of a suite of downstream but highly-conserved genes (transformer, doublesex and fruitless). In turn, these downstream genes then regulate the expression of sex-specific characteristics in males and females. Identification of sex determination pathways has and continues to be, a critical component of insect population suppression technologies. For example, "first-generation" transgenic technologies such as fsRIDL (Female-Specific Release of Insects carrying Dominant Lethals) enabled efficient selective removal of females from a target population as a significant improvement on the sterile insect technique (SIT). Second-generation technologies such as CRISPR/Cas9 homing gene drives and precision-guided SIT (pgSIT) have used gene editing technologies to manipulate sex determination genes in vivo. The development of future, third-generation control technologies, such as Y-linked drives, (female to male) sex-reversal, or X-shredding, will require additional knowledge of aspects of sexual development, including a deeper understanding of the nature of primary signals and dosage compensation. This review shows how knowledge of sex determination in target pest species is fundamental to all phases of the development of control technologies.
Collapse
Affiliation(s)
- Alex Siddall
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Tim Harvey-Samuel
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
32
|
Champer SE, Oakes N, Sharma R, García-Díaz P, Champer J, Messer PW. Modeling CRISPR gene drives for suppression of invasive rodents using a supervised machine learning framework. PLoS Comput Biol 2021; 17:e1009660. [PMID: 34965253 PMCID: PMC8716047 DOI: 10.1371/journal.pcbi.1009660] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
Invasive rodent populations pose a threat to biodiversity across the globe. When confronted with these invaders, native species that evolved independently are often defenseless. CRISPR gene drive systems could provide a solution to this problem by spreading transgenes among invaders that induce population collapse, and could be deployed even where traditional control methods are impractical or prohibitively expensive. Here, we develop a high-fidelity model of an island population of invasive rodents that includes three types of suppression gene drive systems. The individual-based model is spatially explicit, allows for overlapping generations and a fluctuating population size, and includes variables for drive fitness, efficiency, resistance allele formation rate, as well as a variety of ecological parameters. The computational burden of evaluating a model with such a high number of parameters presents a substantial barrier to a comprehensive understanding of its outcome space. We therefore accompany our population model with a meta-model that utilizes supervised machine learning to approximate the outcome space of the underlying model with a high degree of accuracy. This enables us to conduct an exhaustive inquiry of the population model, including variance-based sensitivity analyses using tens of millions of evaluations. Our results suggest that sufficiently capable gene drive systems have the potential to eliminate island populations of rodents under a wide range of demographic assumptions, though only if resistance can be kept to a minimal level. This study highlights the power of supervised machine learning to identify the key parameters and processes that determine the population dynamics of a complex evolutionary system.
Collapse
Affiliation(s)
- Samuel E. Champer
- Department of Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Nathan Oakes
- Department of Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Ronin Sharma
- Department of Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Pablo García-Díaz
- Manaaki Whenua–Landcare Research, Lincoln, New Zealand and School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jackson Champer
- Department of Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Philipp W. Messer
- Department of Computational Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
33
|
St. Leger RJ. From the Lab to the Last Mile: Deploying Transgenic Approaches Against Mosquitoes. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.804066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ingenious exploitation of transgenic approaches to produce malaria resistant or sterile mosquitoes, or hypervirulent mosquito pathogens, has produced many potential solutions to vector borne diseases. However, in spite of technological feasibility, it has not been determined how well these new methods will work, and how they should be tested and regulated. Some self-limiting transgenic fungal pathogens and mosquitoes are almost field ready, and may be easier to regulate than self-sustaining strategies. However, they require repeat sales and so must show business viability; low-cost mass production is just one of a number of technical constraints that are sometimes treated as an afterthought in technology deployment. No transgenic self-sustaining approach to anopheline control has ever been deployed because of unresolved ethical, social and regulatory issues. These overlapping issues include: 1) the transparency challenge, which requires public discourse, particularly in Africa where releases are proposed, to determine what society is willing to risk given the potential benefits; 2) the transboundary challenge, self-sustaining mosquitoes or pathogens are potentially capable of crossing national boundaries and irreversibly altering ecosystems, and 3) the risk assessment challenge. The polarized debate as to whether these technologies will ever be used to save lives is ongoing; they will founder without a political answer as to how do we interpret the precautionary principle, as exemplified in the Cartagena protocol, in the global context of technological changes.
Collapse
|
34
|
Oberhofer G, Ivy T, Hay BA. Gene drive that results in addiction to a temperature-sensitive version of an essential gene triggers population collapse in Drosophila. Proc Natl Acad Sci U S A 2021; 118:e2107413118. [PMID: 34845012 PMCID: PMC8670509 DOI: 10.1073/pnas.2107413118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
One strategy for population suppression seeks to use gene drive to spread genes that confer conditional lethality or sterility, providing a way of combining population modification with suppression. Stimuli of potential interest could be introduced by humans, such as an otherwise benign virus or chemical, or occur naturally on a seasonal basis, such as a change in temperature. Cleave and Rescue (ClvR) selfish genetic elements use Cas9 and guide RNAs (gRNAs) to disrupt endogenous versions of an essential gene while also including a Rescue version of the essential gene resistant to disruption. ClvR spreads by creating loss-of-function alleles of the essential gene that select against those lacking it, resulting in populations in which the Rescue provides the only source of essential gene function. As a consequence, if function of the Rescue, a kind of Trojan horse now omnipresent in a population, is condition dependent, so too will be the survival of that population. To test this idea, we created a ClvR in Drosophila in which Rescue activity of an essential gene, dribble, requires splicing of a temperature-sensitive intein (TS-ClvRdbe ). This element spreads to transgene fixation at 23 °C, but when populations now dependent on Ts-ClvRdbe are shifted to 29 °C, death and sterility result in a rapid population crash. These results show that conditional population elimination can be achieved. A similar logic, in which Rescue activity is conditional, could also be used in homing-based drive and to bring about suppression and/or killing of specific individuals in response to other stimuli.
Collapse
Affiliation(s)
- Georg Oberhofer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Tobin Ivy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
35
|
Lalyer CR, Sigsgaard L, Giese B. Ecological vulnerability analysis for suppression of Drosophila suzukii by gene drives. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
36
|
Faber NR, Meiborg AB, Mcfarlane GR, Gorjanc G, Harpur BA. A gene drive does not spread easily in populations of the honey bee parasite Varroa destructor. APIDOLOGIE 2021; 52:1112-1127. [PMID: 35068598 PMCID: PMC8755698 DOI: 10.1007/s13592-021-00891-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 05/29/2023]
Abstract
UNLABELLED Varroa mites (Varroa destructor) are the most significant threat to beekeeping worldwide. They are directly or indirectly responsible for millions of colony losses each year. Beekeepers are somewhat able to control varroa populations through the use of physical and chemical treatments. However, these methods range in effectiveness, can harm honey bees, can be physically demanding on the beekeeper, and do not always provide complete protection from varroa. More importantly, in some populations varroa mites have developed resistance to available acaricides. Overcoming the varroa mite problem will require novel and targeted treatment options. Here, we explore the potential of gene drive technology to control varroa. We show that spreading a neutral gene drive in varroa is possible but requires specific colony-level management practices to overcome the challenges of both inbreeding and haplodiploidy. Furthermore, continued treatment with acaricides is necessary to give a gene drive time to fix in the varroa population. Unfortunately, a gene drive that impacts female or male fertility does not spread in varroa. Therefore, we suggest that the most promising way forward is to use a gene drive which carries a toxin precursor or removes acaricide resistance alleles. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13592-021-00891-5.
Collapse
Affiliation(s)
- Nicky R. Faber
- HighlanderLab, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG United Kingdom
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Adriaan B. Meiborg
- HighlanderLab, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG United Kingdom
| | - Gus R. Mcfarlane
- Burdon Group, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG United Kingdom
| | - Gregor Gorjanc
- HighlanderLab, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG United Kingdom
| | - Brock A. Harpur
- Department of Entomology, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
37
|
Fuchs S, Garrood WT, Beber A, Hammond A, Galizi R, Gribble M, Morselli G, Hui TYJ, Willis K, Kranjc N, Burt A, Crisanti A, Nolan T. Resistance to a CRISPR-based gene drive at an evolutionarily conserved site is revealed by mimicking genotype fixation. PLoS Genet 2021; 17:e1009740. [PMID: 34610011 PMCID: PMC8519452 DOI: 10.1371/journal.pgen.1009740] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/15/2021] [Accepted: 09/24/2021] [Indexed: 01/06/2023] Open
Abstract
CRISPR-based homing gene drives can be designed to disrupt essential genes whilst biasing their own inheritance, leading to suppression of mosquito populations in the laboratory. This class of gene drives relies on CRISPR-Cas9 cleavage of a target sequence and copying ('homing') therein of the gene drive element from the homologous chromosome. However, target site mutations that are resistant to cleavage yet maintain the function of the essential gene are expected to be strongly selected for. Targeting functionally constrained regions where mutations are not easily tolerated should lower the probability of resistance. Evolutionary conservation at the sequence level is often a reliable indicator of functional constraint, though the actual level of underlying constraint between one conserved sequence and another can vary widely. Here we generated a novel adult lethal gene drive (ALGD) in the malaria vector Anopheles gambiae, targeting an ultra-conserved target site in a haplosufficient essential gene (AGAP029113) required during mosquito development, which fulfils many of the criteria for the target of a population suppression gene drive. We then designed a selection regime to experimentally assess the likelihood of generation and subsequent selection of gene drive resistant mutations at its target site. We simulated, in a caged population, a scenario where the gene drive was approaching fixation, where selection for resistance is expected to be strongest. Continuous sampling of the target locus revealed that a single, restorative, in-frame nucleotide substitution was selected. Our findings show that ultra-conservation alone need not be predictive of a site that is refractory to target site resistance. Our strategy to evaluate resistance in vivo could help to validate candidate gene drive targets for their resilience to resistance and help to improve predictions of the invasion dynamics of gene drives in field populations.
Collapse
Affiliation(s)
- Silke Fuchs
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - William T. Garrood
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Anna Beber
- Department of Biology, University of Padua, Padua, Italy
| | - Andrew Hammond
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States of America
| | - Roberto Galizi
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Matthew Gribble
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Giulia Morselli
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Tin-Yu J. Hui
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Katie Willis
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nace Kranjc
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Austin Burt
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Department of Molecular Medicine, University of Padua, Padua, Italy
- * E-mail: (AC); (TN)
| | - Tony Nolan
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail: (AC); (TN)
| |
Collapse
|
38
|
Legros M, Marshall JM, Macfadyen S, Hayes KR, Sheppard A, Barrett LG. Gene drive strategies of pest control in agricultural systems: Challenges and opportunities. Evol Appl 2021; 14:2162-2178. [PMID: 34603490 PMCID: PMC8477592 DOI: 10.1111/eva.13285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/24/2021] [Accepted: 07/19/2021] [Indexed: 12/18/2022] Open
Abstract
Recent advances in gene-editing technologies have opened new avenues for genetic pest control strategies, in particular around the use of gene drives to suppress or modify pest populations. Significant uncertainty, however, surrounds the applicability of these strategies to novel target species, their efficacy in natural populations and their eventual safety and acceptability as control methods. In this article, we identify issues associated with the potential use of gene drives in agricultural systems, to control pests and diseases that impose a significant cost to agriculture around the world. We first review the need for innovative approaches and provide an overview of the most relevant biological and ecological traits of agricultural pests that could impact the outcome of gene drive approaches. We then describe the specific challenges associated with using gene drives in agricultural systems, as well as the opportunities that these environments may offer, focusing in particular on the advantages of high-threshold gene drives. Overall, we aim to provide a comprehensive view of the potential opportunities and the remaining uncertainties around the use of gene drives in agricultural systems.
Collapse
Affiliation(s)
- Mathieu Legros
- CSIRO Agriculture and FoodCanberraACTAustralia
- CSIRO Synthetic Biology Future Science PlatformCanberraACTAustralia
| | - John M. Marshall
- Divisions of Biostatistics and Epidemiology – School of Public HealthUniversity of CaliforniaBerkeleyCAUSA
| | | | | | | | - Luke G. Barrett
- CSIRO Agriculture and FoodCanberraACTAustralia
- CSIRO Synthetic Biology Future Science PlatformCanberraACTAustralia
| |
Collapse
|
39
|
Gene-drive suppression of mosquito populations in large cages as a bridge between lab and field. Nat Commun 2021; 12:4589. [PMID: 34321476 PMCID: PMC8319305 DOI: 10.1038/s41467-021-24790-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/05/2021] [Indexed: 12/03/2022] Open
Abstract
CRISPR-based gene-drives targeting the gene doublesex in the malaria vector Anopheles gambiae effectively suppressed the reproductive capability of mosquito populations reared in small laboratory cages. To bridge the gap between laboratory and the field, this gene-drive technology must be challenged with vector ecology. Here we report the suppressive activity of the gene-drive in age-structured An. gambiae populations in large indoor cages that permit complex feeding and reproductive behaviours. The gene-drive element spreads rapidly through the populations, fully supresses the population within one year and without selecting for resistance to the gene drive. Approximate Bayesian computation allowed retrospective inference of life-history parameters from the large cages and a more accurate prediction of gene-drive behaviour under more ecologically-relevant settings. Generating data to bridge laboratory and field studies for invasive technologies is challenging. Our study represents a paradigm for the stepwise and sound development of vector control tools based on gene-drive. Experimental analysis of gene drive population dynamics has mostly been limited to small cage trials. Here the authors, to fill the gap between lab based studies and field studies, use large indoor cages and see population suppression without the emergence of resistant alleles
Collapse
|
40
|
Devos Y, Mumford JD, Bonsall MB, Camargo AM, Firbank LG, Glandorf DCM, Nogué F, Paraskevopoulos K, Wimmer EA. Potential use of gene drive modified insects against disease vectors, agricultural pests and invasive species poses new challenges for risk assessment. Crit Rev Biotechnol 2021; 42:254-270. [PMID: 34167401 DOI: 10.1080/07388551.2021.1933891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Potential future application of engineered gene drives (GDs), which bias their own inheritance and can spread genetic modifications in wild target populations, has sparked both enthusiasm and concern. Engineered GDs in insects could potentially be used to address long-standing challenges in control of disease vectors, agricultural pests and invasive species, or help to rescue endangered species, and thus provide important public benefits. However, there are concerns that the deliberate environmental release of GD modified insects may pose different or new harms to animal and human health and the wider environment, and raise novel challenges for risk assessment. Risk assessors, risk managers, developers, potential applicants and other stakeholders at many levels are currently discussing whether there is a need to develop new or additional risk assessment guidance for the environmental release of GD modified organisms, including insects. Developing new or additional guidance that is useful and practical is a challenge, especially at an international level, as risk assessors, risk managers and many other stakeholders have different, often contrasting, opinions and perspectives toward the environmental release of GD modified organisms, and on the adequacy of current risk assessment frameworks for such organisms. Here, we offer recommendations to overcome some of the challenges associated with the potential future development of new or additional risk assessment guidance for GD modified insects and provide considerations on areas where further risk assessment guidance may be required.
Collapse
Affiliation(s)
- Yann Devos
- GMO Unit, European Food Safety Authority (EFSA), Parma, Italy
| | - John D Mumford
- Centre for Environmental Policy, Imperial College London, Ascot, UK
| | | | - Ana M Camargo
- GMO Unit, European Food Safety Authority (EFSA), Parma, Italy
| | | | - Debora C M Glandorf
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | | | - Ernst A Wimmer
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, GZMB, Georg August University, Göttingen, Germany
| |
Collapse
|
41
|
Kandul NP, Liu J, Bennett JB, Marshall JM, Akbari OS. A confinable home-and-rescue gene drive for population modification. eLife 2021; 10:e65939. [PMID: 33666174 PMCID: PMC7968924 DOI: 10.7554/elife.65939] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Homing-based gene drives, engineered using CRISPR/Cas9, have been proposed to spread desirable genes throughout populations. However, invasion of such drives can be hindered by the accumulation of resistant alleles. To limit this obstacle, we engineer a confinable population modification home-and-rescue (HomeR) drive in Drosophila targeting an essential gene. In our experiments, resistant alleles that disrupt the target gene function were recessive lethal and therefore disadvantaged. We demonstrate that HomeR can achieve an increase in frequency in population cage experiments, but that fitness costs due to the Cas9 insertion limit drive efficacy. Finally, we conduct mathematical modeling comparing HomeR to contemporary gene drive architectures for population modification over wide ranges of fitness costs, transmission rates, and release regimens. HomeR could potentially be adapted to other species, as a means for safe, confinable, modification of wild populations.
Collapse
Affiliation(s)
- Nikolay P Kandul
- Section of Cell and Developmental Biology, University of California, San DiegoSan DiegoUnited States
| | - Junru Liu
- Section of Cell and Developmental Biology, University of California, San DiegoSan DiegoUnited States
| | - Jared B Bennett
- Biophysics Graduate Group, University of California, BerkeleyBerkeleyUnited States
| | - John M Marshall
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, BerkeleyBerkeleyUnited States
| | - Omar S Akbari
- Section of Cell and Developmental Biology, University of California, San DiegoSan DiegoUnited States
| |
Collapse
|
42
|
Trivedi D. Using CRISPR-Cas9-based genome engineering tools in Drosophila melanogaster. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 180:85-121. [PMID: 33934839 DOI: 10.1016/bs.pmbts.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drosophila melanogaster has been used as a model organism for over a century. Mutant-based analyses have been used extensively to understand the genetic basis of different cellular processes, including development, neuronal function and diseases. Most of the earlier genetic mutants and specific tools were generated by random insertions and deletion strategies and then mapped to specific genomic loci. Since all genomic regions are not equally accessible to random mutations and insertions, many genes still remain uncharacterized. Low efficiency of targeted genomic manipulation approaches that rely on homologous recombination, and difficulty in generating resources for sequence-specific endonucleases, such as ZFNs (Zinc Finger Nucleases) and TALENs (Transcription Activator-Like Effector Nucleases), could not make these gene targeting techniques very popular. However, recently RNA directed DNA endonucleases, such as CRISPR-Cas, have transformed genome engineering owing to their comparative ease, versatility, and low expense. With the added advantage of preexisting genetic tools, CRISPR-Cas-based manipulations are being extensively used in Drosophila melanogaster and simultaneously being fine-tuned for specific experimental requirements. In this chapter, I will discuss various uses of CRISPR-Cas-based genetic engineering and specific design methods in Drosophila melanogaster. I will summarize various already available tools that are being utilized in conjunction with CRISPR-Cas technology to generate specific genetic manipulation and are being optimized to address specific questions. Finally, I will discuss the future directions of Drosophila genetics research and how CRISPR-Cas can be utilized to target specific questions, addressing which has not been possible thus far.
Collapse
Affiliation(s)
- Deepti Trivedi
- National Centre for Biological Sciences-TIFR, Bengaluru, India.
| |
Collapse
|
43
|
Oberhofer G, Ivy T, Hay BA. Split versions of Cleave and Rescue selfish genetic elements for measured self limiting gene drive. PLoS Genet 2021; 17:e1009385. [PMID: 33600432 PMCID: PMC7951863 DOI: 10.1371/journal.pgen.1009385] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/11/2021] [Accepted: 01/28/2021] [Indexed: 12/26/2022] Open
Abstract
Gene drive elements promote the spread of linked traits, providing methods for changing the composition or fate of wild populations. Drive mechanisms that are self-limiting are attractive because they allow control over the duration and extent of trait spread in time and space, and are reversible through natural selection as drive wanes. Self-sustaining Cleave and Rescue (ClvR) elements include a DNA sequence-modifying enzyme such as Cas9/gRNAs that disrupts endogenous versions of an essential gene, a tightly linked recoded version of the essential gene resistant to cleavage (the Rescue), and a Cargo. ClvR spreads by creating loss-of-function (LOF) conditions in which those without ClvR die because they lack functional copies of the essential gene. We use modeling to show that when the Rescue-Cargo and one or both components required for LOF allele creation (Cas9 and gRNA) reside at different locations (split ClvR), drive of Rescue-Cargo is self-limiting due to a progressive decrease in Cas9 frequency, and thus opportunities for creation of LOF alleles, as spread occurs. Importantly, drive strength and duration can be extended in a measured manner-which is still self-limiting-by moving the two components close enough to each other that they experience some degree of linkage. With linkage, Cas9 transiently experiences drive by hitchhiking with Rescue-Cargo until linkage disequilibrium between the two disappears, a function of recombination frequency and number of generations, creating a novel point of control. We implement split ClvR in Drosophila, with key elements on different chromosomes. Cargo/Rescue/gRNAs spreads to high frequency in a Cas9-dependent manner, while the frequency of Cas9 decreases. These observations show that measured, transient drive, coupled with a loss of future drive potential, can be achieved using the simple toolkit that make up ClvR elements-Cas9 and gRNAs and a Rescue/Cargo.
Collapse
Affiliation(s)
- Georg Oberhofer
- California Institute of Technology, Pasadena, California, United States of America
| | - Tobin Ivy
- California Institute of Technology, Pasadena, California, United States of America
| | - Bruce A. Hay
- California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
44
|
Hammond A, Karlsson X, Morianou I, Kyrou K, Beaghton A, Gribble M, Kranjc N, Galizi R, Burt A, Crisanti A, Nolan T. Regulating the expression of gene drives is key to increasing their invasive potential and the mitigation of resistance. PLoS Genet 2021; 17:e1009321. [PMID: 33513149 PMCID: PMC7886172 DOI: 10.1371/journal.pgen.1009321] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/16/2021] [Accepted: 12/22/2020] [Indexed: 12/27/2022] Open
Abstract
Homing-based gene drives use a germline source of nuclease to copy themselves at specific target sites in a genome and bias their inheritance. Such gene drives can be designed to spread and deliberately suppress populations of malaria mosquitoes by impairing female fertility. However, strong unintended fitness costs of the drive and a propensity to generate resistant mutations can limit a gene drive’s potential to spread. Alternative germline regulatory sequences in the drive element confer improved fecundity of carrier individuals and reduced propensity for target site resistance. This is explained by reduced rates of end-joining repair of DNA breaks from parentally deposited nuclease in the embryo, which can produce heritable mutations that reduce gene drive penetrance. We tracked the generation and selection of resistant mutations over the course of a gene drive invasion of a population. Improved gene drives show faster invasion dynamics, increased suppressive effect and later onset of target site resistance. Our results show that regulation of nuclease expression is as important as the choice of target site when developing a robust homing-based gene drive for population suppression. Gene drives are selfish genetic elements that are able to drastically bias their own inheritance. They can rapidly invade populations, even starting from a very low frequency. Recent advances have allowed the engineering of gene drives deliberately designed to spread genetic traits of choice into populations of malaria-transmitting mosquito species–for example traits that impair a mosquito’s ability to reproduce or its ability to transmit parasites. The class of gene drive in question uses a very precise cutting and copying mechanism, termed ‘homing’, that allows it to increase its numbers in the cells that go on to form sperm or eggs, thereby increasing the chances that a copy of the gene drive is transmitted to offspring. However, while this type of gene drive can rapidly invade a mosquito population, mosquitoes can also eventually become resistant to the gene drive in some cases. Here we show that restricting the cutting activity of the gene drive to the germline tissue is crucial to maintaining its potency and we illustrate how failure to restrict this activity can lead to the generation of mutations that can make mosquitoes resistant to the gene drive.
Collapse
Affiliation(s)
- Andrew Hammond
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Xenia Karlsson
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ioanna Morianou
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Kyros Kyrou
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Andrea Beaghton
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Matthew Gribble
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nace Kranjc
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Roberto Galizi
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Austin Burt
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, London, United Kingdom
- University of Padova, Padova, Italy
- * E-mail: (AC); (TN)
| | - Tony Nolan
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail: (AC); (TN)
| |
Collapse
|
45
|
Hay BA, Oberhofer G, Guo M. Engineering the Composition and Fate of Wild Populations with Gene Drive. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:407-434. [PMID: 33035437 DOI: 10.1146/annurev-ento-020117-043154] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Insects play important roles as predators, prey, pollinators, recyclers, hosts, parasitoids, and sources of economically important products. They can also destroy crops; wound animals; and serve as vectors for plant, animal, and human diseases. Gene drive-a process by which genes, gene complexes, or chromosomes encoding specific traits are made to spread through wild populations, even if these traits result in a fitness cost to carriers-provides new opportunities for altering populations to benefit humanity and the environment in ways that are species specific and sustainable. Gene drive can be used to alter the genetic composition of an existing population, referred to as population modification or replacement, or to bring about population suppression or elimination. We describe technologies under consideration, progress that has been made, and remaining technological hurdles, particularly with respect to evolutionary stability and our ability to control the spread and ultimate fate of genes introduced into populations.
Collapse
Affiliation(s)
- Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA; ,
- St. John's College, University of Cambridge, Cambridge CB2 1TP, United Kingdom
| | - Georg Oberhofer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA; ,
| | - Ming Guo
- Departments of Neurology and Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA;
| |
Collapse
|
46
|
Zapletal J, Najmitabrizi N, Erraguntla M, Lawley MA, Myles KM, Adelman ZN. Making gene drive biodegradable. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190804. [PMID: 33357058 PMCID: PMC7776940 DOI: 10.1098/rstb.2019.0804] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gene drive systems have long been sought to modify mosquito populations and thus combat malaria and dengue. Powerful gene drive systems have been developed in laboratory experiments, but may never be used in practice unless they can be shown to be acceptable through rigorous field-based testing. Such testing is complicated by the anticipated difficulty in removing gene drive transgenes from nature. Here, we consider the inclusion of self-elimination mechanisms into the design of homing-based gene drive transgenes. This approach not only caused the excision of the gene drive transgene, but also generates a transgene-free allele resistant to further action by the gene drive. Strikingly, our models suggest that this mechanism, acting at a modest rate (10%) as part of a single-component system, would be sufficient to cause the rapid reversion of even the most robust homing-based gene drive transgenes, without the need for further remediation. Modelling also suggests that unlike gene drive transgenes themselves, self-eliminating transgene approaches are expected to tolerate substantial rates of failure. Thus, self-elimination technology may permit rigorous field-based testing of gene drives by establishing strict time limits on the existence of gene drive transgenes in nature, rendering them essentially biodegradable. This article is part of the theme issue ‘Novel control strategies for mosquito-borne diseases'.
Collapse
Affiliation(s)
- Josef Zapletal
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Neda Najmitabrizi
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Madhav Erraguntla
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Mark A Lawley
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Kevin M Myles
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX 77843, USA
| | - Zach N Adelman
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
47
|
Navarro-Payá D, Flis I, Anderson MAE, Hawes P, Li M, Akbari OS, Basu S, Alphey L. Targeting female flight for genetic control of mosquitoes. PLoS Negl Trop Dis 2020; 14:e0008876. [PMID: 33270627 PMCID: PMC7714197 DOI: 10.1371/journal.pntd.0008876] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/12/2020] [Indexed: 01/04/2023] Open
Abstract
Aedes aegypti Act4 is a paralog of the Drosophila melanogaster indirect flight muscle actin gene Act88F. Act88F has been shown to be haploinsufficient for flight in both males and females (amorphic mutants are dominant). Whereas Act88F is expressed in indirect flight muscles of both males and females, expression of Act4 is substantially female-specific. We therefore used CRISPR/Cas9 and homology directed repair to examine the phenotype of Act4 mutants in two Culicine mosquitoes, Aedes aegypti and Culex quinquefasciatus. A screen for dominant female-flightless mutants in Cx. quinquefasciatus identified one such mutant associated with a six base pair deletion in the CxAct4 coding region. A similar screen in Ae. aegypti identified no dominant mutants. Disruption of the AeAct4 gene by homology-dependent insertion of a fluorescent protein marker cassette gave a recessive female-flightless phenotype in Ae. aegypti. Reproducing the six-base deletion from Cx. quinquefasciatus in Ae. aegypti using oligo-directed mutagenesis generated dominant female-flightless mutants and identified additional dominant female-flightless mutants with other in-frame insertions or deletions. Our data indicate that loss of function mutations in the AeAct4 gene are recessive but that short in-frame deletions produce dominant-negative versions of the AeAct4 protein that interfere with flight muscle function. This makes Act4 an interesting candidate for genetic control methods, particularly population-suppression gene drives targeting female viability/fertility.
Collapse
Affiliation(s)
| | - Ilona Flis
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
| | | | - Philippa Hawes
- Bioimaging, The Pirbright Institute, Pirbright, United Kingdom
| | - Ming Li
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, California, United States of America
| | - Omar S. Akbari
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, California, United States of America
| | - Sanjay Basu
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
| |
Collapse
|
48
|
O’Leary S, Adelman ZN. CRISPR/Cas9 knockout of female-biased genes AeAct-4 or myo-fem in Ae. aegypti results in a flightless phenotype in female, but not male mosquitoes. PLoS Negl Trop Dis 2020; 14:e0008971. [PMID: 33338046 PMCID: PMC7781531 DOI: 10.1371/journal.pntd.0008971] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/04/2021] [Accepted: 11/11/2020] [Indexed: 02/04/2023] Open
Abstract
Aedes aegypti is a vector of dengue, chikungunya, and Zika viruses. Current vector control strategies such as community engagement, source reduction, and insecticides have not been sufficient to prevent viral outbreaks. Thus, interest in novel strategies involving genetic engineering is growing. Female mosquitoes rely on flight to mate with males and obtain a bloodmeal from a host. We hypothesized that knockout of genes specifically expressed in female mosquitoes associated with the indirect flight muscles would result in a flightless female mosquito. Using CRISPR-Cas9 we generated loss-of-function mutations in several genes hypothesized to control flight in mosquitoes, including actin (AeAct-4) and myosin (myo-fem) genes expressed specifically in the female flight muscle. Genetic knockout of these genes resulted in 100% flightless females, with homozygous males able to fly, mate, and produce offspring, albeit at a reduced rate when compared to wild type males. Interestingly, we found that while AeAct-4 was haplosufficient, with most heterozygous individuals capable of flight, this was not the case for myo-fem, where about half of individuals carrying only one intact copy could not fly. These findings lay the groundwork for developing novel mechanisms of controlling Ae. aegypti populations, and our results suggest that this mechanism could be applicable to other vector species of mosquito.
Collapse
Affiliation(s)
- Sarah O’Leary
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America
| | - Zach N. Adelman
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
49
|
Edgington MP, Harvey-Samuel T, Alphey L. Split drive killer-rescue provides a novel threshold-dependent gene drive. Sci Rep 2020; 10:20520. [PMID: 33239631 PMCID: PMC7689494 DOI: 10.1038/s41598-020-77544-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
A wide range of gene drive mechanisms have been proposed that are predicted to increase in frequency within a population even when they are deleterious to individuals carrying them. This also allows associated desirable genetic material ("cargo genes") to increase in frequency. Gene drives have garnered much attention for their potential use against a range of globally important problems including vector borne disease, crop pests and invasive species. Here we propose a novel gene drive mechanism that could be engineered using a combination of toxin-antidote and CRISPR components, each of which are already being developed for other purposes. Population genetics mathematical models are developed here to demonstrate the threshold-dependent nature of the proposed system and its robustness to imperfect homing, incomplete penetrance of toxins and transgene fitness costs, each of which are of practical significance given that real-world components inevitably have such imperfections. We show that although end-joining repair mechanisms may cause the system to break down, under certain conditions, it should persist over time scales relevant for genetic control programs. The potential of such a system to provide localised population suppression via sex ratio distortion or female-specific lethality is also explored. Additionally, we investigate the effect on introduction thresholds of adding an extra CRISPR base element, showing that this may either increase or decrease dependent on parameter context.
Collapse
Affiliation(s)
| | - Tim Harvey-Samuel
- The Pirbright Institute, Ash Road, Woking, Surrey, Pirbright, GU24 0NF, UK
| | - Luke Alphey
- The Pirbright Institute, Ash Road, Woking, Surrey, Pirbright, GU24 0NF, UK
| |
Collapse
|
50
|
Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Bonsall MB, Mumford J, Wimmer EA, Devos Y, Paraskevopoulos K, Firbank LG. Adequacy and sufficiency evaluation of existing EFSA guidelines for the molecular characterisation, environmental risk assessment and post-market environmental monitoring of genetically modified insects containing engineered gene drives. EFSA J 2020; 18:e06297. [PMID: 33209154 PMCID: PMC7658669 DOI: 10.2903/j.efsa.2020.6297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advances in molecular and synthetic biology are enabling the engineering of gene drives in insects for disease vector/pest control. Engineered gene drives (that bias their own inheritance) can be designed either to suppress interbreeding target populations or modify them with a new genotype. Depending on the engineered gene drive system, theoretically, a genetic modification of interest could spread through target populations and persist indefinitely, or be restricted in its spread or persistence. While research on engineered gene drives and their applications in insects is advancing at a fast pace, it will take several years for technological developments to move to practical applications for deliberate release into the environment. Some gene drive modified insects (GDMIs) have been tested experimentally in the laboratory, but none has been assessed in small-scale confined field trials or in open release trials as yet. There is concern that the deliberate release of GDMIs in the environment may have possible irreversible and unintended consequences. As a proactive measure, the European Food Safety Authority (EFSA) has been requested by the European Commission to review whether its previously published guidelines for the risk assessment of genetically modified animals (EFSA, 2012 and 2013), including insects (GMIs), are adequate and sufficient for GDMIs, primarily disease vectors, agricultural pests and invasive species, for deliberate release into the environment. Under this mandate, EFSA was not requested to develop risk assessment guidelines for GDMIs. In this Scientific Opinion, the Panel on Genetically Modified Organisms (GMO) concludes that EFSA's guidelines are adequate, but insufficient for the molecular characterisation (MC), environmental risk assessment (ERA) and post-market environmental monitoring (PMEM) of GDMIs. While the MC,ERA and PMEM of GDMIs can build on the existing risk assessment framework for GMIs that do not contain engineered gene drives, there are specific areas where further guidance is needed for GDMIs.
Collapse
|