1
|
Ridgway H, Orbell JD, Matsoukas MT, Kelaidonis K, Moore GJ, Tsiodras S, Gorgoulis VG, Chasapis CT, Apostolopoulos V, Matsoukas JM. W254 in furin functions as a molecular gate promoting anti-viral drug binding: Elucidation of putative drug tunneling and docking by non-equilibrium molecular dynamics. Comput Struct Biotechnol J 2023; 21:4589-4612. [PMID: 37817778 PMCID: PMC10561063 DOI: 10.1016/j.csbj.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023] Open
Abstract
Furins are serine endoproteases that process precursor proteins into their biologically active forms, and they play essential roles in normal metabolism and disease presentation, including promoting expression of bacterial virulence factors and viral pathogenesis. Thus, furins represent vital targets for development of antimicrobial and antiviral therapeutics. Recent experimental evidence indicated that dichlorophenyl (DCP)-pyridine "BOS" drugs (e.g., BOS-318) competitively inhibit human furin by an induced-fit mechanism in which tryptophan W254 in the furin catalytic cleft (FCC) functions as a molecular gate, rotating nearly 180o through a steep energy barrier about its chi-1 dihedral to an "open" orientation, exposing a buried (i.e., cryptic) hydrophobic pocket 1. Once exposed, the non-polar DCP group of BOS-318, and similar halo-phenyl groups of analogs, enter the cryptic pocket, stabilizing drug binding. Here, we demonstrate flexible-receptor docking of BOS-318 (and various analogs) was unable to emulate the induced-fit motif, even when tryptophan was replaced with less bulky phenylalanine or glycine. While either substitution allowed access to the hydrophobic pocket for most ligands tested, optimal binding was observed only for W254, inferring a stabilizing effect of the indole sidechain. Furthermore, non-equilibrium steered molecular dynamics (sMD) in which the bound drugs (or their fragments) were extracted from the FCC did not cause closure of the open W254 gate, consistent with the thermodynamic stability of the open or closed W254 orientations. Finally, interactive molecular dynamics (iMD) revealed two putative conduits of drug entry and binding into the FCC, each coupled with W254 dihedral rotation and opening of the cryptic pocket. The iMD simulations further revealed ligand entry and binding in the FCC is likely driven in part by energy fluxes stemming from disruption and re-formation of ligand and protein solvation shells during drug migration from the solution phase into the FCC.
Collapse
Affiliation(s)
- Harry Ridgway
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia
- AquaMem Consultants, Rodeo, NM 88056, USA
| | - John D. Orbell
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia
- College of Sport, Health & Engineering, Victoria University, Melbourne, VIC 8001, Australia
| | | | | | - Graham J. Moore
- Pepmetics Inc., 772 Murphy Place, Victoria, BC V8Y 3H4, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sotiris Tsiodras
- Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vasilis G. Gorgoulis
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, GR-11527 Athens, Greece
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, M20 4GJ Manchester, UK
- Biomedical Research Foundation, Academy of Athens, GR-11527 Athens, Greece
- Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Surrey, UK
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne 3030, VIC, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne 3021, VIC, Australia
| | - John M. Matsoukas
- NewDrug/NeoFar PC, Patras Science Park, Patras 26504, Greece
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne 3030, VIC, Australia
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
2
|
Zhovmer AS, Chandler M, Manning A, Afonin KA, Tabdanov ED. Programmable DNA-augmented hydrogels for controlled activation of human lymphocytes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102442. [PMID: 34284132 DOI: 10.1016/j.nano.2021.102442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/25/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022]
Abstract
Contractile forces within the planar interface between T cell and antigen-presenting surface mechanically stimulate T cell receptors (TCR) in the mature immune synapses. However, the origin of mechanical stimulation during the initial, i.e., presynaptic, microvilli-based TCR activation in the course of immune surveillance remains unknown and new tools to help address this problem are needed. In this work, we develop nucleic acid nanoassembly (NAN)-based technology for functionalization of hydrogels using isothermal toehold-mediated reassociation of RNA/DNA heteroduplexes. Resulting platform allows for regulation with NAN linkers of 3D force momentum along the TCR mechanical axis, whereas hydrogels contribute to modulation of 2D shear modulus. By utilizing different lengths of NAN linkers conjugated to polyacrylamide gels of different shear moduli, we demonstrate an efficient capture of human T lymphocytes and tunable activation of TCR, as confirmed by T-cell spreading and pY foci.
Collapse
Affiliation(s)
- Alexander S Zhovmer
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| | - Morgan Chandler
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Alexis Manning
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - Erdem D Tabdanov
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
3
|
Feng Y, Reinherz EL, Lang MJ. αβ T Cell Receptor Mechanosensing Forces out Serial Engagement. Trends Immunol 2018; 39:596-609. [PMID: 30060805 PMCID: PMC6154790 DOI: 10.1016/j.it.2018.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/15/2018] [Accepted: 05/31/2018] [Indexed: 11/08/2022]
Abstract
T lymphocytes use αβ T cell receptors (TCRs) to recognize
sparse antigenic peptides bound to MHC molecules (pMHCs) arrayed on
antigen-presenting cells (APCs). Contrary to conventional receptor–ligand
associations exemplified by antigen-antibody interactions, forces play a crucial
role in nonequilibrium mechanosensor-based T cell activation. Both T cell
motility and local cytoskeleton machinery exert forces (i.e., generate loads) on
TCR–pMHC bonds. We review biological features of the load-dependent
activation process as revealed by optical tweezers single molecule/single cell
and other biophysical measurements. The findings link pMHC-triggered TCRs to
single cytoskeletal motors; define the importance of energized anisotropic
(i.e., force direction dependent) activation; and characterize immunological
synapse formation as digital, revealing no serial requirement. The emerging
picture suggests new approaches for the monitoring and design of cytotoxic T
lymphocyte (CTL)-based immunotherapy.
Collapse
Affiliation(s)
- Yinnian Feng
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Ellis L Reinherz
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37235, USA.
| |
Collapse
|