1
|
Landrum JT, Mendez V, Cao Y, Gomez R, Neuringer M. Analysis of macular carotenoids in the developing macaque retina: The timeline of macular pigment development. Methods Enzymol 2022; 674:215-253. [PMID: 36008008 DOI: 10.1016/bs.mie.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the mature retina, the components of the macular pigment, lutein (L), R,R-zeaxanthin (RRZ), R,S-zeaxanthin (RSZ, meso-zeaxanthin) are most concentrated in the central macula. L and RRZ are of dietary origin but RSZ is produced in situ from L. The relative proportions of L and Z isomers vary across the retina with eccentricity in the adult retina. Early reports have shown that during development, the proportions of L and Z isomers undergo changes as the total pigment levels increase. The methods described here demonstrate the unique utility of chiral phase HPLC to measure the amounts of L, RRZ, and RSZ, discriminating between the two zeaxanthin stereoisomers. In three concentric retinal sections of macaque retinas chiral phase HPLC has been employed to document the developmental changes in the distribution of each L, RSZ, and RRZ during the period just prior to full term gestation through 19 months after birth. The net rate of accumulation of carotenoids within the central retina during the first 20 months is quasi-linear and fit by a linear regression. During development, the rate of transport of L (0.12 (±0.033)ngmm-2mo-1 (SE)) into the central 2mm of the retina is double that of RRZ (0.062 (±0.02)ngmm-2mo-1 (SE)). The rate of accumulation of RSZ (0.06 (±0.01)ngmm-2mo-1 (SE)) is comparable to that of RRZ. In the peripheral retina, the rates of accumulation of L and RRZ are not correlated with increasing age, whereas accumulation of RSZ does correlate with age. The changing proportions of L to Z isomers in the central retina during development are explained by the rates for carotenoid accumulation within the central retina. At birth, the macular pigment in the central retina is dominated by L and RRZ, 0.35±0.11 and 0.21±0.054ngmm-2. In the central retina, RSZ was rarely detected in the youngest tissues analyzed. It can be estimated to represent 6% of the total macular pigment (0.033±0.11ngmm-2) at birth based on extrapolation from measurements in the peripheral retina and the ratio of L/(RRZ+RSZ) is ≈1.5. At maturity, the concentrations for L, RRZ, and RSZ in the central macaque retina are estimated to be 1.7, 1.8 and 1.08ngmm-2, with L/(RRZ+RSZ) being 0.6.
Collapse
Affiliation(s)
- John T Landrum
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States.
| | - Vanesa Mendez
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Yisi Cao
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Ramon Gomez
- Department of Statistics, Florida International University, Miami, FL, United States
| | - Martha Neuringer
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| |
Collapse
|
2
|
Sajovic J, Meglič A, Glavač D, Markelj Š, Hawlina M, Fakin A. The Role of Vitamin A in Retinal Diseases. Int J Mol Sci 2022; 23:1014. [PMID: 35162940 PMCID: PMC8835581 DOI: 10.3390/ijms23031014] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
Vitamin A is an essential fat-soluble vitamin that occurs in various chemical forms. It is essential for several physiological processes. Either hyper- or hypovitaminosis can be harmful. One of the most important vitamin A functions is its involvement in visual phototransduction, where it serves as the crucial part of photopigment, the first molecule in the process of transforming photons of light into electrical signals. In this process, large quantities of vitamin A in the form of 11-cis-retinal are being isomerized to all-trans-retinal and then quickly recycled back to 11-cis-retinal. Complex machinery of transporters and enzymes is involved in this process (i.e., the visual cycle). Any fault in the machinery may not only reduce the efficiency of visual detection but also cause the accumulation of toxic chemicals in the retina. This review provides a comprehensive overview of diseases that are directly or indirectly connected with vitamin A pathways in the retina. It includes the pathophysiological background and clinical presentation of each disease and summarizes the already existing therapeutic and prospective interventions.
Collapse
Affiliation(s)
- Jana Sajovic
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Andrej Meglič
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Damjan Glavač
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Špela Markelj
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Marko Hawlina
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Ana Fakin
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Jung H, Liu J, Liu T, George A, Smelkinson MG, Cohen S, Sharma R, Schwartz O, Maminishkis A, Bharti K, Cukras C, Huryn LA, Brooks BP, Fariss R, Tam J. Longitudinal adaptive optics fluorescence microscopy reveals cellular mosaicism in patients. JCI Insight 2019; 4:124904. [PMID: 30895942 DOI: 10.1172/jci.insight.124904] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/12/2019] [Indexed: 12/22/2022] Open
Abstract
The heterogeneity of individual cells in a tissue has been well characterized, largely using ex vivo approaches that do not permit longitudinal assessments of the same tissue over long periods of time. We demonstrate a potentially novel application of adaptive optics fluorescence microscopy to visualize and track the in situ mosaicism of retinal pigment epithelial (RPE) cells directly in the human eye. After a short, dynamic period during which RPE cells take up i.v.-administered indocyanine green (ICG) dye, we observed a remarkably stable heterogeneity in the fluorescent pattern that gradually disappeared over a period of days. This pattern could be robustly reproduced with a new injection and follow-up imaging in the same eye out to at least 12 months, which enabled longitudinal tracking of RPE cells. Investigation of ICG uptake in primary human RPE cells and in a mouse model of ICG uptake alongside human imaging corroborated our findings that the observed mosaicism is an intrinsic property of the RPE tissue. We demonstrate a potentially novel application of fluorescence microscopy to detect subclinical changes to the RPE, a technical advance that has direct implications for improving our understanding of diseases such as oculocutaneous albinism, late-onset retinal degeneration, and Bietti crystalline dystrophy.
Collapse
Affiliation(s)
- HaeWon Jung
- National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Jianfei Liu
- National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Tao Liu
- National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Aman George
- National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Margery G Smelkinson
- National Institute of Allergy and Infectious Disease, Research Technologies Branch, NIH, Bethesda, Maryland, USA
| | - Sarah Cohen
- University of North Carolina - Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ruchi Sharma
- National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Owen Schwartz
- National Institute of Allergy and Infectious Disease, Research Technologies Branch, NIH, Bethesda, Maryland, USA
| | | | - Kapil Bharti
- National Eye Institute, NIH, Bethesda, Maryland, USA
| | | | | | | | - Robert Fariss
- National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Johnny Tam
- National Eye Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Curcio CA. Antecedents of Soft Drusen, the Specific Deposits of Age-Related Macular Degeneration, in the Biology of Human Macula. Invest Ophthalmol Vis Sci 2018; 59:AMD182-AMD194. [PMID: 30357337 PMCID: PMC6733529 DOI: 10.1167/iovs.18-24883] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AMD pathobiology was irreversibly changed by the recent discovery of extracellular cholesterol-containing deposits in the subretinal space, between the photoreceptors and retinal pigment epithelium (RPE), called subretinal drusenoid deposits (SDDs). SDDs strikingly mirror the topography of rod photoreceptors in human macula, raising the question of whether an equivalent process results in a deposition related to foveal cones. Herein we propose that AMD's pathognomonic lesion-soft drusen and basal linear deposit (BLinD, same material, diffusely distributed)-is the leading candidate. Epidemiologic, clinical, and histologic data suggest that these deposits are most abundant in the central macula, under the fovea. Strong evidence presented in a companion article supports the idea that the dominant ultrastructural component is large apolipoprotein B,E-containing lipoproteins, constitutively secreted by RPE. Lipoprotein fatty acids are dominated by linoleate (implicating diet) rather than docosahexaenoate (implicating photoreceptors); we seek within the retina cellular relationships and dietary drivers to explain soft druse topography. The delivery of xanthophyll pigments to highly evolved and numerous Müller cells in the human fovea, through RPE, is one strong candidate, because Müller cells are the main reservoir of these pigments, which replenish from diet. We propose that the evolution of neuroglial relations and xanthophyll delivery that underlie exquisite human foveal vision came with a price, that is, soft drusen and sequela, long after our reproductive years.
Collapse
Affiliation(s)
- Christine A Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|