1
|
Eatoo MA, Wehbe N, Kharbatia N, Guo X, Mishra H. Why do some metal ions spontaneously form nanoparticles in water microdroplets? Disentangling the contributions of the air-water interface and bulk redox chemistry. Chem Sci 2025; 16:1115-1125. [PMID: 39620073 PMCID: PMC11603139 DOI: 10.1039/d4sc03217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025] Open
Abstract
Water microdroplets containing 100 μM HAuCl4 have been shown to reduce gold ions into gold nanoparticles spontaneously. It has been suggested that this chemical transformation takes place exclusively at the air-water interface of microdroplets, albeit without mechanistic insights. We compared the fate of several metallic salts in water, methanol, ethanol, and acetonitrile in the bulk phase and microdroplet geometry (sprays). Experiments revealed that when HAuCl4 (or PtCl4) is added to bulk water (or methanol or ethanol), metal NPs appear spontaneously. Over time, the nanoparticles grow, evidenced by the bulk solutions' changing colors. If the bulk solution is sprayed pneumatically and microdroplets are collected, the NP size distribution is not significantly enhanced. We find that the reduction of metal ions is accompanied by the oxidation of water (or alcohols); however, these redox reactions are minimal in acetonitrile. This establishes that the spontaneous reduction of metal ions is (i) a bulk phase phenomenon in water and several non-aqueous solutions, (ii) minimally affected by the air-water interface or the microdroplet geometry, and (iii) is not limited to Au3+ ions and can be explained via the electrochemical series. These results advance our understanding of aquatic chemistry and liquids in general and should be relevant in soil chemistry, biogeochemistry, electrochemistry, and green chemistry.
Collapse
Affiliation(s)
- Muzzamil Ahmad Eatoo
- Environmental Science and Engineering (EnSE) Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
- Center for Desert Agriculture (CDA), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
- Interfacial Lab (iLab), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Nimer Wehbe
- Core Labs, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Najeh Kharbatia
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Xianrong Guo
- Core Labs, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Himanshu Mishra
- Environmental Science and Engineering (EnSE) Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
- Center for Desert Agriculture (CDA), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
- Interfacial Lab (iLab), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
2
|
Martins-Costa MTC, Ruiz-López MF. The Effect of Electric Fields on Oxidization Processes at the Air-Water Interface. Angew Chem Int Ed Engl 2024:e202418593. [PMID: 39601791 DOI: 10.1002/anie.202418593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/04/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
At the air-water interface, many reactions are accelerated, sometimes by several orders of magnitude. This phenomenon has proved to be particularly important in water microdroplets, where the spontaneous oxidation of many species stable in bulk has been experimentally demonstrated. Different theories have been proposed to explain this finding, but it is currently believed that the role of interfacial electric fields is key. In this work, we have carried out a quantum chemistry study aimed at shedding some light on this question. We have studied two prototypical processes in which a hydroxide anion transfers its excess electron to either the water environment or a dioxygen molecule. To model the interface, we use a cluster of 21 water molecules immersed in an electric field, and we examine the energetics of the studied reactions as a function of field magnitude. Our results reveal that electric fields close to those estimated for the neat air-water interface (∼0.15 V ⋅ Å-1) have a moderate effect on the reaction energetics and that much stronger fields (>1 V ⋅ Å-1) are required to get spontaneous electron transfer. Therefore, the study suggests that additional factors such as an excess charge in microdroplets need to be considered for explaining the experimental observations.
Collapse
Affiliation(s)
- Marilia T C Martins-Costa
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506, Vandoeuvre-les-Nancy, France
| | - Manuel F Ruiz-López
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506, Vandoeuvre-les-Nancy, France
| |
Collapse
|
3
|
Dai C, Huang C, Ye M, Liu J, Cheng H. Mild Catalyst- and Additive-Free Three-Component Synthesis of 3-Thioisoindolinones and Tricyclic γ-Lactams Accelerated by Microdroplet Chemistry. J Org Chem 2024; 89:14818-14830. [PMID: 39361508 DOI: 10.1021/acs.joc.4c01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Isoindolinones, bearing both γ-lactam and aromatic rings, draw extensive interest in organic, pharmaceutical, and medicinal communities as they are important structural motifs in many natural products, bioactive compounds, and pharmaceuticals. As the main contributor to isoindolinone synthesis, metal catalysis is associated with many drawbacks including essential use of toxic/precious metals and excessive additives, high reaction temperatures, specially predesigned starting materials, and long reaction times (typically 8-30 h). In this study, we developed a catalyst- and additive-free, minute-scale, and high-yield microdroplet method for tricomponent isoindolinone synthesis at mild temperatures. By taking advantage of the astonishing reaction acceleration (1.9 × 102-9.4 × 103 acceleration factor range with a typical rate acceleration factor of 1.51 × 103 for the prototype reaction as the ratio of rate constants by microdroplet and bulk phase), 12 3-thioisoindolinones and two tricyclic γ-lactams were synthesized using various 2-acylbenzaldehydes, amines, and thiols with satisfactory yields ranging from 85% to 97% as well as a scale-up rate of 3.49 g h-1. Because of the advantages (no use of any catalysts or additives, mild temperature, rapid and satisfactory conversion, broad substrate scope, and gram scalability), the microdroplet method represents an attractive alternative to metal catalysis for laboratory synthesis of isoindolinones and their derivatives.
Collapse
Affiliation(s)
- Chengbiao Dai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| | - Chengkai Huang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| | - Meiying Ye
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| | - Jinhua Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| | - Heyong Cheng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| |
Collapse
|
4
|
Lingam M, Nichols R, Balbi A. A Bayesian Analysis of the Probability of the Origin of Life Per Site Conducive to Abiogenesis. ASTROBIOLOGY 2024; 24:813-823. [PMID: 39159441 DOI: 10.1089/ast.2024.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The emergence of life from nonlife, or abiogenesis, remains a fundamental question in scientific inquiry. In this article, we investigate the probability of the origin of life (per conducive site) by leveraging insights from Earth's environments. If life originated endogenously on Earth, its existence is indeed endowed with informative value, although the interpretation of the attendant significance hinges critically upon prior assumptions. By adopting a Bayesian framework, for an agnostic prior, we establish a direct connection between the number of potential locations for abiogenesis on Earth and the probability of life's emergence per site. Our findings suggest that constraints on the availability of suitable environments for the origin(s) of life on Earth may offer valuable insights into the probability of abiogenesis and the frequency of life in the universe.
Collapse
Affiliation(s)
- Manasvi Lingam
- Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida, USA
- Department of Physics, The University of Texas at Austin, Austin, Texas, USA
| | - Ruth Nichols
- Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Amedeo Balbi
- Dipartimento di Fisica, Università di Roma "Tor Vergata," Roma, Italy
| |
Collapse
|
5
|
Judd KD, Parsons SW, Eremin DB, Fokin VV, Dawlaty JM. Visualizing partial solvation at the air-water interface. Chem Sci 2024; 15:8346-8354. [PMID: 38846382 PMCID: PMC11151832 DOI: 10.1039/d4sc01311e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/08/2024] [Indexed: 06/09/2024] Open
Abstract
Despite significant research, the mechanistic nuances of unusual reactivity at the air-water interface, especially in microdroplets, remain elusive. The likely contributors include electric fields and partial solvation at the interface. To reveal these intricacies, we measure the frequency shift of a well-defined azide vibrational probe at the air-water interface, while independently controlling the surface charge density by introducing surfactants. First, we establish the response of the probe in the bulk and demonstrate that it is sensitive to both electrostatics and hydrogen bonding. From interfacial spectroscopy we infer that the azide is neither fully hydrated nor in a completely aprotic dielectric environment; instead, it experiences an intermediate environment. In the presence of hydrogen bond-accepting sulphate surfactants, competition arises for interfacial water with the azide. However, the dominant influence stems from the electrostatic effect of their negative heads, resulting in a significant blue-shift. Conversely, for the positive ammonium surfactants, our data indicate a balanced interplay between electrostatics and hydrogen bonding, leading to a minimal shift in the probe. Our results demonstrate partial solvation at the interface and highlights that both hydrogen bonding and electrostatics may assist or oppose each other in polarizing a reactant, intermediate, or product at the interface, which is important for understanding and tuning interfacial reactivity.
Collapse
Affiliation(s)
- Kenneth D Judd
- Department of Chemistry, The University of Southern California Los Angeles CA 90089 USA
| | - Sean W Parsons
- Department of Chemistry, The University of Southern California Los Angeles CA 90089 USA
| | - Dmitry B Eremin
- Department of Chemistry, The University of Southern California Los Angeles CA 90089 USA
| | - Valery V Fokin
- Department of Chemistry, The University of Southern California Los Angeles CA 90089 USA
| | - Jahan M Dawlaty
- Department of Chemistry, The University of Southern California Los Angeles CA 90089 USA
| |
Collapse
|
6
|
Wilson KR, Prophet AM. Chemical Kinetics in Microdroplets. Annu Rev Phys Chem 2024; 75:185-208. [PMID: 38382571 DOI: 10.1146/annurev-physchem-052623-120718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Micrometer-sized compartments play significant roles in driving heterogeneous transformations within atmospheric and biochemical systems as well as providing vehicles for drug delivery and novel reaction environments for the synthesis of industrial chemicals. Many reports now indicate that reaction kinetics are accelerated under microconfinement, for example, in sprays, thin films, droplets, aerosols, and emulsions. These observations are dramatic, posing a challenge to our understanding of chemical reaction mechanisms with potentially significant practical consequences for predicting the complex chemistry in natural systems. Here we introduce the idea of kinetic confinement, which is intended to provide a conceptual backdrop for understanding when and why microdroplet reaction kinetics differ from their macroscale analogs.
Collapse
Affiliation(s)
- Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA;
| | - Alexander M Prophet
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA;
- Department of Chemistry, University of California, Berkeley, California, USA;
| |
Collapse
|
7
|
Devlin SW, Bernal F, Riffe EJ, Wilson KR, Saykally RJ. Spiers Memorial Lecture: Water at interfaces. Faraday Discuss 2024; 249:9-37. [PMID: 37795954 DOI: 10.1039/d3fd00147d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
In this article we discuss current issues in the context of the four chosen subtopics for the meeting: dynamics and nano-rheology of interfacial water, electrified/charged aqueous interfaces, ice interfaces, and soft matter/water interfaces. We emphasize current advances in both theory and experiment, as well as important practical manifestations and areas of unresolved controversy.
Collapse
Affiliation(s)
- Shane W Devlin
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Franky Bernal
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Erika J Riffe
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Richard J Saykally
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| |
Collapse
|
8
|
Ge Q, Liu Y, You W, Wang W, Li K, Ruan X, Xie L, Wang T, Zhang L. Prebiotic synthesis of mineral-bearing microdroplet from inorganic carbon photoreduction at air-water interface. PNAS NEXUS 2023; 2:pgad389. [PMID: 38034096 PMCID: PMC10682977 DOI: 10.1093/pnasnexus/pgad389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
The origin of life on Earth is an enigmatic and intricate conundrum that has yet to be comprehensively resolved despite recent significant developments within the discipline of archaeology and geology. Chemically, metal-sulfide minerals are speculated to serve as an important medium for giving birth in early life, while yet so far direct evidence to support the hypothesis for the highly efficient conversion of inorganic carbon into praxiological biomolecules remains scarce. In this work, we provide an initial indication that sphalerite, employed as a typical mineral, shows its enormous capability for promoting the conversion of inorganic carbon into elementary biomolecule formic acid (HCOOH) in airborne mineral-bearing aerosol microdroplet, which is over two orders of magnitude higher than that of the corresponding conventional bulk-like aqueous phase medium in the environment (e.g. river, lake, sea, etc.). This significant enhancement was further validated by a wide range of minerals and clays, including CuS, NiS, CoS, CdS, MnS, elemental sulfur, Arizona Test Dust, loess, nontronite, and montmorillonite. We reveal that the abundant interface of unique physical-chemical features instinct for aerosol or cloud microdroplets reduces the reaction energy barrier for the reaction, thus leading to extremely high HCOOH production (2.52 × 1014 kg year-1). This study unfolds unrecognized remarkable contributions of the considered scheme in the accumulation of prebiotic biomolecules in the ancient period of the Earth.
Collapse
Affiliation(s)
- Qiuyue Ge
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Yangyang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Wenbo You
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Wei Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Kejian Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Xuejun Ruan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Lifang Xie
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Tao Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|
9
|
Harold SE, Warf SL, Shields GC. Prebiotic dimer and trimer peptide formation in gas-phase atmospheric nanoclusters of water. Phys Chem Chem Phys 2023; 25:28517-28532. [PMID: 37847315 DOI: 10.1039/d3cp02915h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Insight into the origin of prebiotic molecules is key to our understanding of how living systems evolved into the complex network of biological processes on Earth. By modelling diglycine and triglycine peptide formation in the prebiotic atmosphere, we provide a plausible pathway for peptide growth. By examining different transition states (TSs), we conclude that the formation of diglycine and triglycine in atmospheric nanoclusters of water in the prebiotic atmosphere kinetically favors peptide growth by an N-to-C synthesis of glycines through a trans conformation. Addition of water stabilizes the TS structures and lowers the Gibbs free activation energies. At temperatures that model the prebiotic atmosphere, the free energies of activation with a six water nanocluster as part of the TS are predicted to be 16 kcal mol-1 relative to the prereactive complex. Examination of the trans vs. cis six water transition states reveals that a homodromic water network that maximizes the acceptor/donor nature of the six waters is responsible for enhanced kinetic favorability of the trans N-to-C pathway. Compared to the non-hydrated trans TS, the trans six-water TS accelerates the reaction of diglycine and glycine to form triglycine by 13 orders of magnitude at 217 K. Nature uses the trans N-to-C pathway to synthesize proteins in the ribosome, and we note the similarities in hydrogen bond stabilization between the transition state for peptide synthesis in the ribosome and the transition states formed in nanoclusters of water in the same pathway. These results support the hypothesis that small oligomers formed in the prebiotic atmosphere and rained onto earth's surface.
Collapse
Affiliation(s)
- Shannon E Harold
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA.
| | - Skyler L Warf
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA.
| | - George C Shields
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA.
| |
Collapse
|
10
|
Bready CJ, Fowler VR, Juechter LA, Kurfman LA, Mazaleski GE, Shields GC. The driving effects of common atmospheric molecules for formation of prenucleation clusters: the case of sulfuric acid, formic acid, nitric acid, ammonia, and dimethyl amine. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2022; 2:1469-1486. [PMID: 36561556 PMCID: PMC9648633 DOI: 10.1039/d2ea00087c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022]
Abstract
How secondary aerosols form is critical as aerosols' impact on Earth's climate is one of the main sources of uncertainty for understanding global warming. The beginning stages for formation of prenucleation complexes, that lead to larger aerosols, are difficult to decipher experimentally. We present a computational chemistry study of the interactions between three different acid molecules and two different bases. By combining a comprehensive search routine covering many thousands of configurations at the semiempirical level with high level quantum chemical calculations of approximately 1000 clusters for every possible combination of clusters containing a sulfuric acid molecule, a formic acid molecule, a nitric acid molecule, an ammonia molecule, a dimethylamine molecule, and 0-5 water molecules, we have completed an exhaustive search of the DLPNO-CCSD(T)/CBS//ωB97X-D/6-31++G** Gibbs free energy surface for this system. We find that the detailed geometries of each minimum free energy cluster are often more important than traditional acid or base strength. Addition of a water molecule to a dry cluster can enhance stabilization, and we find that the (SA)(NA)(A)(DMA)(W) cluster has special stability. Equilibrium calculations of SA, FA, NA, A, DMA, and water using our quantum chemical ΔG° values for cluster formation and realistic estimates of the concentrations of these monomers in the atmosphere reveals that nitric acid can drive early stages of particle formation just as efficiently as sulfuric acid. Our results lead us to believe that particle formation in the atmosphere results from the combination of many different molecules that are able to form highly stable complexes with acid molecules such as SA, NA, and FA.
Collapse
Affiliation(s)
- Conor J Bready
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - Vance R Fowler
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - Leah A Juechter
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - Luke A Kurfman
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - Grace E Mazaleski
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - George C Shields
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| |
Collapse
|
11
|
Deal AM, Vaida V. Infrared Reflection–Absorption Spectroscopy of α-Hydroxyacids at the Water–Air Interface. J Phys Chem A 2022; 126:8280-8294. [DOI: 10.1021/acs.jpca.2c04462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexandra M. Deal
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Veronica Vaida
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
12
|
Holden DT, Morato NM, Cooks RG. Aqueous microdroplets enable abiotic synthesis and chain extension of unique peptide isomers from free amino acids. Proc Natl Acad Sci U S A 2022; 119:e2212642119. [PMID: 36191178 PMCID: PMC9586328 DOI: 10.1073/pnas.2212642119] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/27/2022] [Indexed: 12/13/2022] Open
Abstract
Amide bond formation, the essential condensation reaction underlying peptide synthesis, is hindered in aqueous systems by the thermodynamic constraints associated with dehydration. This represents a key difficulty for the widely held view that prebiotic chemical evolution leading to the formation of the first biomolecules occurred in an oceanic environment. Recent evidence for the acceleration of chemical reactions at droplet interfaces led us to explore aqueous amino acid droplet chemistry. We report the formation of dipeptide isomer ions from free glycine or L-alanine at the air-water interface of aqueous microdroplets emanating from a single spray source (with or without applied potential) during their flight toward the inlet of a mass spectrometer. The proposed isomeric dipeptide ion is an oxazolidinone that takes fully covalent and ion-neutral complex forms. This structure is consistent with observed fragmentation patterns and its conversion to authentic dipeptide ions upon gentle collisions and for its formation from authentic dipeptides at ultra-low concentrations. It also rationalizes the results of droplet fusion experiments that show that the dipeptide isomer facilitates additional amide bond formation events, yielding authentic tri- through hexapeptides. We propose that the interface of aqueous microdroplets serves as a drying surface that shifts the equilibrium between free amino acids in favor of dehydration via stabilization of the dipeptide isomers. These findings offer a possible solution to the water paradox of biopolymer synthesis in prebiotic chemistry.
Collapse
Affiliation(s)
- Dylan T. Holden
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| | - Nicolás M. Morato
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| | - R. Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
13
|
Ng LS, Chong C, Lok XY, Pereira V, Ang ZZ, Han X, Li H, Lee HK. Dynamic Liquid-Liquid Interface: Applying a Spinning Interfacial Microreactor to Actively Converge Biphasic Reactants for the Enhanced Interfacial Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45005-45012. [PMID: 36162132 DOI: 10.1021/acsami.2c12015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A liquid-liquid interfacial reaction combines reactants with large polarity disparity to achieve greener and more efficient chemistry that is otherwise challenging in traditional single-phase systems. However, current interfacial approaches suffer from the need for a large amount of solvent/reactant/emulsifier and poor reaction performance arising from intrinsic thermodynamic constraints. Herein, we achieve an efficient interfacial reaction by creating a magnetic-responsive, microscale liquid-liquid interface and exploit its dynamic spinning motion to generate vortex-like hydrodynamic flows that rapidly converge biphasic reactants to the point-of-reaction. Notably, the spinning of this functional interface at 800 rpm boosts the reaction efficiency and its apparent equilibrium constant by > 500-fold and 105-fold, respectively, higher than conventional methods that utilize bulk and/or non-dynamic liquid interfaces, even with external mechanical stirring. By driving reaction equilibrium toward favorable product formation, our unique design offers enormous opportunities to realize efficient multiphasic reactions crucial for diverse applications in chemical synthesis, environmental remediation, and even molecular recycling.
Collapse
Affiliation(s)
- Li Shiuan Ng
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Carice Chong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Xin Yi Lok
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Veronica Pereira
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Zhi Zhong Ang
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Xuemei Han
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Haitao Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Hiang Kwee Lee
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| |
Collapse
|
14
|
He J, Zhang H, Wang W, Ma Y, Yang M, He Y, Liu Z, Yu K, Jiang J. Probing autoxidation of oleic acid at air-water interface: A neglected and significant pathway for secondary organic aerosols formation. ENVIRONMENTAL RESEARCH 2022; 212:113232. [PMID: 35398317 DOI: 10.1016/j.envres.2022.113232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/27/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Fatty acids have been proposed to be a potential source of precursors for SOAs, but the autoxidation process was neglected in the oxidation studies. Here, the autoxidation of oleic acid was explored using microdroplet mass spectrometry. Bulk solution, concentration and solvent composition experiments provided direct evidences for that the autoxidation occurred at or near the air-water interface. The kinetic data showed an acceleration at this interface and was comparable to ozonation, indicating that autoxidation is an important pathway for SOAs formation. In addition, intermediates/products were captured and identified using tandem mass spectrometry, spin-trapping and quenched agents. The autoxidation mechanism was divided into addition intermediates (AIs) and Criegee intermediates (CIs) pathways mediated by hydroxyl radicals (OH). The CI chemistry which is ubiquitous in gas phase was observed at the air-water interface, and this leaded to the mass/volume loss of aerosols. Inversely, the AI chemistry caused the increase of mass, density and hygroscopicity of aerosols. AI chemistry was dominated compared to CI chemistry, but varied by concerning aerosol sizes, ultraviolet light (UV) and charge. Moreover, the MS approach of selectively probing the interfacial substances at the scale of sub-seconds opens new opportunities to study heterogeneous chemistry in atmosphere.
Collapse
Affiliation(s)
- Jing He
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China.
| | - Wenxin Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Yingxue Ma
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Miao Yang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Yuwei He
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Zhuo Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Jie Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China.
| |
Collapse
|
15
|
Ju Y, Zhang H, Wang W, Liu Q, Yu K, Kan G, Liu L, Jiang J. Aqueous-Microdroplet-Driven Abiotic Synthesis of Ribonucleotides. J Phys Chem Lett 2022; 13:567-573. [PMID: 35014840 DOI: 10.1021/acs.jpclett.1c03486] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phosphorylation for ribonucleotide formation is a critical step in the origin of life but has had limited success due to the thermodynamic and kinetic constraints in aqueous media. Here, we report that the production of ribonucleotides from ribonucleosides in the presence of monopotassium phosphate (KH2PO4) spontaneously proceeded in aqueous microdroplets under ambient conditions and without using a catalyst. A full set of ribonucleotides including adenosine monophosphate (AMP), guanosine monophosphate (GMP), uridine monophosphate (UMP), and cytidine monophosphate (CMP) were generated on the scale of a few milliseconds. The aqueous microdroplets could transfer the ribonucleotides to oligoribonucleotides and showed mutual compatibility for individual phosphorylation. Conditions established the dependence of the conversion ratio on the droplet size and suggested that the condensation reactions occurred at or near the microdroplets' surface. This aqueous microdroplet approach also provides a route for elucidating phosphorylation chemistry in the prebiotic era.
Collapse
Affiliation(s)
- Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Wenxin Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Qianhui Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Lijuan Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| |
Collapse
|
16
|
Abstract
We use molecular dynamics simulations to study the thermodynamics and kinetics of alanine dipeptide isomerization at the air-water interface. Thermodynamically, we find an affinity of the dipeptide to the interface. This affinity arises from stabilizing intramolecular interactions that become unshielded as the dipeptide is desolvated. Kinetically, we consider the rate of transitions between the αL and β conformations of alanine dipeptide and evaluate it as a continuous function of the distance from the interface using a recent extension of transition path sampling, TPS+U. The rate of isomerization at the Gibbs dividing surface is suppressed relative to the bulk by a factor of 3. Examination of the ensemble of transition states elucidates the role of solvent degrees of freedom in mediating favorable intramolecular interactions along the reaction pathway of isomerization. Near the air-water interface, water is less effective at mediating these intramolecular interactions.
Collapse
Affiliation(s)
- Aditya N Singh
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David T Limmer
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Wang W, Qiao L, He J, Ju Y, Yu K, Kan G, Guo C, Zhang H, Jiang J. Water Microdroplets Allow Spontaneously Abiotic Production of Peptides. J Phys Chem Lett 2021; 12:5774-5780. [PMID: 34134488 DOI: 10.1021/acs.jpclett.1c01083] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The chemistry of abiotic synthesis of peptides in the context of their prebiotic origins is a continuing challenge that arises from thermodynamic and kinetic constraints in aqueous media. Here we reported a strategy of microdroplets' mass spectrometry for peptide bonds formed from pure amino acids or a mixture in the presence of phosphoric acids in aqueous microdroplets. In contrast to bulk experiments, the condensation reactions proceed spontaneously under ambient conditions. The microdroplet gave a negative free-energy change (ΔG ∼ -1.1 kcal/mol), and product yields of ∼75% were obtained at the scale of a few milliseconds. Experiments in which nebulization gas pressure and external charge were varied established dependence of peptide production on the droplet size that has a high surface-to-volume ratio. It is concluded that the condensation reactions occurred at or near the air-water interfaces of microdroplets. This aqueous microdroplets approach also provides a route for chemistry synthesis in the prebiotic era.
Collapse
Affiliation(s)
- Wenxin Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Lina Qiao
- Marine College, Shandong University (Weihai), Weihai, Shandong 264209, China
| | - Jing He
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Changlu Guo
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| |
Collapse
|
18
|
Abstract
Theoretical chemists have been actively engaged for some time in processes such as ozone photodissociation, overtone photodissociation in nitric acid, pernitric acid, sulphuric acid, clusters and in small organic acids. The last of these have shown very different behaviours in the gas phase, liquid phase and importantly at the air–water interface in aqueous aerosols. The founder of molecular dynamics, B J Alder, pointed out long ago that hydrodynamic behaviour emerged when the symmetry of a random, thermalised population of hard spheres—billiard balls—was broken by a flux of energetic molecules. Despite this, efforts over two centuries to solve turbulence by finding top-down solutions to the Navier–Stokes equation have failed. It is time for theoretical chemistry to try a bottom-up solution. Gibbs free energy that drives the circulation arises from the entropy difference between the incoming low-entropy beam of visible and ultraviolet photons and the outgoing higher-entropy flux of infrared photons over the whole 4π solid angle. The role of the most energetic molecules with the highest velocities will affect the rovibrational line shapes of water, carbon dioxide and ozone in the far wings, where there is the largest effect on radiative transfer and hence on calculations of atmospheric temperature. The atmospheric state is determined by the interaction of radiation, chemistry and fluid dynamics on the microscopic scale, with propagation through the mesoscale to the macroscale. It will take theoretical chemistry to simulate that accurately. A challenging programme of research for theoretical chemistry is proposed, involving ab initio simulation by molecular dynamics of an air volume, starting in the upper stratosphere. The aim is to obtain scaling exponents for turbulence, providing a physical method for upscaling in numerical models. Turbulence affects chemistry, radiation and fluid dynamics at a fundamental, molecular level and is thus of basic concern to theoretical chemistry as it applies to the atmosphere, which consists of molecules in motion.
Collapse
|
19
|
Li Y, Mehari TF, Wei Z, Liu Y, Cooks RG. Reaction acceleration at air-solution interfaces: Anisotropic rate constants for Katritzky transamination. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4585. [PMID: 32686310 DOI: 10.1002/jms.4585] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/22/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
To disentangle the factors controlling the rates of accelerated reactions in droplets, we used mass spectrometry to study the Katritzky transamination in levitated Leidenfrost droplets of different yet constant volumes over a range of concentrations while holding concentration constant by adding back the evaporated solvent. The set of concentration and droplet volume data indicates that the reaction rate in the surface region is much higher than that in the interior. These same effects of concentration and volume were also seen in bulk solutions. Three pyrylium reagents with different surface activity showed differences in transamination reactivity. The conclusion is drawn that reactions with surface-active reactants are subject to greater acceleration, as seen particularly at lower concentrations in systems of higher surface-to-volume ratios. These results highlight the key role that air-solution interfaces play in Katritzky reaction acceleration. They are also consistent with the view that reaction-increased rate constant is at least in part due to limited solvation of reagents at the interface.
Collapse
Affiliation(s)
- Yangjie Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Tsdale F Mehari
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Zhenwei Wei
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Yong Liu
- Department of Analytical Sciences, MRL, Merck & Co., Inc., Rahway, New Jersey, USA
| | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
20
|
Kappes KJ, Deal AM, Jespersen MF, Blair SL, Doussin JF, Cazaunau M, Pangui E, Hopper BN, Johnson MS, Vaida V. Chemistry and Photochemistry of Pyruvic Acid at the Air–Water Interface. J Phys Chem A 2021; 125:1036-1049. [DOI: 10.1021/acs.jpca.0c09096] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Keaten J. Kappes
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Alexandra M. Deal
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Malte F. Jespersen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Sandra L. Blair
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jean-Francois Doussin
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Institut Pierre Simon Laplace (IPSL), Université Paris-Est Créteil (UPEC) et Université de Paris (UP), 94010 Creteil, France
| | - Mathieu Cazaunau
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Institut Pierre Simon Laplace (IPSL), Université Paris-Est Créteil (UPEC) et Université de Paris (UP), 94010 Creteil, France
| | - Edouard Pangui
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Institut Pierre Simon Laplace (IPSL), Université Paris-Est Créteil (UPEC) et Université de Paris (UP), 94010 Creteil, France
| | - Brianna N. Hopper
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Matthew S. Johnson
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Veronica Vaida
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
21
|
Zhang Y, Apsokardu MJ, Kerecman DE, Achtenhagen M, Johnston MV. Reaction Kinetics of Organic Aerosol Studied by Droplet Assisted Ionization: Enhanced Reactivity in Droplets Relative to Bulk Solution. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:46-54. [PMID: 32469218 DOI: 10.1021/jasms.0c00057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Droplet Assisted Ionization (DAI) is a relatively new method for online analysis of aerosol droplets that enables measurement of the rate of an aerosol reaction. Here, we used DAI to study the reaction of carbonyl functionalities in secondary organic aerosol (SOA) with Girard's T (GT) reagent, a reaction that can potentially be used to enhance the detection of SOA in online measurements. SOA was produced by α-pinene ozonolysis. Particulate matter was collected on a filter, extracted, and mixed with GT reagent in water. While the reaction hardly proceeded at all in bulk solution, products were readily observed with DAI when the solution was atomized to produce micron-size droplets. Varying the droplet transit time between the atomizer and mass spectrometer allowed the reaction rate constant to be determined, which was found to be 4 orders of magnitude faster than what would be expected from bulk solution kinetics. Decreasing the water content of the droplets, either by heating the capillary inlet to the mass spectrometer or by decreasing the relative humidity of the air surrounding the droplets in the transit line from the atomizer to the mass spectrometer, enhanced product formation. The results suggest that reaction enhancement occurs at the droplet surface, which is consistent with previous reports of reaction acceleration during mass spectrometric analysis, where a bulk solution is analyzed with an ionization method that produces aerosol droplets.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Michael J Apsokardu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Devan E Kerecman
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Marcel Achtenhagen
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Murray V Johnston
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
22
|
Sullivan RC, Boyer-Chelmo H, Gorkowski K, Beydoun H. Aerosol Optical Tweezers Elucidate the Chemistry, Acidity, Phase Separations, and Morphology of Atmospheric Microdroplets. Acc Chem Res 2020; 53:2498-2509. [PMID: 33035055 DOI: 10.1021/acs.accounts.0c00407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
ConspectusAerosol particles represent unique chemical environments because of their high surface area-to-volume ratio that promotes the effects of interfacial chemistry in confined environments. Properties such as viscosity, diffusivity, water content, pH, and morphology-following liquid-liquid phase separation-can strongly alter how a particle interacts with condensable vapors and reactive trace gases, thus modifying its continual evolution and environmental effects. Our understanding of this chemical evolution of atmospheric particulate matter and its environmental impacts is largely limited by our ability to directly observe how these critical particle properties respond to the addition or reactive uptake of new chemical components. Aerosol optical tweezers (AOT) stably trap particles in focused laser beams, providing positional control and the retrieval of many of these critical properties required to understand and predict the chemistry of aerosolized microdroplets. The analytical power of the AOT stems from the retrieval of the cavity-enhanced Raman spectrum induced by the trapping laser. Analysis of the whispering gallery modes (WGMs) that resonate as a standing wave around the droplet's interface, provide high accuracy measurements of the droplet's size, refractive index (and thus a measurement of composition), and can distinguish between core-shell, partially engulfed, and homogeneous morphologies. We have advanced the ability to determine the properties of the core and shell phases in biphasic droplets, including obtaining high-accuracy pH measurements. These capabilities were applied to perform AOT physical chemistry experiments on authentic secondary organic aerosol (SOA) produced directly in the AOT chamber by ozonolysis of terpene vapors. The propensity of the SOA to phase separate as a shell from a wide range of nonpolar to polar core phases was observed, along with the discovery of a stable emulsified state of SOA particles in an aqueous salt droplet. Micron-thick SOA shells did not impede the gain or loss of water or squalane from the core to the surrounding air, indicating no significant diffusional limitations to condensational growth or partitioning even under dry conditions. These experiments formed the foundation of a new framework that predicts how the phase-separated morphology of complex aerosols containing organic carbon evolves during continual atmospheric oxidation processes. Increases in oxidation state will quickly drive conversion from a partially engulfed to core-shell morphology that has dramatically different chemical reactivity since the core phase is completely concealed by the shell. The recent advances in the experimental capabilities of the AOT technique such as presented here enable novel experimental methodologies that provide insights into the chemistry and multidimensional properties of aerosol microdroplets, and how these coevolve and respond to continual chemical reactions.
Collapse
Affiliation(s)
- Ryan C. Sullivan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Hallie Boyer-Chelmo
- Department of Mechanical Engineering, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Kyle Gorkowski
- Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Hassan Beydoun
- Atmospheric, Earth, & Energy Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
23
|
Dyett BP, Zhang X. Accelerated Formation of H 2 Nanobubbles from a Surface Nanodroplet Reaction. ACS NANO 2020; 14:10944-10953. [PMID: 32692921 DOI: 10.1021/acsnano.0c03059] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The compartmentalization of chemical reactions within droplets has advantages in low costs, reduced consumption of reagents, and increased throughput. Reactions in small droplets have also been shown to greatly accelerate the rate of many chemical reactions. The accelerated growth rate of nanobubbles from nanodroplet reactions is demonstrated in this work. The gaseous products from the reaction at the nanodroplet surface promoted nucleation of hydrogen nanobubbles within multiple organic liquid nanodroplets. The nanobubbles were confined within the droplets and selectively grew and collapsed at the droplet perimeter, as visualized by microscopy with high spatial and temporal resolutions. The growth rate of the bubbles was significantly accelerated within small droplets and scaled inversely with droplet radius. The acceleration was attributed to confinement from the droplet volume and effect from the surface area on the interfacial chemical reaction for gas production. The results of this study provide further understanding for applications in droplet enhanced production of nanobubbles and the on-demand liberation of hydrogen.
Collapse
Affiliation(s)
- Brendan P Dyett
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Xuehua Zhang
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton T6G1H9, Alberta, Canada
| |
Collapse
|
24
|
Li Z, Kiyama A, Zeng H, Lohse D, Zhang X. Speeding up biphasic reactions with surface nanodroplets. LAB ON A CHIP 2020; 20:2965-2974. [PMID: 32780079 DOI: 10.1039/d0lc00571a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Biphasic chemical reactions compartmentalized in small droplets offer advantages, such as streamlined procedures for chemical analysis, enhanced chemical reaction efficiency and high specificity of conversion. In this work, we experimentally and theoretically investigate the rate for biphasic chemical reactions between acidic nanodroplets on a substrate surface and basic reactants in a surrounding bulk flow. The reaction rate is measured by droplet shrinkage as the product is removed from the droplets by the flow. In our experiments, we determine the dependence of the reaction rate on the flow rate and the solution concentration. The theoretical analysis predicts that the life time τ of the droplets scales with Peclet number Pe and the reactant concentration in the bulk flow cre,bulk as τ∝ Pe-3/2cre,bulk-1, in good agreement with our experimental results. Furthermore, we found that the product from the reaction on an upstream surface can postpone the droplet reaction on a downstream surface, possibly due to the adsorption of interface-active products on the droplets in the downstream. The time of the delay decreases with increasing Pe of the flow and also with increasing reactant concentration in the flow, following the scaling same as that of the reaction rate with these two parameters. Our findings provide insight for the ultimate aim to enhance droplet reactions under flow conditions.
Collapse
Affiliation(s)
- Zhengxin Li
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | | | | | | | | |
Collapse
|
25
|
Ruiz-Lopez MF, Francisco JS, Martins-Costa MTC, Anglada JM. Molecular reactions at aqueous interfaces. Nat Rev Chem 2020; 4:459-475. [PMID: 37127962 DOI: 10.1038/s41570-020-0203-2] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2020] [Indexed: 12/16/2022]
Abstract
This Review aims to critically analyse the emerging field of chemical reactivity at aqueous interfaces. The subject has evolved rapidly since the discovery of the so-called 'on-water catalysis', alluding to the dramatic acceleration of reactions at the surface of water or at its interface with hydrophobic media. We review critical experimental studies in the fields of atmospheric and synthetic organic chemistry, as well as related research exploring the origins of life, to showcase the importance of this phenomenon. The physico-chemical aspects of these processes, such as the structure, dynamics and thermodynamics of adsorption and solvation processes at aqueous interfaces, are also discussed. We also present the basic theories intended to explain interface catalysis, followed by the results of advanced ab initio molecular-dynamics simulations. Although some topics addressed here have already been the focus of previous reviews, we aim at highlighting their interconnection across diverse disciplines, providing a common perspective that would help us to identify the most fundamental issues still incompletely understood in this fast-moving field.
Collapse
|
26
|
Bains W. Getting Beyond the Toy Domain. Meditations on David Deamer's "Assembling Life". Life (Basel) 2020; 10:life10020018. [PMID: 32085425 PMCID: PMC7175206 DOI: 10.3390/life10020018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/09/2020] [Accepted: 02/15/2020] [Indexed: 11/16/2022] Open
Abstract
David Deamer has written another book, Assembling Life, on the origin of life. It is unapologetically polemic, presenting Deamer's view that life originated in fresh water hydrothermal fields on volcanic islands on early Earth, arguing that this provided a unique environment not just for organic chemistry but for the self-assembling structure that drive that chemistry and form the basis of structure in life. It is worth reading, it is an advance in the field, but is it convincing? I argue that the Origin of Life field as a whole is unconvincing, generating results in Toy Domains that cannot be scaled to any real world scenario. I suggest that, by analogy with the history of artificial intelligence and solar astronomy, we need much more scale, and fundamentally new ideas, to take the field forward.
Collapse
Affiliation(s)
- William Bains
- Five Alarm Bio Ltd., O2h Scitech Park, Mill Lane, Hauxton, Cambridge CB22 5HX, UK;
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
27
|
Pestana LR, Hao H, Head-Gordon T. Diels-Alder Reactions in Water Are Determined by Microsolvation. NANO LETTERS 2020; 20:606-611. [PMID: 31771330 DOI: 10.1021/acs.nanolett.9b04369] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanoconfined aqueous environments and the recent advent of accelerated chemistry in microdroplets are increasingly being investigated for catalysis. The mechanisms underlying the enhanced reactivity in alternate solvent environments and whether the enhanced reactivity due to nanoconfinement is a universal phenomenon are not fully understood. Here, we use ab initio molecular dynamics simulations to characterize the free energy of a retro-Diels-Alder reaction in bulk water at very different densities and in water nanoconfined by parallel graphene sheets. We find that the broadly different global solvation environments accelerate the reactions to a similar degree with respect to the gas-phase reaction, with activation free energies that do not differ by more than kbT from each other. The reason for the same acceleration factor in the extremely different solvation environments is that it is the microsolvation of the dienophile's carbonyl group that governs the transition-state stabilization and mechanism, which is not significantly disrupted by either the lower density in bulk water or the strong nanoconfinement conditions used here. Our results also suggest that significant acceleration of Diels-Alder reactions in microdroplets or on-water conditions cannot arise from local microsolvation when water is present but instead must come from highly altered reaction environments that drastically change the reaction mechanisms.
Collapse
Affiliation(s)
- Luis Ruiz Pestana
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Pitzer Center for Theoretical Chemistry, Departments of Chemistry, Bioengineering, and Chemical and Biomolecular Engineering , University of California , Berkeley , California 94720 , United States
| | - Hongxia Hao
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Pitzer Center for Theoretical Chemistry, Departments of Chemistry, Bioengineering, and Chemical and Biomolecular Engineering , University of California , Berkeley , California 94720 , United States
| | - Teresa Head-Gordon
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Pitzer Center for Theoretical Chemistry, Departments of Chemistry, Bioengineering, and Chemical and Biomolecular Engineering , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
28
|
Boyer HC, Gorkowski K, Sullivan RC. In Situ pH Measurements of Individual Levitated Microdroplets Using Aerosol Optical Tweezers. Anal Chem 2020; 92:1089-1096. [PMID: 31760745 DOI: 10.1021/acs.analchem.9b04152] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The pH of microscale reaction environments controls numerous physicochemical processes, requiring a real-time pH microprobe. We present highly accurate real-time pH measurements of microdroplets using aerosol optical tweezers (AOT) and analysis of the whispering gallery modes (WGMs) contained in the cavity-enhanced Raman spectra. Uncertainties ranging from ±0.03 to 0.06 in pH for picoliter droplets are obtained through averaging Raman frames acquired at 0.5 Hz over 3.3 min. The high accuracy in pH determination is achieved by combining two independent measurements uniquely provided by the AOT approach: the anion concentration ratio from the spontaneous Raman spectra, and the total solute concentration from the refractive index retrieved from WGM analysis of the stimulated cavity-enhanced Raman spectra. pH can be determined over a range of -0.36 to 0.76 using the aqueous sodium bisulfate system. This technique enables direct measurements of pH-dependent chemical and physical changes experienced by individual microparticles and exploration of the role of pH in the chemical behavior of confined microenvironments.
Collapse
Affiliation(s)
- Hallie C Boyer
- Center for Atmospheric Particle Studies , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Kyle Gorkowski
- Department of Atmospheric and Oceanic Sciences , McGill University , Montreal , Quebec H3A 0B9 , Canada
| | - Ryan C Sullivan
- Center for Atmospheric Particle Studies , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
29
|
Abstract
Recent observations show that many reactions are accelerated in microdroplets compared to bulk liquid and gas media. This acceleration has been shown to feature Gibbs free energy changes, ΔG, that are negative and so reaction enabling, compared to the reaction in bulk fluid when it is positive and so reaction blocking. Here, we argue how these ΔG changes are relatable to the crowding enforced by microdroplets and to scale invariance. It is argued that turbulent flow is present in microdroplets, which span meso and macroscales. That enables scale invariant methods to arrive at chemical potentials for the substances involved. G and ΔG can be computed from the difference between the whole microdroplet and the bulk medium, and also for individual chemical species in both cases, including separately the microdroplet’s surface film and interior, provided sufficiently fine resolution is available in the observations. Such results can be compared with results computed by quantum statistical mechanics using molecular spectroscopic data. This proposed research strategy therefore offers a path to test its validity in comparing traditional equilibrium quantum statistical thermodynamic tests of microdroplets with those based on scale invariant analysis of both their 2D surface and 3D interior fluid flows.
Collapse
|
30
|
Prebiotic Phosphorylation of Uridine using Diamidophosphate in Aerosols. Sci Rep 2019; 9:13527. [PMID: 31537885 PMCID: PMC6753121 DOI: 10.1038/s41598-019-49947-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/28/2019] [Indexed: 11/17/2022] Open
Abstract
One of the most challenging fundamental problems in establishing prebiotically plausible routes for phosphorylation reactions using phosphate is that they are thermodynamically unfavorable in aqueous conditions. Diamidophosphate (DAP), a potentially prebiotically relevant compound, was shown to phosphorylate nucleosides in aqueous medium, albeit at a very slow rate (days/weeks). Here, we demonstrate that performing these reactions within an aerosol environment, a suitable model for the early Earth ocean-air interface, yields higher reaction rates when compared to bulk solution, thus overcoming these rate limitations. As a proof-of-concept, we demonstrate the effective conversion (~6.5–10%) of uridine to uridine-2′,3′-cyclophosphate in less than 1 h. These results suggest that aerosol environments are a possible scenario in which prebiotic phosphorylation could have occurred despite unfavorable rates in bulk solution.
Collapse
|
31
|
Banerjee S, Zare RN. Influence of Inlet Capillary Temperature on the Microdroplet Chemistry Studied by Mass Spectrometry. J Phys Chem A 2019; 123:7704-7709. [PMID: 31433185 DOI: 10.1021/acs.jpca.9b05703] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Often, studies of microdroplet chemistry using electrospray ionization mass spectrometry (MS) either find a negligible effect of the heated inlet capillary of the mass spectrometer on the reaction rate or do not consider its effect. In this context, we studied two reactions in microdroplets, the Pomeranz-Fritsch synthesis of isoquinoline and the Combes quinoline synthesis. The reagents were electrosprayed with methanol and aqueous solutions forming small and large microdroplets at flow rates of 1 and 20 μL/min, respectively. We also varied the inlet capillary temperature from 100 to 350 °C. Contrary to the view that the inlet temperature has little to no influence on the reaction rate, we found that the Pomeranz-Fritsch reaction was markedly accelerated for both solvents and for both droplet sizes on increasing the temperature, whereas the Combes synthesis showed the opposite behavior. We propose that these strikingly different behaviors result from a competition of two effects, the evaporative cooling versus the heating of ejected bare ions from the droplet, both taking place inside the heated inlet. This finding suggests that these phenomena must be taken into account while interpreting the microdroplet reactions studied by electrospray or a similar kind of ambient ionization MS.
Collapse
Affiliation(s)
- Shibdas Banerjee
- Department of Chemistry , Indian Institute of Science Education and Research Tirupati , Tirupati 517507 , India.,Department of Chemistry , Stanford University , Stanford , California 94305-5080 , United States
| | - Richard N Zare
- Department of Chemistry , Stanford University , Stanford , California 94305-5080 , United States
| |
Collapse
|
32
|
Djikaev YS, Ruckenstein E. Formation and evolution of aqueous organic aerosols via concurrent condensation and chemical aging. Adv Colloid Interface Sci 2019; 265:45-67. [PMID: 30711797 DOI: 10.1016/j.cis.2019.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 10/27/2022]
Abstract
We review recent results on the formation and evolution of aqueous organic aerosols via concurrent nucleation/condensation and chemical aging processes obtained mostly using the formalism of classical nucleation theory In this framework, an aqueous organic aerosol was modeled as a spherical particle of liquid solution of water and hydrophilic and hydrophobic condensable organic compounds; besides these compounds, the surrounding air contained some chemically reactive, non-condensable species. Hydrophobic organic molecules on the aerosol surface can be processed by chemical reactions with some atmospheric species; this affects the hygroscopicity of the aerosol and hence its ability to become a cloud droplet. Such processing is most probably triggered by atmospheric hydroxyl radicals that abstract hydrogen atoms from surfactant molecules located on the aerosol surface (first step), resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). These two reactions play a crucial role in the enhancement of the Köhler activation of the aerosol. Taking them and a third reaction (next in the multistep chain of relevant heterogeneous reactions) into account, one can derive an explicit expression for the free energy of formation of a four-component aqueous droplet on a ternary aqueous organic aerosol as a function of four independent variables of state of a droplet. This approach was also applied to study a large subset of primary marine aerosols which can be initially treated using an "inverted micelle" model whereof the core consists of aqueous "salt" solution. Numerical evaluations suggest that the formation of cloud droplets on such (both aqueous hydrophilic/hydrophobic organic and marine) aerosols is most likely to occur via Köhler activation rather than via nucleation. The models allow one to determine the threshold parameters necessary for the Köhler activation of such aerosols. Furthermore, heterogeneous chemical reactions involved in the chemical aging of aerosols are most likely exothermic. Due to the release of the enthalpy of these reactions, the temperature of an aerosol particle during its chemical aging may become greater than the ambient (air) temperature. The analysis of the characteristic timescales of four most important processes involved suggests that this effect may play a significant impeding role in the formation of an ensemble of aqueous secondary organic aerosols via nucleation and, hence, must be taken into account in atmospheric aerosol and global climate models.
Collapse
|
33
|
Gallo A, Farinha ASF, Dinis M, Emwas AH, Santana A, Nielsen RJ, Goddard WA, Mishra H. The chemical reactions in electrosprays of water do not always correspond to those at the pristine air-water interface. Chem Sci 2018; 10:2566-2577. [PMID: 30996971 PMCID: PMC6422012 DOI: 10.1039/c8sc05538f] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022] Open
Abstract
The recent application of electrosprays to characterize the air-water interface, along with the reports on dramatically accelerated chemical reactions in aqueous electrosprays, have sparked a broad interest. Herein, we report on complementary laboratory and in silico experiments tracking the oligomerization of isoprene, an important biogenic gas, in electrosprays and isoprene-water emulsions to differentiate the contributions of interfacial effects from those of high voltages leading to charge-separation and concentration of reactants in the electrosprays. To this end, we employed electrospray ionization mass spectrometry, proton nuclear magnetic resonance, ab initio calculations and molecular dynamics simulations. We found that the oligomerization of isoprene in aqueous electrosprays involved minimally hydrated and highly reactive hydronium ions. Those conditions, however, are non-existent at pristine air-water interfaces and oil-water emulsions under normal temperature and pressure. Thus, electrosprays should be complemented with surface-specific platforms and theoretical methods to reliably investigate chemistries at the pristine air-water interface.
Collapse
Affiliation(s)
- Adair Gallo
- King Abdullah University of Science and Technology (KAUST) , Saudi Arabia . .,Water Desalination and Reuse Center (WDRC) , Saudi Arabia.,Division of Biological and Environmental Sciences (BESE) , Saudi Arabia
| | - Andreia S F Farinha
- King Abdullah University of Science and Technology (KAUST) , Saudi Arabia . .,Water Desalination and Reuse Center (WDRC) , Saudi Arabia.,Division of Biological and Environmental Sciences (BESE) , Saudi Arabia
| | - Miguel Dinis
- King Abdullah University of Science and Technology (KAUST) , Saudi Arabia . .,KAUST Catalysis Center (KCC) , Saudi Arabia
| | - Abdul-Hamid Emwas
- King Abdullah University of Science and Technology (KAUST) , Saudi Arabia . .,Imaging and Characterization Core Laboratory , Thuwal 23955-6900 , Saudi Arabia
| | - Adriano Santana
- King Abdullah University of Science and Technology (KAUST) , Saudi Arabia . .,Water Desalination and Reuse Center (WDRC) , Saudi Arabia.,Division of Biological and Environmental Sciences (BESE) , Saudi Arabia
| | - Robert J Nielsen
- Materials and Process Simulation Center , California Institute of Technology , Pasadena , CA 91125 , USA
| | - William A Goddard
- Materials and Process Simulation Center , California Institute of Technology , Pasadena , CA 91125 , USA
| | - Himanshu Mishra
- King Abdullah University of Science and Technology (KAUST) , Saudi Arabia . .,Water Desalination and Reuse Center (WDRC) , Saudi Arabia.,Division of Biological and Environmental Sciences (BESE) , Saudi Arabia
| |
Collapse
|
34
|
Mondal S, Acharya S, Biswas R, Bagchi B, Zare RN. Enhancement of reaction rate in small-sized droplets: A combined analytical and simulation study. J Chem Phys 2018; 148:244704. [PMID: 29960367 DOI: 10.1063/1.5030114] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Several recent mass spectrometry experiments reveal a marked enhancement of the reaction rate of organic reactions in microdroplets. This enhancement has been tentatively attributed to the accumulation of excess charge on a surface, which in turn can give rise to a lowering of activation energy of the reaction. Here we model the reactions in droplets as a three-step process: (i) diffusion of a reactant from the core of the droplet to the surface, (ii) search by diffusion of the reactant on the surface to find a reactive partner, and finally (iii) the intrinsic reaction leading to bond breaking and product formation. We obtain analytic expressions for the mean search time (MST) to find a target located on the surface by a reactant in both two- and three-dimensional droplets. Analytical results show quantitative agreement with Brownian dynamics simulations. We find, as also reported earlier, that the MST varies as R2/D, where R is the radius of the droplet and D is the diffusion constant of the molecules in the droplet medium. We also find that a hydronium ion in the vicinity can substantially weaken the bond and hence lowers the activation barrier. We observe a similar facilitation of bond breaking in the presence of a static dipolar electric field along any of the three Cartesian axes. If the intrinsic reaction is faster compared to the mean search time involved, it becomes primarily a diffusion-controlled process; otherwise the reaction cannot be accelerated in the droplet medium. The air-droplet interface provides a different environment compared to the interior of the droplet. Hence, we might also expect a completely different mechanism and products in the case of droplet reactions.
Collapse
Affiliation(s)
- Sayantan Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, India
| | - Subhajit Acharya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, India
| | - Rajib Biswas
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, India
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
35
|
Djikaev YS, Ruckenstein E. Effect of Heterogeneous Chemical Reactions on the Köhler Activation of Aqueous Organic Aerosols. J Phys Chem A 2018; 122:4322-4337. [PMID: 29668281 DOI: 10.1021/acs.jpca.8b01276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We study some thermodynamic aspects of the activation of aqueous organic aerosols into cloud droplets considering the aerosols to consist of liquid solution of water and hydrophilic and hydrophobic organic compounds, taking into account the presence of reactive species in the air. The hydrophobic (surfactant) organic molecules on the surface of such an aerosol can be processed by chemical reactions with some atmospheric species; this affects the hygroscopicity of the aerosol and hence its ability to become a cloud droplet either via nucleation or via Köhler activation. The most probable pathway of such processing involves atmospheric hydroxyl radicals that abstract hydrogen atoms from hydrophobic organic molecules located on the aerosol surface (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). These two reactions play a crucial role in the enhancement of the Köhler activation of the aerosol and its evolution into a cloud droplet. Taking them and a third reaction (next in the multistep chain of relevant heterogeneous reactions) into account, one can derive an explicit expression for the free energy of formation of a four-component aqueous droplet on a ternary aqueous organic aerosol as a function of four independent variables of state of a droplet. The results of numerical calculations suggest that the formation of cloud droplets on such (aqueous hydrophilic/hydrophobic organic) aerosols is most likely to occur as a Köhler activation-like process rather than via nucleation. The model allows one to determine the threshold parameters of the system necessary for the Köhler activation of such aerosols, which are predicted to be very sensitive to the equilibrium constant of the chain of three heterogeneous reactions involved in the chemical aging of aerosols.
Collapse
Affiliation(s)
- Yuri S Djikaev
- Department of Chemical and Biological Engineering , SUNY at Buffalo , Buffalo , New York 14260 , United States
| | - Eli Ruckenstein
- Department of Chemical and Biological Engineering , SUNY at Buffalo , Buffalo , New York 14260 , United States
| |
Collapse
|