1
|
Zhang L, Jing M, Song Q, Ouyang Y, Pang Y, Ye X, Fu Y, Yan W. Role of the m 6A demethylase ALKBH5 in gastrointestinal tract cancer (Review). Int J Mol Med 2025; 55:22. [PMID: 39611478 PMCID: PMC11637504 DOI: 10.3892/ijmm.2024.5463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024] Open
Abstract
N6‑methyladenosine (m6A) is one of the most universal, abundant and conserved types of internal post‑transcriptional modifications in eukaryotic RNA, and is involved in nuclear RNA export, RNA splicing, mRNA stability, gene expression, microRNA biogenesis and long non‑coding RNA metabolism. AlkB homologue 5 (ALKBH5) acts as a m6A demethylase to regulate a wide variety of biological processes closely associated with tumour progression, tumour metastasis, tumour immunity and tumour drug resistance. ALKBH5 serves a crucial role in human digestive system tumours, mainly through post‑transcriptional regulation of m6A modification. The present review discusses progress in the study of the m6A demethylase ALKBH5 in gastrointestinal tract cancer, summarizes the potential molecular mechanisms of ALKBH5 dysregulation in gastrointestinal tract cancer, and discusses the significance of ALKBH5‑targeted therapy, which may provide novel ideas for future clinical prognosis prediction, biomarker identification and precise treatment.
Collapse
Affiliation(s)
- Lumiao Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Mengjia Jing
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qianben Song
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yiming Ouyang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yingzhi Pang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xilin Ye
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
2
|
Zhang C, Scott RL, Tunes L, Hsieh MH, Wang P, Kumar A, Khadgi BB, Yang YY, Doxtader Lacy KA, Herrell E, Zhang X, Evers B, Wang Y, Xing C, Zhu H, Nam Y. Cancer mutations rewire the RNA methylation specificity of METTL3-METTL14. SCIENCE ADVANCES 2024; 10:eads4750. [PMID: 39705353 DOI: 10.1126/sciadv.ads4750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/14/2024] [Indexed: 12/22/2024]
Abstract
Chemical modification of RNAs is important for posttranscriptional gene regulation. The METTL3-METTL14 complex generates most N6-methyladenosine (m6A) modifications in messenger RNAs (mRNAs), and dysregulated methyltransferase expression has been linked to cancers. Here we show that a changed sequence context for m6A can promote oncogenesis. A gain-of-function missense mutation from patients with cancer, METTL14R298P, increases malignant cell growth in culture and transgenic mice without increasing global m6A levels in mRNAs. The mutant methyltransferase preferentially modifies noncanonical sites containing a GGAU motif, in vitro and in vivo. The m6A in GGAU context is detected by the YTH family of readers similarly to the canonical sites but is demethylated less efficiently by an eraser, ALKBH5. Combining the biochemical and structural data, we provide a model for how the cognate RNA sequences are selected for methylation by METTL3-METTL14. Our work highlights that sequence-specific m6A deposition is important and that increased GGAU methylation can promote oncogenesis.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biochemistry, Department of Biophysics, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robyn L Scott
- Department of Biochemistry, Department of Biophysics, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luiza Tunes
- Department of Biochemistry, Department of Biophysics, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Meng-Hsiung Hsieh
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ping Wang
- Department of Biochemistry, Department of Biophysics, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development, Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brijesh B Khadgi
- Department of Biochemistry, Department of Biophysics, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yen-Yu Yang
- Department of Chemistry, University of California at Riverside, Riverside, CA 92521, USA
| | - Katelyn A Doxtader Lacy
- Department of Biochemistry, Department of Biophysics, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Emily Herrell
- Department of Biochemistry, Department of Biophysics, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xunzhi Zhang
- Eugene McDermott Center for Human Growth and Development, Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bret Evers
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California at Riverside, Riverside, CA 92521, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yunsun Nam
- Department of Biochemistry, Department of Biophysics, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
3
|
Naderi N, Tavalaee M, Nasr-Esfahani MH. The epigenetic approach of varicocele: a focus on sperm DNA and m6A-RNA methylation. Hum Reprod Update 2024:dmae034. [PMID: 39673728 DOI: 10.1093/humupd/dmae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/21/2024] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND Varicocele is an abnormal dilation and torsion of the pampiniform venous plexus in the scrotum due to venous reflux, primarily affecting the left side. It affects 15% of men and is a prevalent contributor to male infertility. Varicocele is a complex disorder influenced by genetic, epigenetic, and environmental factors. Epigenetic modifications, which regulate genome activity independently of DNA or RNA sequences, may contribute to the development and severity of varicocele. These include DNA methylation, histone modifications, and RNA modifications like N6-methyladenosine (m6A). Irregularities in DNA and m6A-RNA methylation during spermatogenesis can cause gene expression abnormalities, DNA damage, and decreased fertility in varicocele patients. OBJECTIVE AND RATIONALE The review aims to comprehensively understand the underlying mechanisms of varicocele, a condition that can significantly impact male fertility. By exploring the role of methylation modifications, specifically DNA and m6A-RNA methylation, the review aims to synthesize evidence from basic, preclinical, and clinical research to expand the existing knowledge on this subject. The ultimate goal is to identify potential avenues for developing targeted treatments that can effectively improve varicocele and ultimately increase sperm quality in affected individuals. SEARCH METHODS A thorough investigation of the scientific literature was conducted through searches in PubMed, Google Scholar, and Science Direct databases until May 2024. All studies investigating the relationship between DNA and m6A-RNA methylation and male infertility, particularly varicocele were reviewed, and the most pertinent reports were included. Keywords such as varicocele, epigenetics, DNA methylation, m6A-RNA methylation, hypermethylation, hypomethylation, spermatozoa, semen parameters, spermatogenesis, and male infertility were used during the literature search, either individually or in combination. OUTCOMES The sperm has a specialized morphology essential for successful fertilization, and its epigenome is unique, potentially playing a key role in embryogenesis. Sperm DNA and RNA methylation, major epigenetic marks, regulate the expression of testicular genes crucial for normal spermatogenesis. This review explores the role of DNA and m6A-RNA methylation, in responding to oxidative stress and how various nutrients influence their function in varicocele condition. Evidence suggests a potential link between varicocele and aberrant DNA/m6A-RNA methylation patterns, especially hypomethylation, but the body of evidence is still limited. Further studies are needed to understand how abnormal expression of DNA/m6A-RNA methylation regulators affects testicular gene expression. Thus, analyzing sperm DNA 5mC/5hmC levels and m6A-RNA methylation regulators may reveal spermatogenesis defects and predict reproductive outcomes. WIDER IMPLICATIONS Nutri-epigenomics is an emerging field that could enhance the knowledge and management of diseases with unpredictable risks and consequences, even among individuals with similar lifestyles, by elucidating the influence of nutrition on DNA/m6A-RNA methylation through one-carbon metabolism. However, the importance of one-carbon metabolism to varicocele is not well-recognized. Health status and diet influence one-carbon metabolism and its associated DNA/m6A-RNA methylation modification. Future research should identify optimal methylation patterns that promote health and investigate modulating one-carbon metabolism to achieve this. Furthermore, additional studies are necessary to develop personalized dietary strategies through clinical and longitudinal research. However, a research gap exists on dietary interventions utilizing epigenetics as a therapeutic method for treating varicocele. REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Nushin Naderi
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- Pooyesh & Rooyesh Fertility Center, Isfahan, Iran
| |
Collapse
|
4
|
Qin L, Zeng X, Qiu X, Chen X, Liu S. The role of N6-methyladenosine modification in tumor angiogenesis. Front Oncol 2024; 14:1467850. [PMID: 39691597 PMCID: PMC11649548 DOI: 10.3389/fonc.2024.1467850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024] Open
Abstract
Tumor angiogenesis is a characteristics of malignant cancer progression that facilitates cancer cell growth, diffusion and metastasis, and has an indispensable role in cancer development. N6-methyladenosine (m6A) is among the most prevalent internal modifications in eukaryotic RNAs, and has considerable influence on RNA metabolism, including its transcription, splicing, localization, translation, recognition, and degradation. The m6A modification is generated by m6A methyltransferases ("writers"), removed by m6A demethylases ("erasers"), and recognized by m6A-binding proteins ("readers"). There is accumulating evidence that abnormal m6A modification is involved in the pathogenesis of multiple diseases, including cancers, and promotes cancer occurrence, development, and progression through its considerable impact on oncoprotein expression. Furthermore, increasing studies have demonstrated that m6A modification can influence angiogenesis in cancers through multiple pathways to regulate malignant processes. In this review, we elaborate the role of m6A modification in tumor angiogenesis-related molecules and pathways in detail, providing insights into the interactions between m6A and tumor angiogenesis. Moreover, we describe how targeting m6A modification in combination with anti-angiogenesis drugs is expected to be a promising anti-tumor treatment strategy, with potential value for addressing the challenge of drug resistance.
Collapse
Affiliation(s)
| | | | | | | | - Shiquan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical
University, Nanning, Guangxi, China
| |
Collapse
|
5
|
Wang C, Wang Y. Meiosis requires m 6A modification for selection of targets in plants. THE NEW PHYTOLOGIST 2024; 244:2118-2120. [PMID: 39223876 DOI: 10.1111/nph.20089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
This article is a Commentary on Xue et al. (2024), 244: 2326–2342.
Collapse
Affiliation(s)
- Cong Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Institute for Soybean Innovation Research, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Yingxiang Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Institute for Soybean Innovation Research, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| |
Collapse
|
6
|
Cui X, Li H, Huang X, Xue T, Wang S, Zhu X, Jing X. N 6-Methyladenosine Modification on the Function of Female Reproductive Development and Related Diseases. Immun Inflamm Dis 2024; 12:e70089. [PMID: 39660878 PMCID: PMC11632877 DOI: 10.1002/iid3.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/17/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) modification is a widespread and reversible epigenetic alteration in eukaryotic mRNA, playing a pivotal role in various biological functions. Its significance in female reproductive development and associated diseases has recently become a focal point of research. OBJECTIVE This review aims to consolidate current knowledge of the role of m6A modification in female reproductive tissues, emphasizing its regulatory dynamics, functional significance, and implications in reproductive health and disease. METHODS A comprehensive analysis of recent studies focusing on m6A modification in ovarian development, oocyte maturation, embryo development, and the pathogenesis of reproductive diseases. RESULTS m6A modification exhibits dynamic regulation in female reproductive tissues, influencing key developmental stages and processes. It plays critical roles in ovarian development, oocyte maturation, and embryo development, underpinning essential aspects of reproductive health. m6A modification is intricately involved in the pathogenesis of several reproductive diseases, including polycystic ovary syndrome (PCOS), premature ovarian failure (POF), and endometriosis, offering insights into potential molecular mechanisms and therapeutic targets. CONCLUSION The review highlights the crucial role of m6A modification in female reproductive development and related diseases. It underscores the need for further research to explore innovative diagnostic and therapeutic strategies for reproductive disorders, leveraging the insights gained from understanding m6A modification's impact on reproductive health.
Collapse
Affiliation(s)
- Xiangrong Cui
- Reproductive Medicine CenterThe affiliated Children's Hospital of Shanxi Medical University, Children's Hospital of Shanxi, Shanxi Maternal and Child Health HospitalTaiyuanChina
| | - Huihui Li
- Reproductive Medicine CenterThe affiliated Children's Hospital of Shanxi Medical University, Children's Hospital of Shanxi, Shanxi Maternal and Child Health HospitalTaiyuanChina
| | - Xia Huang
- Department of Clinical LaboratoryShanxi Provincial People's Hospital, Shanxi Medical UniversityTaiyuanChina
| | - Tingting Xue
- Department of Clinical LaboratoryShanxi Provincial People's Hospital, Shanxi Medical UniversityTaiyuanChina
| | - Shu Wang
- Department of Clinical LaboratoryShanxi Provincial People's Hospital, Shanxi Medical UniversityTaiyuanChina
| | - Xinyu Zhu
- Department of Clinical LaboratoryShanxi Provincial People's Hospital, Shanxi Medical UniversityTaiyuanChina
| | - Xuan Jing
- Department of Clinical LaboratoryShanxi Provincial People's Hospital, Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
7
|
Zhao Z, Yang T, Li F. Sperm RNA code in spermatogenesis and male infertility. Reprod Biomed Online 2024; 49:104375. [PMID: 39481211 DOI: 10.1016/j.rbmo.2024.104375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/22/2024] [Accepted: 07/05/2024] [Indexed: 11/02/2024]
Abstract
Spermatozoa are traditionally thought to be transcriptionally inert, but recent studies have revealed the presence of sperm RNA, some of which is derived from the residues of spermatocyte transcription and some from epididymosomes. Paternal sperm RNA can be affected by external factors and further modified at the post-transcriptional level, for example N6-methyladenosine (m6A), thus shaping spermatogenesis and reproductive outcome. This review briefly introduces the origin of sperm RNA and, on this basis, summarizes the current knowledge on RNA modifications and their functional role in spermatogenesis and male infertility. The bottlenecks and knowledge gaps in the current research on RNA modification in male reproduction have also been indicated. Further investigations are needed to elucidate the functional consequences of these modifications, providing new therapeutic and preventive strategies for reproductive health and genetic inheritance.
Collapse
Affiliation(s)
- Zhongyi Zhao
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Tingting Yang
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| | - Fuping Li
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| |
Collapse
|
8
|
Xue F, Zhang J, Wu D, Sun S, Fu M, Wang J, Searle I, Gao H, Liang W. m 6A demethylase OsALKBH5 is required for double-strand break formation and repair by affecting mRNA stability in rice meiosis. THE NEW PHYTOLOGIST 2024; 244:2326-2342. [PMID: 39044689 DOI: 10.1111/nph.19976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/13/2024] [Indexed: 07/25/2024]
Abstract
N6-methyladenosine (m6A) RNA modification is the most prevalent messenger RNA (mRNA) modification in eukaryotes and plays critical roles in the regulation of gene expression. m6A is a reversible RNA modification that is deposited by methyltransferases (writers) and removed by demethylases (erasers). The function of m6A erasers in plants is highly diversified and their roles in cereal crops, especially in reproductive development essential for crop yield, are largely unknown. Here, we demonstrate that rice OsALKBH5 acts as an m6A demethylase required for the normal progression of male meiosis. OsALKBH5 is a nucleo-cytoplasmic protein, highly enriched in rice anthers during meiosis, that associates with P-bodies and exon junction complexes, suggesting that it is involved in regulating mRNA processing and abundance. Mutations of OsALKBH5 cause reduced double-strand break (DSB) formation, severe defects in DSB repair, and delayed meiotic progression, leading to complete male sterility. Transcriptome analysis and m6A profiling indicate that OsALKBH5-mediated m6A demethylation stabilizes the mRNA level of multiple meiotic genes directly or indirectly, including several genes that regulate DSB formation and repair. Our study reveals the indispensable role of m6A metabolism in post-transcriptional regulation of meiotic progression in rice.
Collapse
Affiliation(s)
- Feiyang Xue
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Di Wu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shiyu Sun
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ming Fu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Iain Searle
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Hongbo Gao
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572024, China
| |
Collapse
|
9
|
Gu X, Dai X, Sun H, Lian Y, Huang X, Shen B, Zhang P. METTL16 and YTHDC1 Regulate Spermatogonial Differentiation via m6A. Cell Prolif 2024:e13782. [PMID: 39614650 DOI: 10.1111/cpr.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/11/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024] Open
Abstract
Spermatogenesis is a highly unique and intricate process, finely regulated at multiple levels, including post-transcriptional regulation. N6-methyladenosine (m6A), the most prevalent internal modification in eukaryotic mRNA, plays a significant role in transcriptional regulation during spermatogenesis. Previous research indicated extensive m6A modification at each stage of spermatogenesis, but depletion of Mettl3 and/or Mettl14 in spermatogenic cells with Stra8-Cre did not reveal any detectable abnormalities up to the stage of elongating spermatids. This suggests the involvement of other methyltransferases in the regulation of m6A modification during spermatogonial differentiation and meiosis. As a METTL3/14-independent m6A methyltransferase, METTL16 remains insufficiently studied in its roles during spermatogenesis. We report that male mice with Mettl16vasa-cre exhibited significantly smaller testes, accompanied by a progressive loss of spermatogonia after birth. Additionally, the deletion of Mettl16 in A1 spermatogonia using Stra8-Cre results in a blockade in spermatogonial differentiation. Given YTHDC1's specific recognition for METTL16 target genes, we further investigated the role of YTHDC1 using Ythdc1-sKO mouse model. Our results indicate that Ythdc1Stra8-cre also impairs spermatogonial differentiation, similar to the effects observed in Mettl16Stra8-cre mice. RNA-seq and m6A-seq analyses revealed that deletion of either Mettl6 or Ythdc1 disrupted the gene expression related to chromosome organisation and segregation, ultimately leading to male infertility. Collectively, this study underscores the essential roles of the m6A writer METTL16 and its reader YTHDC1 in the differentiation of spermatogonia.
Collapse
Affiliation(s)
- Xueying Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Medical University, Nanjing, China
| | - Xinyuan Dai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Medical University, Nanjing, China
| | - Haifeng Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Medical University, Nanjing, China
| | - Yilong Lian
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Medical University, Nanjing, China
| | | | - Bin Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Medical University, Nanjing, China
| | - Pengfei Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Medical University, Nanjing, China
- Zhejiang Lab, Hangzhou, China
| |
Collapse
|
10
|
Shojaei M, Tavalaee M, Ghazavi B, Izadi T, Safaeinejad Z, Ghajari E, Motlagh AV, Nasr-Esfahani MH. Alterations Expression of Key RNA Methylation (m6A) Enzymes in Testicular Tissue of Rats with Induced Varicocele. Reprod Sci 2024:10.1007/s43032-024-01747-w. [PMID: 39537972 DOI: 10.1007/s43032-024-01747-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Epigenetics impacts male fertility and reproductive disorders. RNA modifications, like m6A, influence RNA metabolism. Varicocele contributes to male infertility, and oxidative stress affects sperm function. This study investigates the expression of key RNA modification enzymes in a rat varicocele model, aiming to elucidate the relationship between varicocele, oxidative stress, and fertility. Fifteen male Wistar rats were divided into Control, Sham, and Varicocele induction groups. Varicocele was induced in the rats surgically. After 8 weeks, testicular tissues and sperm were collected for analysis, including histopathological assessment and evaluation of sperm parameters, functional tests, and gene expression of key RNA modification enzymes: METTL3 as a writer, ALKBH5 and FTO as erasers, and YTHDF2 as a reader involved in recognizing m6A-modified RNA using qRT-PCR. One-way ANOVA with post-hoc Tukey HSD was used for comparing tests within groups. Varicocele induction resulted in histological changes in testicular tissues, including irregularly variable-sized seminiferous tubules. Sperm parameters were significantly affected, with lower concentration, motility, and higher percentage of abnormal sperm in the varicocele group. Increased levels of oxidative stress markers (Sperm lipid peroxidation, and intracytoplasmic ROS) and sperm DNA damage were observed, indicating the presence of oxidative stress in varicocele. Moreover, the expression of key enzymes involved in RNA metabolism was downregulated in the varicocele group. These findings highlight the detrimental impact of varicocele on testicular health, sperm quality, and gene expression, providing insights into the underlying mechanisms of male infertility associated with varicocele.
Collapse
Affiliation(s)
- Mohammad Shojaei
- Isfahan Branch, ACECR Institute of Higher Education, Isfahan, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Marziyeh Tavalaee
- Isfahan Branch, ACECR Institute of Higher Education, Isfahan, Iran.
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Bahareh Ghazavi
- Isfahan Branch, ACECR Institute of Higher Education, Isfahan, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Tayebeh Izadi
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Zahra Safaeinejad
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Elham Ghajari
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Ali Valipour Motlagh
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad H Nasr-Esfahani
- Isfahan Branch, ACECR Institute of Higher Education, Isfahan, Iran.
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
11
|
Kaur P, Sharma P, Bhatia P, Singh M. Current insights on m6A RNA modification in acute leukemia: therapeutic targets and future prospects. Front Oncol 2024; 14:1445794. [PMID: 39600630 PMCID: PMC11590065 DOI: 10.3389/fonc.2024.1445794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/08/2024] [Indexed: 11/29/2024] Open
Abstract
RNA modification is the critical mechanism for regulating post-transcriptional processes. There are more than 150 RNA modifications reported so far, among which N6-Methyladenosine is the most prevalent one. M6A RNA modification complex consists of 'writers', 'readers' and 'erasers' which together in a group catalyze, recognize and regulate the methylation process of RNA and thereby regulate the stability and translation of mRNA. The discovery of erasers also known as demethylases, revolutionized the research on RNA modifications as it revealed that this modification is reversible. Since then, various studies have focused on discovering the role of m6A modification in various diseases especially cancers. Aberrant expression of these 'readers', 'writers', and 'erasers' is found to be altered in various cancers resulting in disturbance of cellular homeostasis. Acute leukemias are the most common cancer found in pediatric patients and account for 20% of adult cases. Dysregulation of the RNA modifying complex have been reported in development and progression of hematopoietic malignancies. Further, targeting m6A modification is the new approach for cancer immunotherapy and is being explored extensively. This review provides detailed information about current information on the role of m6A RNA modification in acute leukemia and their therapeutic potential.
Collapse
Affiliation(s)
| | | | | | - Minu Singh
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical
Education and Research, Chandigarh, India
| |
Collapse
|
12
|
Jiang N, Li Y, Yin L, Yuan S, Wang F. The Intricate Functional Networks of Pre-mRNA Alternative Splicing in Mammalian Spermatogenesis. Int J Mol Sci 2024; 25:12074. [PMID: 39596142 PMCID: PMC11594017 DOI: 10.3390/ijms252212074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Spermatogenesis is a highly coordinated process that requires the precise expression of specific subsets of genes in different types of germ cells, controlled both temporally and spatially. Among these genes, those that can exert an indispensable influence in spermatogenesis via participating in alternative splicing make up the overwhelming majority. mRNA alternative-splicing (AS) events can generate various isoforms with distinct functions from a single DNA sequence, based on specific AS codes. In addition to enhancing the finite diversity of the genome, AS can also regulate the transcription and translation of certain genes by directly binding to their cis-elements or by recruiting trans-elements that interact with consensus motifs. The testis, being one of the most complex tissue transcriptomes, undergoes unparalleled transcriptional and translational activity, supporting the dramatic and dynamic transitions that occur during spermatogenesis. Consequently, AS plays a vital role in producing an extensive array of transcripts and coordinating significant changes throughout this process. In this review, we summarize the intricate functional network of alternative splicing in spermatogenesis based on the integration of current research findings.
Collapse
Affiliation(s)
| | | | | | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (N.J.); (Y.L.); (L.Y.)
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (N.J.); (Y.L.); (L.Y.)
| |
Collapse
|
13
|
Yang X, Wang Z, Chen Y, Ding H, Fang Y, Ma X, Liu H, Guo J, Zhao J, Wang J, Lu W. ALKBH5 Reduces BMP15 mRNA Stability and Regulates Bovine Puberty Initiation Through an m6A-Dependent Pathway. Int J Mol Sci 2024; 25:11605. [PMID: 39519156 PMCID: PMC11546126 DOI: 10.3390/ijms252111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
The timing of puberty significantly influences subsequent reproductive performance in cattle. N6-methyladenosine (m6A) is a key epigenetic modification involved in the regulation of pubertal onset. However, limited research has investigated alterations in m6A methylation within the hypothalamic-pituitary-ovarian (HPO) axis during the onset of puberty. In this study, combined analysis of methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and RNA sequencing (RNA-seq) is used to describe the overall modification pattern of m6A in the HPO axis, while GSEA, KEGG, and GO analyses are used to describe the enrichment pathways of differentially expressed genes and differentially methylated genes. The m6A modifications of the differential genes KL, IGSF10, PAPPA2, and BMP15 and the pathways of cell adhesion molecules (CAMs), TGF-β, cell cycle, and steroid hormone synthesis may play roles in regulating the function of the HPO axis tissue during pubertal transition. Notably, BMP15's m6A modification depends on the action of the demethylase ALKBH5, which is recognized by the reader protein YTHDF2, promoting bovine granulosa cell proliferation, steroid production, and estrogen secretion. This study reveals for the first time the modification mechanism of BMP15 m6A during the initiation of bovine puberty, which will provide useful information for improving the reproductive efficiency of Chinese beef cattle.
Collapse
Affiliation(s)
- Xiaorui Yang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Z.W.); (Y.C.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.); (J.Z.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ziming Wang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Z.W.); (Y.C.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.); (J.Z.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yue Chen
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Z.W.); (Y.C.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.); (J.Z.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - He Ding
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Z.W.); (Y.C.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.); (J.Z.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yi Fang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Z.W.); (Y.C.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.); (J.Z.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xin Ma
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Z.W.); (Y.C.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.); (J.Z.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hongyu Liu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Z.W.); (Y.C.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.); (J.Z.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jing Guo
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Z.W.); (Y.C.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.); (J.Z.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Z.W.); (Y.C.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.); (J.Z.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jun Wang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Z.W.); (Y.C.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.); (J.Z.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Wenfa Lu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Z.W.); (Y.C.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.); (J.Z.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
14
|
Gu H, Xu K, Yu Z, Ren Z, Chen F, Zhou C, Zeng W, Ren H, Yin Y, Bi Y. N 6-Methyladenosine RNA Modification Regulates the Differential Muscle Development in Large White and Ningxiang Pigs. Cells 2024; 13:1744. [PMID: 39451261 PMCID: PMC11506082 DOI: 10.3390/cells13201744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
N6-methyladenosine (m6A) is the most common modification in eukaryotic RNAs. Growing research indicates that m6A methylation is crucial for a multitude of biological processes. However, research on the m6A modifications in the regulation of porcine muscle growth is lacking. In this study, we identified differentially expressed genes in the neonatal period of muscle development between Large White (LW) and NingXiang (NX) pigs and further reported m6A methylation patterns via MeRIP-seq. We found that m6A modification regulates muscle cell development, myofibrils, cell cycle, and phosphatase regulator activity during the neonatal phase of muscle development. Interestingly, differentially expressed genes in LW and NX pigs were mainly enriched in pathways involved in protein synthesis. Furthermore, we performed a conjoint analysis of MeRIP-seq and RNA-seq data and identified 27 differentially expressed and m6A-modified genes. Notably, a typical muscle-specific envelope transmembrane protein, WFS1, was differentially regulated by m6A modifications in LW and NX pigs. We further revealed that the m6A modification accelerated the degradation of WFS1 in a YTHDF2-dependent manner. Noteworthy, we identified a single nucleotide polymorphism (C21551T) within the last exon of WFS1 that resulted in variable m6A methylation, contributing to the differing WFS1 expression levels observed in LW and NX pigs. Our study conducted a comprehensive analysis of the m6A modification on NX and LW pigs during the neonatal period of muscle development, and elucidated the mechanism by which m6A regulates the differential expression of WFS1 in the two breeds.
Collapse
Affiliation(s)
- Hao Gu
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (H.G.); (Z.Y.); (Z.R.); (F.C.); (C.Z.); (W.Z.); (H.R.)
| | - Kang Xu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
| | - Zhao Yu
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (H.G.); (Z.Y.); (Z.R.); (F.C.); (C.Z.); (W.Z.); (H.R.)
| | - Zufeng Ren
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (H.G.); (Z.Y.); (Z.R.); (F.C.); (C.Z.); (W.Z.); (H.R.)
| | - Fan Chen
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (H.G.); (Z.Y.); (Z.R.); (F.C.); (C.Z.); (W.Z.); (H.R.)
| | - Changfan Zhou
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (H.G.); (Z.Y.); (Z.R.); (F.C.); (C.Z.); (W.Z.); (H.R.)
| | - Wei Zeng
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (H.G.); (Z.Y.); (Z.R.); (F.C.); (C.Z.); (W.Z.); (H.R.)
| | - Hongyan Ren
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (H.G.); (Z.Y.); (Z.R.); (F.C.); (C.Z.); (W.Z.); (H.R.)
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
| | - Yanzhen Bi
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (H.G.); (Z.Y.); (Z.R.); (F.C.); (C.Z.); (W.Z.); (H.R.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
15
|
Wang Y, Yang C, Sun H, Jiang H, Zhang P, Huang Y, Liu Z, Yu Y, Xu Z, Xiang H, Yi C. The Role of N6-methyladenosine Modification in Gametogenesis and Embryogenesis: Impact on Fertility. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae050. [PMID: 38937660 PMCID: PMC11514847 DOI: 10.1093/gpbjnl/qzae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 06/02/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The most common epigenetic modification of messenger RNAs (mRNAs) is N6-methyladenosine (m6A), which is mainly located near the 3' untranslated region of mRNAs, near the stop codons, and within internal exons. The biological effect of m6A is dynamically modulated by methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers). By controlling post-transcriptional gene expression, m6A has a significant impact on numerous biological functions, including RNA transcription, translation, splicing, transport, and degradation. Hence, m6A influences various physiological and pathological processes, such as spermatogenesis, oogenesis, embryogenesis, placental function, and human reproductive system diseases. During gametogenesis and embryogenesis, genetic material undergoes significant changes, including epigenomic modifications such as m6A. From spermatogenesis and oogenesis to the formation of an oosperm and early embryogenesis, m6A changes occur at every step. m6A abnormalities can lead to gamete abnormalities, developmental delays, impaired fertilization, and maternal-to-zygotic transition blockage. Both mice and humans with abnormal m6A modifications exhibit impaired fertility. In this review, we discuss the dynamic biological effects of m6A and its regulators on gamete and embryonic development and review the possible mechanisms of infertility caused by m6A changes. We also discuss the drugs currently used to manipulate m6A and provide prospects for the prevention and treatment of infertility at the epigenetic level.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Chen Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Hanxiao Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Jiang
- Department of Interventional Therapy, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Pin Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Yue Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Zhenran Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Yaru Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Zuying Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Huifen Xiang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Peng Y, Jia J, Zhang M, Ma W, Cui Y, Yu M. Transcription Factor TFAP2B Exerts Neuroprotective Effects Targeting BNIP3-Mediated Mitophagy in Ischemia/Reperfusion Injury. Mol Neurobiol 2024; 61:7319-7334. [PMID: 38381297 DOI: 10.1007/s12035-024-04004-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) leads to malignant brain edema, blood-brain barrier destruction, and neuronal apoptosis. N6-methyladenosine (m6A) RNA modification in CIRI was still limited explored. In this study, MeRIP- and RNA-sequencing were performed of middle cerebral artery occlusion and reperfusion (MCAO/R) rats to find novel potential molecular targets. Transcription factor TFAP2B stood out of which its m6A abundance decreased associated with a marked reduction of its mRNA based on cojoint interactive bioinformatics analysis of the MeRIP- and RNA-sequencing data. It was suggested TFAP2B could have a role in CIRI. Functionally, overexpression of TFAP2B in cultured primary neurons could effectively improve the cell survival and pro-survival autophagy in parallel with reduced cell apoptosis during OGD/R in vitro. Through the RNA-sequencing of TFAP2B overexpressed primary neurons and subsequent validation experiments, it was found that mitophagy receptor BNIP3 was one of the important targets of TFAP2B in OGD/R neurons through which TFAP2B could bind to its promoter region for transcriptional activation of BNIP3, thereby enhancing BNIP3-mediated mitophagy to protect against OGD/R injury of neurons. Lastly, TFAP2B was demonstrated to alleviate the MCAO/R damage to a certain extent in vivo. Although it failed to confirm TFAP2B dysregulation was m6A dependent in current research, this is the first research of TFAP2B in CIRI field with important guiding significance.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Jiaoying Jia
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Mingming Zhang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Wenjia Ma
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Yan Cui
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Mengqiang Yu
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
17
|
Khan FA, Nsengimana B, Awan UA, Ji XY, Ji S, Dong J. Regulatory roles of N6-methyladenosine (m 6A) methylation in RNA processing and non-communicable diseases. Cancer Gene Ther 2024; 31:1439-1453. [PMID: 38839892 DOI: 10.1038/s41417-024-00789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Post-transcriptional RNA modification is an emerging epigenetic control mechanism in cells that is important in many different cellular and organismal processes. N6-methyladenosine (m6A) is one of the most prevalent, prolific, and ubiquitous internal transcriptional alterations in eukaryotic mRNAs, making it an important topic in the field of Epigenetics. m6A methylation acts as a dynamical regulatory process that regulates the activity of genes and participates in multiple physiological processes, by supporting multiple aspects of essential mRNA metabolic processes, including pre-mRNA splicing, nuclear export, translation, miRNA synthesis, and stability. Extensive research has linked aberrations in m6A modification and m6A-associated proteins to a wide range of human diseases. However, the impact of m6A on mRNA metabolism and its pathological connection between m6A and other non-communicable diseases, including cardiovascular disease, neurodegenerative disorders, liver diseases, and cancer remains in fragmentation. Here, we review the existing understanding of the overall role of mechanisms by which m6A exerts its activities and address new discoveries that highlight m6A's diverse involvement in gene expression regulation. We discuss m6A deposition on mRNA and its consequences on degradation, translation, and transcription, as well as m6A methylation of non-coding chromosomal-associated RNA species. This study could give new information about the molecular process, early detection, tailored treatment, and predictive evaluation of human non-communicable diseases like cancer. We also explore more about new data that suggests targeting m6A regulators in diseases may have therapeutic advantages.
Collapse
Affiliation(s)
- Faiz Ali Khan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Institute of Integrative Medicine, Fudan University, Shanghai, China.
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan.
| | - Bernard Nsengimana
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Usman Ayub Awan
- Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xin-Ying Ji
- Center for Molecular Medicine, Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China.
| | - Shaoping Ji
- Center for Molecular Medicine, Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Institute of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Patke R, Harris AE, Woodcock CL, Thompson R, Santos R, Kumari A, Allegrucci C, Archer N, Gudas LJ, Robinson BD, Persson JL, Fray R, Jeyapalan J, Rutland CS, Rakha E, Madhusudan S, Emes RD, Muyangwa-Semenova M, Alsaleem M, de Brot S, Green W, Ratan H, Mongan NP, Lothion-Roy J. Epitranscriptomic mechanisms of androgen signalling and prostate cancer. Neoplasia 2024; 56:101032. [PMID: 39033689 PMCID: PMC11295630 DOI: 10.1016/j.neo.2024.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Prostate cancer (PCa) is the second most common cancer diagnosed in men. While radical prostatectomy and radiotherapy are often successful in treating localised disease, post-treatment recurrence is common. As the androgen receptor (AR) and androgen hormones play an essential role in prostate carcinogenesis and progression, androgen deprivation therapy (ADT) is often used to deprive PCa cells of the pro-proliferative effect of androgens. ADTs act by either blocking androgen biosynthesis (e.g. abiraterone) or blocking AR function (e.g. bicalutamide, enzalutamide, apalutamide, darolutamide). ADT is often effective in initially suppressing PCa growth and progression, yet emergence of castrate-resistant PCa and progression to neuroendocrine-like PCa following ADT are major clinical challenges. For this reason, there is an urgent need to identify novel approaches to modulate androgen signalling to impede PCa progression whilst also preventing or delaying therapy resistance. The mechanistic convergence of androgen and epitranscriptomic signalling offers a potential novel approach to treat PCa. The epitranscriptome involves covalent modifications of mRNA, notably, in the context of this review, the N(6)-methyladenosine (m6A) modification. m6A is involved in the regulation of mRNA splicing, stability, and translation, and has recently been shown to play a role in PCa and androgen signalling. The m6A modification is dynamically regulated by the METTL3-containing methyltransferase complex, and the FTO and ALKBH5 RNA demethylases. Given the need for novel approaches to treat PCa, there is significant interest in new therapies that target m6A that modulate AR expression and androgen signalling. This review critically summarises the potential benefit of such epitranscriptomic therapies for PCa patients.
Collapse
Affiliation(s)
- Rodhan Patke
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Anna E Harris
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Corinne L Woodcock
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Rachel Thompson
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Rute Santos
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Amber Kumari
- Biodiscovery Institute, University of Nottingham, UK
| | - Cinzia Allegrucci
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Nathan Archer
- School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Brian D Robinson
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Jenny L Persson
- Department of Molecular Biology, Umea University, Umea, Sweden
| | - Rupert Fray
- School of Biosciences, University of Nottingham, UK
| | - Jennie Jeyapalan
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Catrin S Rutland
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Emad Rakha
- School of Medicine, University of Nottingham, UK; Nottingham University NHS Trust, Nottingham, UK
| | - Srinivasan Madhusudan
- School of Medicine, University of Nottingham, UK; Nottingham University NHS Trust, Nottingham, UK
| | - Richard D Emes
- Research and Innovation, Nottingham Trent University, UK
| | | | - Mansour Alsaleem
- Biodiscovery Institute, University of Nottingham, UK; Unit of Scientific Research, Applied College, Qassim University, Qassim, Saudi Arabia
| | - Simone de Brot
- Institute of Animal Pathology, University of Bern, Switzerland
| | - William Green
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Hari Ratan
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Nigel P Mongan
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
| | - Jennifer Lothion-Roy
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK.
| |
Collapse
|
19
|
Yang W, Zhao Y, Yang Y. Dynamic RNA methylation modifications and their regulatory role in mammalian development and diseases. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2084-2104. [PMID: 38833084 DOI: 10.1007/s11427-023-2526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/15/2023] [Indexed: 06/06/2024]
Abstract
Among over 170 different types of chemical modifications on RNA nucleobases identified so far, RNA methylation is the major type of epitranscriptomic modifications existing on almost all types of RNAs, and has been demonstrated to participate in the entire process of RNA metabolism, including transcription, pre-mRNA alternative splicing and maturation, mRNA nucleus export, mRNA degradation and stabilization, mRNA translation. Attributing to the development of high-throughput detection technologies and the identification of both dynamic regulators and recognition proteins, mechanisms of RNA methylation modification in regulating the normal development of the organism as well as various disease occurrence and developmental abnormalities upon RNA methylation dysregulation have become increasingly clear. Here, we particularly focus on three types of RNA methylations: N6-methylcytosine (m6A), 5-methylcytosine (m5C), and N7-methyladenosine (m7G). We summarize the elements related to their dynamic installment and removal, specific binding proteins, and the development of high-throughput detection technologies. Then, for a comprehensive understanding of their biological significance, we also overview the latest knowledge on the underlying mechanisms and key roles of these three mRNA methylation modifications in gametogenesis, embryonic development, immune system development, as well as disease and tumor progression.
Collapse
Affiliation(s)
- Wenlan Yang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Yongliang Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Yungui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
20
|
Wu S, Liu K, Cui Y, Zhou B, Zhao H, Xiao X, Zhou Q, Ma D, Li X. N6-methyladenosine dynamics in placental development and trophoblast functions, and its potential role in placental diseases. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167290. [PMID: 38866113 DOI: 10.1016/j.bbadis.2024.167290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
N6-methyladenosine (m6A) is the most abundant modification controlling RNA metabolism and cellular functions, but its roles in placental development are still poorly understood. Here, we characterized the synchronization of m6A modifications and placental functions by mapping the m6A methylome in human placentas (n = 3, each trimester), revealing that the dynamic patterns of m6A were associated with gene expression homeostasis and different biological pathways in placental development. Then, we generated trophoblast-specific knockout mice of Wtap, a critical component of methyltransferase complex, and demonstrated that Wtap was essential for trophoblast proliferation, placentation and perinatal growth. Further in vitro experiments which includes cell viability assays and series molecular binding assays demonstrated that WTAP-m6A-IGF2BP3 axis regulated the RNA stability and translation of Anillin (ANLN) and VEGFA, promoting trophoblast proliferation and secretion. Dysregulation of this regulatory axis was observed in placentas from pregnancies with fetal growth restriction (FGR) or preeclampsia, revealing the pathogenic effects of imbalanced m6A modifications. Therefore, our findings provide novel insights into the functions and regulatory mechanisms of m6A modifications in placental development and placental-related gestational diseases.
Collapse
Affiliation(s)
- Suwen Wu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ketong Liu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yutong Cui
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Bingyan Zhou
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, China
| | - Huanqiang Zhao
- Shenzhen Maternity and Children Health Care Hospital, Shenzhen, China
| | - Xirong Xiao
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Qiongjie Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Xiaotian Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; Shenzhen Maternity and Children Health Care Hospital, Shenzhen, China.
| |
Collapse
|
21
|
Gunage R, Zon LI. Role of RNA modifications in blood development and regeneration. Exp Hematol 2024; 138:104279. [PMID: 39009277 DOI: 10.1016/j.exphem.2024.104279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
Blood development and regeneration require rapid turnover of cells, and ribonucleic acid (RNA) modifications play a key role in it via regulating stemness and cell fate regulation. RNA modifications affect gene activity via posttranscriptional and translation-mediated mechanisms. Diverse molecular players involved in RNA-modification processes are abundantly expressed by hematopoietic stem cells and lineages. Close to 150 RNA chemical modifications have been reported, but only N6-methyl adenosine (m6A), inosine (I), pseudouridine (Ψ), and m1A-a handful-have been studied in-cell fate regulation. The role of RNA modification in blood diseases and disorders is an emerging field and offers potential for therapeutic interventions. Knowledge of RNA-modification and enzymatic activities could be used to design therapies in the future. Here, we summarized the recent advances in RNA modification and the epitranscriptome field and discussed their regulation of blood development and regeneration.
Collapse
Affiliation(s)
- Rajesh Gunage
- Stem Cell Program and Division of Hematology/Oncology, Department of Medicine, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Department of Medicine, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA.
| |
Collapse
|
22
|
Davletgildeeva AT, Kuznetsov NA. Dealkylation of Macromolecules by Eukaryotic α-Ketoglutarate-Dependent Dioxygenases from the AlkB-like Family. Curr Issues Mol Biol 2024; 46:10462-10491. [PMID: 39329974 PMCID: PMC11431407 DOI: 10.3390/cimb46090622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Alkylating modifications induced by either exogenous chemical agents or endogenous metabolites are some of the main types of damage to DNA, RNA, and proteins in the cell. Although research in recent decades has been almost entirely devoted to the repair of alkyl and in particular methyl DNA damage, more and more data lately suggest that the methylation of RNA bases plays an equally important role in normal functioning and in the development of diseases. Among the most prominent participants in the repair of methylation-induced DNA and RNA damage are human homologs of Escherichia coli AlkB, nonheme Fe(II)/α-ketoglutarate-dependent dioxygenases ABH1-8, and FTO. Moreover, some of these enzymes have been found to act on several protein targets. In this review, we present up-to-date data on specific features of protein structure, substrate specificity, known roles in the organism, and consequences of disfunction of each of the nine human homologs of AlkB. Special attention is given to reports about the effects of natural single-nucleotide polymorphisms on the activity of these enzymes and to potential consequences for carriers of such natural variants.
Collapse
Affiliation(s)
- Anastasiia T. Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
23
|
Liu Y, Chen L, Jiang H, Wang H, Zhang Y, Yuan Z, Ma Y. N 6-Methyladenosine Modification-Related Genes Express Differentially in Sterile Male Cattle-Yaks. Life (Basel) 2024; 14:1155. [PMID: 39337938 PMCID: PMC11433611 DOI: 10.3390/life14091155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
N6-methyladenosine (m6A), an RNA post-transcriptional modification, plays a crucial role in spermatogenesis. Cattle-yaks are interspecific hybrid offsprings of yak and cattle, and male cattle-yaks are sterile. This study aims to investigate the role of m6A modification in male cattle-yak infertility. Herein, testicular tissues were analyzed via histological observations, immunohistochemical assays, reverse-transcription quantitative polymerase chain reaction, Western blotting, and immunofluorescence assays. The results revealed that male cattle-yaks presented smaller testes (5.933 ± 0.4885 cm vs. 7.150 ± 0.3937 cm), with only single cell layers in seminiferous tubules, and weakened signals of m6A regulators such as METTL14 (methyltransferase-like 14), ALKBH5 (alpha-ketoglutarate-dependent hydroxylase homolog 5), FTO (fat mass and obesity-associated protein), and YTHDF2 (YTH N6-methyladenosine RNA binding protein F2), both at the RNA and protein levels, compared with those of yaks. Altogether, these findings suggest that m6A modification may play a crucial role in male cattle-yak sterility, providing a basis for future studies.
Collapse
Affiliation(s)
- Yuxin Liu
- Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Y.L.); (L.C.)
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lili Chen
- Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Y.L.); (L.C.)
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin 300381, China
- Tianjin Engineering Research Center of Animal Healthy Farming, Tianjin 300381, China
| | - Hui Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850002, China; (H.J.); (H.W.)
| | - Hongzhuang Wang
- Institute of Animal Husbandry and Veterinary Medicine, Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850002, China; (H.J.); (H.W.)
| | - Yujiao Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Zhengrong Yuan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Yi Ma
- Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Y.L.); (L.C.)
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin 300381, China
- Tianjin Engineering Research Center of Animal Healthy Farming, Tianjin 300381, China
| |
Collapse
|
24
|
Yang J, He Y, Kang Y, Shen L, Zhang W, Yan Y, Li X, Huang W, Xu X. Virtual Screening and Molecular Docking: Discovering Novel METTL3 Inhibitors. ACS Med Chem Lett 2024; 15:1491-1499. [PMID: 39291017 PMCID: PMC11403746 DOI: 10.1021/acsmedchemlett.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 09/19/2024] Open
Abstract
Methyltransferase-like 3 (METTL3) is an RNA methyltransferase that catalyzes the N6 -methyladenosine (m6A) modification of mRNA in eukaryotic cells. Past studies have shown that METTL3 is highly expressed in various cancers and is closely related to tumor development. Therefore, METTL3 inhibitors have received widespread attention as effective treatments for different types of tumors. This study proposes a hybrid high-throughput virtual screening (HTVS) protocol that combines structure-based methods with geometric deep learning-based DeepDock algorithms. We identified unique skeleton inhibitors of METTL3 from our self-built internal database. Among them, compound C3 showed significant inhibitory activity on METTL3, and further molecular dynamics simulations were performed to provide more details about the binding conformation. Overall, our research demonstrates the effectiveness of hybrid virtual algorithms, which is of great significance for understanding the biological functions of METTL3 and developing treatment methods for related diseases.
Collapse
Affiliation(s)
- Junyi Yang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Yanwen He
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Youkun Kang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Liteng Shen
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wen Zhang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Yumeng Yan
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Xinyi Li
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Wenhai Huang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Xiangwei Xu
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| |
Collapse
|
25
|
Bakulin A, Teyssier NB, Kampmann M, Khoroshkin M, Goodarzi H. pyPAGE: A framework for Addressing biases in gene-set enrichment analysis-A case study on Alzheimer's disease. PLoS Comput Biol 2024; 20:e1012346. [PMID: 39236079 PMCID: PMC11421795 DOI: 10.1371/journal.pcbi.1012346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/24/2024] [Accepted: 07/22/2024] [Indexed: 09/07/2024] Open
Abstract
Inferring the driving regulatory programs from comparative analysis of gene expression data is a cornerstone of systems biology. Many computational frameworks were developed to address this problem, including our iPAGE (information-theoretic Pathway Analysis of Gene Expression) toolset that uses information theory to detect non-random patterns of expression associated with given pathways or regulons. Our recent observations, however, indicate that existing approaches are susceptible to the technical biases that are inherent to most real world annotations. To address this, we have extended our information-theoretic framework to account for specific biases and artifacts in biological networks using the concept of conditional information. To showcase pyPAGE, we performed a comprehensive analysis of regulatory perturbations that underlie the molecular etiology of Alzheimer's disease (AD). pyPAGE successfully recapitulated several known AD-associated gene expression programs. We also discovered several additional regulons whose differential activity is significantly associated with AD. We further explored how these regulators relate to pathological processes in AD through cell-type specific analysis of single cell and spatial gene expression datasets. Our findings showcase the utility of pyPAGE as a precise and reliable biomarker discovery in complex diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Artemy Bakulin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Noam B. Teyssier
- Institute for Neurodegenerative Diseases, University of California San Francisco, California, United States of America
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California San Francisco, California, United States of America
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Matvei Khoroshkin
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Department of Urology, University of California San Francisco, San Francisco, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Department of Urology, University of California San Francisco, San Francisco, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, United States of America
- Arc Institute, Palo Alto, California, United States of America
| |
Collapse
|
26
|
Gao Z, Zha X, Li M, Xia X, Wang S. Insights into the m 6A demethylases FTO and ALKBH5 : structural, biological function, and inhibitor development. Cell Biosci 2024; 14:108. [PMID: 39192357 DOI: 10.1186/s13578-024-01286-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
N6-methyladenosine (m6A) is dynamically regulated by methyltransferases (termed "writers") and demethylases (referred to as "erasers"), facilitating a reversible modulation. Changes in m6A levels significantly influence cellular functions, such as RNA export from the nucleus, mRNA metabolism, protein synthesis, and RNA splicing. They are intricately associated with a spectrum of pathologies. Moreover, dysregulation of m6A modulation has emerged as a promising therapeutic target across many diseases. m6A plays a pivotal role in controlling vital downstream molecules and critical biological pathways, contributing to the pathogenesis and evolution of numerous conditions. This review provides an overview of m6A demethylases, explicitly detailing the structural and functional characteristics of FTO and ALKBH5. Additionally, we explore their distinct involvement in various diseases, examine factors regulating their expression, and discuss the progress in inhibitor development.
Collapse
Affiliation(s)
- Zewei Gao
- Department of Laboratory Medicine,Jiangsu Province Engineering Research Center for Precise Diagnosis and Treatment of Inflammatory Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xuan Zha
- Department of Laboratory Medicine,Jiangsu Province Engineering Research Center for Precise Diagnosis and Treatment of Inflammatory Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Min Li
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
| | - Xueli Xia
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine,Jiangsu Province Engineering Research Center for Precise Diagnosis and Treatment of Inflammatory Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
27
|
Shu W, Huang Q, Chen R, Lan H, Yu L, Cui K, He W, Zhu S, Chen M, Li L, Jiang D, Xu G. Complicated role of ALKBH5 in gastrointestinal cancer: an updated review. Cancer Cell Int 2024; 24:298. [PMID: 39182071 PMCID: PMC11344947 DOI: 10.1186/s12935-024-03480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Gastrointestinal cancer is the most common malignancy in humans, often accompanied by poor prognosis. N6-methyladenosine (m6A) modification is widely present in eukaryotic cells as the most abundant RNA modification. It plays a crucial role in RNA splicing and processing, nuclear export, translation, and stability. Human AlkB homolog 5 (ALKBH5) is a type of RNA demethylase exhibiting abnormal expression in various gastrointestinal cancers.It is closely related to the tumorigenesis, proliferation, migration, and other biological functions of gastrointestinal cancer. However, recent studies indicated that the role and mechanism of ALKBH5 in gastrointestinal cancer are complicated and even controversial. Thus, this review summarizes recent advances in elucidating the role of ALKBH5 as a tumor suppressor or promoter in gastrointestinal cancer. It examines the biological functions of ALKBH5 and its potential as a therapeutic target, providing new perspectives and insights for gastrointestinal cancer research.
Collapse
Affiliation(s)
- Weitong Shu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Dongguan, China
| | - Qianying Huang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Dongguan, China
| | - Rui Chen
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Dongguan, China
| | - Huatao Lan
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Dongguan, China
| | - Luxin Yu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Dongguan, China
| | - Kai Cui
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Dongguan, China
| | - Wanjun He
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Dongguan, China
| | - Songshan Zhu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Dongguan, China
| | - Mei Chen
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Dongguan, China
| | - Li Li
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Dongguan, China
| | - Dan Jiang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China.
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Dongguan, China.
| | - Guangxian Xu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China.
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Dongguan, China.
| |
Collapse
|
28
|
Chen W, Liu C, He Y, Jiang T, Chen Q, Zhang H, Gao R. ALKBH5-Mediated m 6A Modification Drives Apoptosis in Renal Tubular Epithelial Cells by Negatively Regulating MUC1. Mol Biotechnol 2024:10.1007/s12033-024-01250-2. [PMID: 39172331 DOI: 10.1007/s12033-024-01250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/27/2024] [Indexed: 08/23/2024]
Abstract
Dysregulation of renal tubular epithelial cell (RTEC) apoptosis is one of the critical steps underlying the occurrence and development of nephrolithiasis. Although N6-methyladenosine (m6A) modification has been extensively studied and associated with various pathologic processes, research on its specific role in RTEC injury and apoptosis remains limited. In this study, we found that overexpression of ALKBH5 reduced the level of m6A modification in RTEC cells and notably promoted RTEC apoptosis. Further mechanism studies revealed that ALKBH5 mainly decreased the m6A level on the mRNA of Mucin 1 (MUC1) gene in RTECs. Moreover, ALKBH5 impaired the stability of MUC1 mRNA in RTECs, leading to attenuated expression of MUC1. Finally, we determined that the ALKBH5-MUC1 axis primarily facilitated RTEC apoptosis by regulating the PI3K/Akt signaling pathway. This study revealed the critical role of the ALKBH5-MUC1-PI3K/Akt regulatory system in RTEC apoptosis and provided new therapeutic targets for treating nephrolithiasis.
Collapse
Affiliation(s)
- Wenwei Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, Fujian, People's Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Changyi Liu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, Fujian, People's Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yanfeng He
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, Fujian, People's Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Tao Jiang
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, Fujian, People's Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Qin Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, Fujian, People's Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Hua Zhang
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, Fujian, People's Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Rui Gao
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, Fujian, People's Republic of China.
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
29
|
Liao Z, Wang J, Xu M, Li X, Xu H. The role of RNA m6A demethylase ALKBH5 in the mechanisms of fibrosis. Front Cell Dev Biol 2024; 12:1447135. [PMID: 39220683 PMCID: PMC11362088 DOI: 10.3389/fcell.2024.1447135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
ALKBH5 is one of the demethylases involved in the regulation of RNA m6A modification. In addition to its role in the dynamic regulation of RNA m6A modification, ALKBH5 has been found to play important roles in various tissues fibrosis processes in recent years. However, the mechanisms and effects of ALKBH5 in fibrosis have been reported inconsistently. Multiple cell types, including parenchymal cells, immune cells (neutrophils and T cells), macrophages, endothelial cells, and fibroblasts, play roles in various stages of fibrosis. Therefore, this review analyzes the mechanisms by which ALKBH5 regulates these cells, its impact on their functions, and the outcomes of fibrosis. Furthermore, this review summarizes the role of ALKBH5 in fibrotic diseases such as pulmonary fibrosis, liver fibrosis, cardiac fibrosis, and renal fibrosis, and discusses various ALKBH5 inhibitors that have been discovered to date, exploring the potential of ALKBH5 as a clinical target for fibrosis.
Collapse
Affiliation(s)
| | | | | | - Xiaoyan Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongming Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Bu FT, Wang HY, Xu C, Song KL, Dai Z, Wang LT, Ying J, Chen J. The role of m6A-associated membraneless organelles in the RNA metabolism processes and human diseases. Theranostics 2024; 14:4683-4700. [PMID: 39239525 PMCID: PMC11373618 DOI: 10.7150/thno.99019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/25/2024] [Indexed: 09/07/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant post-transcriptional dynamic RNA modification process in eukaryotes, extensively implicated in cellular growth, embryonic development and immune homeostasis. One of the most profound biological functions of m6A is to regulate RNA metabolism, thereby determining the fate of RNA. Notably, the regulation of m6A-mediated organized RNA metabolism critically relies on the assembly of membraneless organelles (MLOs) in both the nucleus and cytoplasm, such as nuclear speckles, stress granules and processing bodies. In addition, m6A-associated MLOs exert a pivotal role in governing diverse RNA metabolic processes encompassing transcription, splicing, transport, decay and translation. However, emerging evidence suggests that dysregulated m6A levels contribute to the formation of pathological condensates in a range of human diseases, including tumorigenesis, reproductive diseases, neurological diseases and respiratory diseases. To date, the molecular mechanism by which m6A regulates the aggregation of biomolecular condensates associated with RNA metabolism is unclear. In this review, we comprehensively summarize the updated biochemical processes of m6A-associated MLOs, particularly focusing on their impact on RNA metabolism and their pivotal role in disease development and related biological mechanisms. Furthermore, we propose that m6A-associated MLOs could serve as predictive markers for disease progression and potential drug targets in the future.
Collapse
Affiliation(s)
- Fang-Tian Bu
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hai-Yan Wang
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chao Xu
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Kang-Li Song
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhen Dai
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Lin-Ting Wang
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jie Ying
- Department of Gastroenterology, Affiliated Nanjing Jiangbei Hospital of Xinglin College, Nantong University, Nanjing 210044, P. R. China
| | - Jianxiang Chen
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre Singapore, 169610, Singapore
| |
Collapse
|
31
|
Yuan Z, Lei Y, Wan B, Yang M, Jiang Y, Tian C, Wang Z, Wang W. Cadmium exposure elicited dynamic RNA m 6A modification and epi-transcriptomic regulation in the Pacific whiteleg shrimp Litopenaeus vannamei. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101307. [PMID: 39126882 DOI: 10.1016/j.cbd.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
N6-methyladenosine (m6A) methylation is the most prevalent post-transcriptional RNA modification in eukaryotic organisms, but its roles in the regulation of physiological resistance of marine crustaceans to heavy metal pollutants are poorly understood. In this study, the transcriptome-wide m6A RNA methylation profiles and dynamic m6A changes induced by acute Cd2+ exposure in the the pacific whiteleg shrimp Litopenaeus vannamei were comprehensively analyzed. Cd2+ toxicity caused a significant reduction in global RNA m6A methylation level, with major m6A regulators including the m6A methyltransferase METTL3 and the m6A binding protein YTHDF2 showing declined expression. Totally, 11,467 m6A methylation peaks from 6415 genes and 17,291 peaks within 7855 genes were identified from the Cd2+ exposure group and the control group, respectively. These m6A peaks were predominantly enriched in the 3' untranslated region (UTR) and around the start codon region of the transcripts. 7132 differentially expressed genes (DEGs) and 7382 differentially m6A-methylated genes (DMGs) were identified. 3186 genes showed significant changes in both gene expression and m6A methylation levels upon cadmium exposure, and they were related to a variety of biological processes and gene pathways. Notably, an array of genes associated with antioxidation homeostasis, transmembrane transporter activity and intracellular detoxification processes were significantly enriched, demonstrating that m6A modification may mediate the physiological responses of shrimp to cadmium toxicity via regulating ROS balance, Cd2+ transport and toxicity mitigation. The study would contribute to a deeper understanding of the evolutionary and functional significance of m6A methylation to the physiological resilience of decapod crustaceans to heavy metal toxicants.
Collapse
Affiliation(s)
- Zhixiang Yuan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yiguo Lei
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Boquan Wan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Miao Yang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yue Jiang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Changxu Tian
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongduo Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Wei Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China.
| |
Collapse
|
32
|
Mehravar M, Wong JJL. Interplay between N 6-adenosine RNA methylation and mRNA splicing. Curr Opin Genet Dev 2024; 87:102211. [PMID: 38838495 DOI: 10.1016/j.gde.2024.102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
N6-methyladenosine (m6A) is the most abundant modification to mRNAs. Loss-of-function studies of main m6A regulators have indicated the role of m6A in pre-mRNA splicing. Recent studies have reported the role of splicing in preventing m6A deposition. Understanding the interplay between m6A and mRNA splicing holds the potential to clarify the significance of these fundamental molecular mechanisms in cell development and function, thereby shedding light on their involvement in the pathogenesis of myriad diseases.
Collapse
Affiliation(s)
- Majid Mehravar
- Epigenetics and RNA Biology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Justin J-L Wong
- Epigenetics and RNA Biology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia.
| |
Collapse
|
33
|
Liao Y, Zhang F, Yang F, Huang S, Su S, Tan X, Zhong L, Deng L, Pang L. METTL16 participates in haemoglobin H disease through m6A modification. PLoS One 2024; 19:e0306043. [PMID: 39088431 PMCID: PMC11293636 DOI: 10.1371/journal.pone.0306043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/10/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Haemoglobin H (HbH) disease is caused by a disorder of α-globin synthesis, and it results in a wide range of clinical symptoms. M6A methylation modification may be one of the mechanisms of heterogeneity. Therefore, this article explored the role of methyltransferase like 16 (METTL16) in HbH disease. METHOD The results of epigenetic transcriptome microarray were analysed and verified through bioinformatic methods and qRT-PCR, respectively. The overexpression or knock down of METTL16 in K562 cells was examined to determine its role in reactive oxygen species (ROS), cell cycle processes or iron overload. YTH domain family protein 3 (YTHDF3) was knocked down in K562 cells and K562 cells overexpressing METTL16 via siRNA to investigate its function. In addition, haemoglobin expression was detected through benzidine staining. qRT-PCR, WB, methylated RNA Immunoprecipitation (MeRIP) and (RNA Immunoprecipitation) RIP experiments were conducted to explore the mechanism of intermolecular interaction. RESULTS METTL16, YTHDF3 and solute carrier family 5 member 3 (SLC5A3) mRNA and the methylation level of SLC5A3 mRNA were downregulated in HbH patients. Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) mRNA expression was negatively correlated with HGB content among patients with HbH-CS disease. Overexpression of METTL16 increased ROS and intracellular iron contents in K562 cells, changed the K562 cell cycle, reduced hemin-induced haemoglobin synthesis, increased the expressions of SLC5A3 and HBG and increased SLC5A3 mRNA methylation levels. Knockdown of METTL16 reduced ROS and intracellular iron contents in K562 cells. Hemin treatment of K562 cells for more than 14 days reduced the protein expressions of METTL16 and SLC5A3 and SLC5A3 mRNA methylation levels. Knockdown of YTHDF3 rescued the intracellular iron content changes induced by the overexpression of METTL16. The RIP experiment revealed that SLC5A3 mRNA can be enriched by METTL16 antibody. CONCLUSION METTL16 may affect the expression of SLC5A3 by changing its m6A modification level and regulating ROS synthesis, intracellular iron and cycle of red blood cells. Moreover, METTL16 possibly affects the expression of haemoglobin through IGF2BP3, which regulates the clinical phenotype of HbH disease.
Collapse
Affiliation(s)
- Yuping Liao
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Feng Zhang
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Center of Reproductive Medicine, Seven Affiliated Hospital of Guangxi Medical University (Wuzhou Gongren Hospital), Wuzhou, Guangxi, China
| | - Fang Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shijin Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Sha Su
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xuemei Tan
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Linlin Zhong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lingjie Deng
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lihong Pang
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Thalassemia Research, Nanning, Guangxi, China
- NHC Key Laboratory of Thalassemia Medicine (Guangxi Medical University), Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, Guangxi, China
| |
Collapse
|
34
|
Elvira-Blázquez D, Fernández-Justel JM, Arcas A, Statello L, Goñi E, González J, Ricci B, Zaccara S, Raimondi I, Huarte M. YTHDC1 m 6A-dependent and m 6A-independent functions converge to preserve the DNA damage response. EMBO J 2024; 43:3494-3522. [PMID: 38951610 PMCID: PMC11329685 DOI: 10.1038/s44318-024-00153-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Cells have evolved a robust and highly regulated DNA damage response to preserve their genomic integrity. Although increasing evidence highlights the relevance of RNA regulation, our understanding of its impact on a fully efficient DNA damage response remains limited. Here, through a targeted CRISPR-knockout screen, we identify RNA-binding proteins and modifiers that participate in the p53 response. Among the top hits, we find the m6A reader YTHDC1 as a master regulator of p53 expression. YTHDC1 binds to the transcription start sites of TP53 and other genes involved in the DNA damage response, promoting their transcriptional elongation. YTHDC1 deficiency also causes the retention of introns and therefore aberrant protein production of key DNA damage factors. While YTHDC1-mediated intron retention requires m6A, TP53 transcriptional pause-release is promoted by YTHDC1 independently of m6A. Depletion of YTHDC1 causes genomic instability and aberrant cancer cell proliferation mediated by genes regulated by YTHDC1. Our results uncover YTHDC1 as an orchestrator of the DNA damage response through distinct mechanisms of co-transcriptional mRNA regulation.
Collapse
Affiliation(s)
- Daniel Elvira-Blázquez
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - José Miguel Fernández-Justel
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Aida Arcas
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
- Clarivate, Barcelona, Spain
| | - Luisa Statello
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Enrique Goñi
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Jovanna González
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Benedetta Ricci
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sara Zaccara
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ivan Raimondi
- New York Genome Center, New York, NY, USA.
- Weill Cornell Medicine, New York, NY, USA.
| | - Maite Huarte
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
35
|
Hu R, Liao P, Xu B, Qiu Y, Zhang H, Li Y. N6-methyladenosine RNA modifications: a potential therapeutic target for AML. Ann Hematol 2024; 103:2601-2612. [PMID: 37548690 DOI: 10.1007/s00277-023-05302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/26/2023] [Indexed: 08/08/2023]
Abstract
N6-methyladenosine (m6A) RNA modification has recently emerged as an essential regulator of normal and malignant hematopoiesis. As a reversible epigenetic modification found in messenger RNAs and non-coding RNAs, m6A affects the fate of the modified RNA molecules. It is essential in most vital bioprocesses, contributing to cancer development. Here, we review the up-to-date knowledge of the pathological functions and underlying molecular mechanism of m6A modifications in normal hematopoiesis, leukemia pathogenesis, and drug response/resistance. At last, we discuss the critical role of m6A in immune response, the therapeutic potential of targeting m6A regulators, and the possible combination therapy for AML.
Collapse
MESH Headings
- Humans
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/drug therapy
- Epigenesis, Genetic
- Hematopoiesis/genetics
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Molecular Targeted Therapy
- Animals
- Drug Resistance, Neoplasm/genetics
- RNA Processing, Post-Transcriptional
Collapse
Affiliation(s)
- Rong Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Peiyun Liao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Binyan Xu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Honghao Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, People's Republic of China.
| |
Collapse
|
36
|
Qiu T, Zeng L, Chen Y, Yang Y. Nucleic acid demethylase MpAlkB1 regulates the growth, development, and secondary metabolite biosynthesis in Monascus purpureus. World J Microbiol Biotechnol 2024; 40:282. [PMID: 39060812 DOI: 10.1007/s11274-024-04094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Nucleic acid demethylases of α-ketoglutarate-dependent dioxygenase (AlkB) family can reversibly erase methyl adducts from nucleobases, thus dynamically regulating the methylation status of DNA/RNA and playing critical roles in multiple cellular processes. But little is known about AlkB demethylases in filamentous fungi so far. The present study reports that Monascus purpureus genomes contain a total of five MpAlkB genes. The MpAlkB1 gene was disrupted and complemented through homologous recombination strategy to analyze its biological functions in M. purpureus. MpAlkB1 knockout significantly accelerated the growth of strain, increased biomass, promoted sporulation and cleistothecia development, reduced the content of Monascus pigments (Mps), and strongly inhibited citrinin biosynthesis. The downregulated expression of the global regulator gene LaeA, and genes of Mps biosynthesis gene cluster (BGC) or citrinin BGC in MpAlkB1 disruption strain supported the pleiotropic trait changes caused by MpAlkB1 deletion. These results indicate that MpAlkB1-mediated demethylation of nucleic acid plays important roles in regulating the growth and development, and secondary metabolism in Monascus spp.
Collapse
Affiliation(s)
- Tiaoshuang Qiu
- Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Lingqing Zeng
- Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yuling Chen
- Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yingwu Yang
- Bioengineering College, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
37
|
Yang K, Zhao Y, Hu J, Gao R, Shi J, Wei X, Chen J, Hu K, Sun A, Ge J. ALKBH5 induces fibroblast-to-myofibroblast transformation during hypoxia to protect against cardiac rupture after myocardial infarction. J Adv Res 2024; 61:193-209. [PMID: 37689242 PMCID: PMC11258655 DOI: 10.1016/j.jare.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
INTRODUCTION N6-methyladenosine (m6A) methylation produces a marked effect on cardiovascular diseases. The m6A demethylase AlkB homolog 5 (ALKBH5), as an m6A "eraser", is responsible for decreased m6A modification. However, its role in cardiac fibroblasts during the post-myocardial infarction (MI) healing process remains elusive. OBJECTIVES To investigate the effect of ALKBH5 in cardiac fibroblasts during infarct repair. METHODS MI was mimicked by permanent left anterior descending artery ligation in global ALKBH5-knockout, ALKBH5-knockin, and fibroblast-specific ALKBH5-knockout mice to study the function of ALKBH5 during post-MI collagen repair. Methylated RNA immunoprecipitation sequencing was performed to explore potential ALKBH5 targets. RESULTS Dramatic alterations in ALKBH5 expression were observed during the early stages post-MI and in hypoxic fibroblasts. Global ALKBH5 knockin reduced infarct size and ameliorated cardiac function after MI. The global and fibroblast-specific ALKBH5-knockout mice both exhibited low survival rates along with poor collagen repair, impaired cardiac function, and cardiac rupture. Both in vivo and in vitro ALKBH5 loss resulted in impaired fibroblast activation and decreased collagen deposition. Additionally, hypoxia, but not TGF-β1 or Ang II, upregulated ALKBH5 expression in myofibroblasts by HIF-1α-dependent transcriptional regulation. Mechanistically, ALKBH5 promoted the stability of ErbB4 mRNA and the degradation of ST14 mRNA via m6A demethylation. Fibroblast-specific ErbB4 overexpression ameliorated the impaired fibroblast-to-myofibroblast transformation and poor post-MI repair due to ALKBH5 knockout. CONCLUSION Fibroblast ALKBH5 positively regulates post-MI healing by stabilization of ErbB4 mRNA in an m6A-dependent manner. ALKBH5/ErbB4 might be potential therapeutic targets for post-MI cardiac rupture.
Collapse
Affiliation(s)
- Kun Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Yongchao Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou Province, China
| | - Jingjing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, China
| | - Rifeng Gao
- The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Jiaran Shi
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, China
| | - Xiang Wei
- The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Juntao Chen
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| |
Collapse
|
38
|
Chao X, Guo L, Ye C, Liu A, Wang X, Ye M, Fan Z, Luan K, Chen J, Zhang C, Liu M, Zhou B, Zhang X, Li Z, Luo Q. ALKBH5 regulates chicken adipogenesis by mediating LCAT mRNA stability depending on m 6A modification. BMC Genomics 2024; 25:634. [PMID: 38918701 PMCID: PMC11197345 DOI: 10.1186/s12864-024-10537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Previous studies have demonstrated the role of N6-methyladenosine (m6A) RNA methylation in various biological processes, our research is the first to elucidate its specific impact on LCAT mRNA stability and adipogenesis in poultry. RESULTS The 6 100-day-old female chickens were categorized into high (n = 3) and low-fat chickens (n = 3) based on their abdominal fat ratios, and their abdominal fat tissues were processed for MeRIP-seq and RNA-seq. An integrated analysis of MeRIP-seq and RNA-seq omics data revealed 16 differentially expressed genes associated with to differential m6A modifications. Among them, ELOVL fatty acid elongase 2 (ELOVL2), pyruvate dehydrogenase kinase 4 (PDK4), fatty acid binding protein 9 (PMP2), fatty acid binding protein 1 (FABP1), lysosomal associated membrane protein 3 (LAMP3), lecithin-cholesterol acyltransferase (LCAT) and solute carrier family 2 member 1 (SLC2A1) have ever been reported to be associated with adipogenesis. Interestingly, LCAT was down-regulated and expressed along with decreased levels of mRNA methylation methylation in the low-fat group. Mechanistically, the highly expressed ALKBH5 gene regulates LCAT RNA demethylation and affects LCAT mRNA stability. In addition, LCAT inhibits preadipocyte proliferation and promotes preadipocyte differentiation, and plays a key role in adipogenesis. CONCLUSIONS In conclusion, ALKBH5 mediates RNA stability of LCAT through demethylation and affects chicken adipogenesis. This study provides a theoretical basis for further understanding of RNA methylation regulation in chicken adipogenesis.
Collapse
Affiliation(s)
- Xiaohuan Chao
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lijin Guo
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chutian Ye
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Aijun Liu
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaomeng Wang
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Mao Ye
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhexia Fan
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kang Luan
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiahao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Manqing Liu
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiquan Zhang
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhenhui Li
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China.
- College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Qingbin Luo
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China.
- College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
39
|
Ma T, Zhang Q, Zhang S, Yue D, Wang F, Ren Y, Zhang H, Wang Y, Wu Y, Liu LE, Yu F. Research progress of human key DNA and RNA methylation-related enzymes assay. Talanta 2024; 273:125872. [PMID: 38471421 DOI: 10.1016/j.talanta.2024.125872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/18/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024]
Abstract
Gene methylation-related enzymes (GMREs) are disfunction and aberrantly expressed in a variety of cancers, such as lung, gastric, and pancreatic cancers and have important implications for human health. Therefore,it is critical for early diagnosis and therapy of tumor to develop strategies that allow rapid and sensitive quantitative and qualitative detection of GMREs. With the development of modern analytical techniques and the application of various biosensors, there are numerous methods have been developed for analysis of GMREs. Therefore, this paper provides a systematic review of the strategies for level and activity assay of various GMREs including methyltransferases and demethylase. The detection methods mainly involve immunohistochemistry, colorimetry, fluorescence, chemiluminescence, electrochemistry, etc. Then, this review also addresses the coordinated role of various detection probes, novel nanomaterials, and signal amplification methods. The aim is to highlight potential challenges in the present field, to expand the analytical application of GMREs detection strategies, and to meet the urgent need for future disease diagnosis and intervention.
Collapse
Affiliation(s)
- Tiantian Ma
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Qiongwen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuying Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Dan Yue
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fanting Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yujie Ren
- School of Information Management, Zhengzhou University, Zhengzhou 450001, China
| | - Hengmiao Zhang
- School of Information Management, Zhengzhou University, Zhengzhou 450001, China
| | - Yinuo Wang
- Zhengzhou Foreign Language School, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Li-E Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fei Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
40
|
蒋 婷, 张 学, 许 文. [The Roles of N 6-Methyladenosine Modification and Its Regulators in Male Reproduction]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:527-534. [PMID: 38948273 PMCID: PMC11211765 DOI: 10.12182/20240560103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Indexed: 07/02/2024]
Abstract
Infertility affects an estimated 10 to 15 percent of couples worldwide, with approximately half of the cases attributed to male-related issues. Most men diagnosed with infertility exhibit symptoms such as oligospermia, asthenospermia, azoospermia, and compromised sperm quality. Spermatogenesis is a complex and tightly coordinated process of germ cell differentiation, precisely regulated at transcriptional, posttranscriptional, and translational levels to ensure stage-specific gene expression during the development of spermatogenic cells and normal spermiogenesis. N6-methyladenosine (m6A) stands out as the most prevalent modification on eukaryotic mRNA, playing pivotal roles in various biological processes, including mRNA splicing, transportation, and translation. RNA methylation modification is a dynamic and reversible process primarily mediated by "writers", removed by "erasers", and recognized by "readers". In mammals, the aberrant methylation modification of m6A on mRNA is associated with a variety of diseases, including male infertility. However, the precise involvement of disrupted m6A modification in the pathogenesis of human male infertility remains unresolved. Intriguingly, a significant correlation has been found between the expression levels of m6A regulators in the testis and the severity of sperm concentration, motility, and morphology. Aberrant expression patterns of m6A regulatory proteins have been detected in anomalous human semen samples, including those of oligospermia, asthenozoospermia, and azoospermia. Furthermore, the examination of both sperm samples and testicular tissues revealed abnormal mRNA m6A modification, leading to reduced sperm motility and concentration in infertile men. Consequently, it is hypothesized that dysregulation of m6A modification might serve as an integral link in the mechanism of male infertility. This paper presents a comprehensive review of the recent discoveries regarding the spatial and temporal expression dynamics of m6A regulators in testicular tissues and the correlation between deregulated m6A regulators and human male infertility. Previous studies predominantly utilized constitutive or conditional knockout animal models for testicular phenotypic investigations. However, gene suppression in additional tissues could potentially influence the testis in constitutive knockout models. Furthermore, considering the compromised spermatogenesis observed in constitutive animals, distinguishing between the indirect effects of gene depletion on testicular development and its direct impact on the spermatogenic process is challenging, due to their intricate relationship. Such confounding factors might compromise the validity of the findings. To address this challenge, an inducible and conditional gene knockout model may serve as a superior approach. To date, nearly all reported studies have concentrated solely on the level changes of m6A and its regulators in germs cells, while the understanding of the function of m6A modification in testicular somatic cells remains limited. Testicular somatic cells, including peritubular myoid cells, Sertoli cells, and Leydig cells, play indispensable roles during spermatogenesis. Hence, comprehensive exploration of m6A modification within these cells as an additional crucial regulatory mechanism is warranted. In addition, exploration into the presence of unique methylation mechanisms or m6A regulatory factors within the testes is warranted. To elucidate the role of m6A modification in germ cells and testicular somatic cells, detailed experimental strategies need to be implemented. Among them, manipulation of the levels of key enzymes involved in m6A methylation and demethylation might be the most effective approach. Moreover, comprehensive analysis of the gene expression profiles involved in various signaling pathways, such as Wnt/β-catenin, Ras/MAPK, and Hippo, in m6A-modified germ cells and testicular somatic cells can provide more insight into its regulatory role in the spermatogenesis process. Further research in this area could provide valuable insights for developing innovative strategies to treat male infertility. Finally, considering the mitigation impact of m6A imbalance regulation on disease, investigation concerning whether restoring the equilibrium of m6A modification regulation can restore normal spermatogenesis function is essential, potentially elucidating the pivotal clinical significance of m6A modulation in male infertility.
Collapse
Affiliation(s)
- 婷 蒋
- 四川大学华西第二医院 生殖遗传与表观遗传调控研究室 (成都 610041)Laboratory of Reproductive Genetics and Epigenetic Regulatio, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 出生缺陷与相关妇儿疾病教育部重点实验室(四川大学) (成都 610041)Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - 学广 张
- 四川大学华西第二医院 生殖遗传与表观遗传调控研究室 (成都 610041)Laboratory of Reproductive Genetics and Epigenetic Regulatio, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 出生缺陷与相关妇儿疾病教育部重点实验室(四川大学) (成都 610041)Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - 文明 许
- 四川大学华西第二医院 生殖遗传与表观遗传调控研究室 (成都 610041)Laboratory of Reproductive Genetics and Epigenetic Regulatio, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 出生缺陷与相关妇儿疾病教育部重点实验室(四川大学) (成都 610041)Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, Sichuan University, Chengdu 610041, China
| |
Collapse
|
41
|
Feng G, Wu Y, Hu Y, Shuai W, Yang X, Li Y, Ouyang L, Wang G. Small molecule inhibitors targeting m 6A regulators. J Hematol Oncol 2024; 17:30. [PMID: 38711100 PMCID: PMC11075261 DOI: 10.1186/s13045-024-01546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
As the most common form of epigenetic regulation by RNA, N6 methyladenosine (m6A) modification is closely involved in physiological processes, such as growth and development, stem cell renewal and differentiation, and DNA damage response. Meanwhile, its aberrant expression in cancer tissues promotes the development of malignant tumors, as well as plays important roles in proliferation, metastasis, drug resistance, immunity and prognosis. This close association between m6A and cancers has garnered substantial attention in recent years. An increasing number of small molecules have emerged as potential agents to target m6A regulators for cancer treatment. These molecules target the epigenetic level, enabling precise intervention in RNA modifications and efficiently disrupting the survival mechanisms of tumor cells, thus paving the way for novel approaches in cancer treatment. However, there is currently a lack of a comprehensive review on small molecules targeting m6A regulators for anti-tumor. Here, we have comprehensively summarized the classification and functions of m6A regulators, elucidating their interactions with the proliferation, metastasis, drug resistance, and immune responses in common cancers. Furthermore, we have provided a comprehensive overview on the development, mode of action, pharmacology and structure-activity relationships of small molecules targeting m6A regulators. Our aim is to offer insights for subsequent drug design and optimization, while also providing an outlook on future prospects for small molecule development targeting m6A.
Collapse
Affiliation(s)
- Guotai Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yongya Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yuan Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Wen Shuai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiao Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yong Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
42
|
Wang HQ, Ma YR, Zhang YX, Wei FH, Zheng Y, Ji ZH, Guo HX, Wang T, Zhang JB, Yuan B. GnRH-driven FTO-mediated RNA m 6A modification promotes gonadotropin synthesis and secretion. BMC Biol 2024; 22:104. [PMID: 38702712 PMCID: PMC11069278 DOI: 10.1186/s12915-024-01905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Gonadotropin precisely controls mammalian reproductive activities. Systematic analysis of the mechanisms by which epigenetic modifications regulate the synthesis and secretion of gonadotropin can be useful for more precise regulation of the animal reproductive process. Previous studies have identified many differential m6A modifications in the GnRH-treated adenohypophysis. However, the molecular mechanism by which m6A modification regulates gonadotropin synthesis and secretion remains unclear. RESULTS Herein, it was found that GnRH can promote gonadotropin synthesis and secretion by promoting the expression of FTO. Highly expressed FTO binds to Foxp2 mRNA in the nucleus, exerting a demethylation function and reducing m6A modification. After Foxp2 mRNA exits the nucleus, the lack of m6A modification prevents YTHDF3 from binding to it, resulting in increased stability and upregulation of Foxp2 mRNA expression, which activates the cAMP/PKA signaling pathway to promote gonadotropin synthesis and secretion. CONCLUSIONS Overall, the study reveals the molecular mechanism of GnRH regulating the gonadotropin synthesis and secretion through FTO-mediated m6A modification. The results of this study allow systematic interpretation of the regulatory mechanism of gonadotropin synthesis and secretion in the pituitary at the epigenetic level and provide a theoretical basis for the application of reproductive hormones in the regulation of animal artificial reproduction.
Collapse
Affiliation(s)
- Hao-Qi Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Yi-Ran Ma
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Yu-Xin Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Fan-Hao Wei
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Yi Zheng
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Zhong-Hao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Hai-Xiang Guo
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Tian Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China.
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China.
| |
Collapse
|
43
|
Li G, Yao Q, Liu P, Zhang H, Liu Y, Li S, Shi Y, Li Z, Zhu W. Critical roles and clinical perspectives of RNA methylation in cancer. MedComm (Beijing) 2024; 5:e559. [PMID: 38721006 PMCID: PMC11077291 DOI: 10.1002/mco2.559] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 01/06/2025] Open
Abstract
RNA modification, especially RNA methylation, is a critical posttranscriptional process influencing cellular functions and disease progression, accounting for over 60% of all RNA modifications. It plays a significant role in RNA metabolism, affecting RNA processing, stability, and translation, thereby modulating gene expression and cell functions essential for proliferation, survival, and metastasis. Increasing studies have revealed the disruption in RNA metabolism mediated by RNA methylation has been implicated in various aspects of cancer progression, particularly in metabolic reprogramming and immunity. This disruption of RNA methylation has profound implications for tumor growth, metastasis, and therapy response. Herein, we elucidate the fundamental characteristics of RNA methylation and their impact on RNA metabolism and gene expression. We highlight the intricate relationship between RNA methylation, cancer metabolic reprogramming, and immunity, using the well-characterized phenomenon of cancer metabolic reprogramming as a framework to discuss RNA methylation's specific roles and mechanisms in cancer progression. Furthermore, we explore the potential of targeting RNA methylation regulators as a novel approach for cancer therapy. By underscoring the complex mechanisms by which RNA methylation contributes to cancer progression, this review provides a foundation for developing new prognostic markers and therapeutic strategies aimed at modulating RNA methylation in cancer treatment.
Collapse
Affiliation(s)
- Ganglei Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Qinfan Yao
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Peixi Liu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Hongfei Zhang
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Yingjun Liu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Sichen Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Yuan Shi
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Zongze Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Wei Zhu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| |
Collapse
|
44
|
Baek A, Lee GE, Golconda S, Rayhan A, Manganaris AA, Chen S, Tirumuru N, Yu H, Kim S, Kimmel C, Zablocki O, Sullivan MB, Addepalli B, Wu L, Kim S. Single-molecule epitranscriptomic analysis of full-length HIV-1 RNAs reveals functional roles of site-specific m 6As. Nat Microbiol 2024; 9:1340-1355. [PMID: 38605174 PMCID: PMC11087264 DOI: 10.1038/s41564-024-01638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 02/15/2024] [Indexed: 04/13/2024]
Abstract
Although the significance of chemical modifications on RNA is acknowledged, the evolutionary benefits and specific roles in human immunodeficiency virus (HIV-1) replication remain elusive. Most studies have provided only population-averaged values of modifications for fragmented RNAs at low resolution and have relied on indirect analyses of phenotypic effects by perturbing host effectors. Here we analysed chemical modifications on HIV-1 RNAs at the full-length, single RNA level and nucleotide resolution using direct RNA sequencing methods. Our data reveal an unexpectedly simple HIV-1 modification landscape, highlighting three predominant N6-methyladenosine (m6A) modifications near the 3' end. More densely installed in spliced viral messenger RNAs than in genomic RNAs, these m6As play a crucial role in maintaining normal levels of HIV-1 RNA splicing and translation. HIV-1 generates diverse RNA subspecies with distinct m6A ensembles, and maintaining multiple of these m6As on its RNAs provides additional stability and resilience to HIV-1 replication, suggesting an unexplored viral RNA-level evolutionary strategy.
Collapse
Affiliation(s)
- Alice Baek
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, Ohio State University, Columbus, OH, USA
| | - Ga-Eun Lee
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, Ohio State University, Columbus, OH, USA
- Translational Data Analytics Institute, Ohio State University, Columbus, OH, USA
| | - Sarah Golconda
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, Ohio State University, Columbus, OH, USA
| | - Asif Rayhan
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Anastasios A Manganaris
- Translational Data Analytics Institute, Ohio State University, Columbus, OH, USA
- Department of Computer Science and Engineering, Ohio State University, Columbus, OH, USA
| | - Shuliang Chen
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
| | - Nagaraja Tirumuru
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
| | - Hannah Yu
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, Ohio State University, Columbus, OH, USA
| | - Shihyoung Kim
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, Ohio State University, Columbus, OH, USA
| | - Christopher Kimmel
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
- Translational Data Analytics Institute, Ohio State University, Columbus, OH, USA
| | - Olivier Zablocki
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Matthew B Sullivan
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, USA
| | - Balasubrahmanyam Addepalli
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Sanggu Kim
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA.
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA.
- Infectious Diseases Institute, Ohio State University, Columbus, OH, USA.
- Translational Data Analytics Institute, Ohio State University, Columbus, OH, USA.
- Center for RNA Biology, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
45
|
Wang B, Zhang Y, Niu H, Zhao X, Chen G, Zhao Q, Ma G, Du S, Zeng Z. METTL3-Mediated STING Upregulation and Activation in Kupffer Cells Contribute to Radiation-Induced Liver Disease via Pyroptosis. Int J Radiat Oncol Biol Phys 2024; 119:219-233. [PMID: 37914138 DOI: 10.1016/j.ijrobp.2023.10.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/17/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
PURPOSE Radiation therapy is a vital adjuvant treatment for liver cancer, although the challenge of radiation-induced liver diseases (RILDs) limits its implementation. Kupffer cells (KCs) are a crucial cell population of the hepatic immune system, and their biologic function can be modulated by multiple epigenetic RNA modifications, including N6-methyladenosine (m6A) methylation. However, the mechanism for m6A methylation in KC-induced inflammatory responses in RILD remains unclear. The present study investigated the function of m6A modification in KCs contributing to RILD. METHODS AND MATERIALS Methylated RNA-immunoprecipitation sequencing and RNA transcriptome sequencing were used to explore the m6A methylation profile of primary KCs isolated from mice after irradiation with 3 × 8 Gy. Western blotting and quantitative real-time PCR were used to evaluate gene expression. DNA pulldown and chromatin immunoprecipitation assays were performed to verify target gene binding and identify binding sites. RESULTS Methylated RNA-immunoprecipitation sequencing revealed significantly increased m6A modification levels in human KCs after irradiation, suggesting the potential role of upregulated m6A in RILD. In addition, the study results corroborated that methyltransferase-like 3 (METTL3) acts as a main modulator to promote the methylation and gene expression of TEAD1, leading to STING-NLRP3 signaling activation. Importantly, it was shown that IGF2BP2 functions as an m6A "reader" to recognize methylated TEAD1 mRNA and promote its stability. METTL3/TEAD1 knockdown abolished the activation of STING-NLRP3 signaling, protected against RILD, and suppressed inflammatory cytokines and hepatocyte apoptosis. Moreover, clinical human normal liver tissue samples collected after irradiation showed increased expression of STING and interleukin-1β in KCs compared with nonirradiated samples. Notably, STING pharmacologic inhibition alleviated irradiation-induced liver injury in mice, indicating its potential therapeutic role in RILD. CONCLUSIONS The results of our study reveal that TEAD1-STING-NLRP3 signaling activation contributes to RILD via METTL3-dependent m6A modification.
Collapse
Affiliation(s)
- Biao Wang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Niu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaomei Zhao
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Genwen Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qianqian Zhao
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guifen Ma
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shisuo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Zhaochong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
46
|
Guan Q, Zhang X, Liu J, Zhou C, Zhu J, Wu H, Zhuo Z, He J. ALKBH5 gene polymorphisms and risk of neuroblastoma in Chinese children from Jiangsu Province. CANCER INNOVATION 2024; 3:e103. [PMID: 38946930 PMCID: PMC11212286 DOI: 10.1002/cai2.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 07/02/2024]
Abstract
Background Neuroblastoma is one of the most common extracranial malignant solid tumors in children. AlkB homolog 5 (ALKBH5) is an RNA N6-methyladenosine (m6A) demethylase that plays a critical role in tumorigenesis and development. We assessed the association between single nucleotide polymorphisms (SNPs) in ALKBH5 and the risk of neuroblastoma in a case-control study including 402 patients and 473 non-cancer controls. Methods Genotyping was determined by the TaqMan method. The association between ALKBH5 polymorphisms (rs1378602 and rs8400) and the risk of neuroblastoma was evaluated using the odds ratio (OR) and 95% confidence interval (CI). Results We found no strong association of ALKBH5 rs1378602 and rs8400 with neuroblastoma risk. Further stratification analysis by age, sex, primary site, and clinical stage showed that the rs1378602 AG/AA genotype was associated with a lower risk of neuroblastoma in males (adjusted OR = 0.58, 95% CI = 0.35-0.97, p = 0.036) and children with retroperitoneal neuroblastoma (adjusted OR = 0.58, 95% CI = 0.34-0.98, p = 0.040). Conclusions ALKBH5 SNPs do not seem to be associated with neuroblastoma risk. More studies are required to confirm this negative result and reveal the relationship between gene polymorphisms of the m6A modifier ALKBH5 and neuroblastoma.
Collapse
Affiliation(s)
- Qian Guan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Xinxin Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Jiabin Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Chunlei Zhou
- Department of PathologyChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Jinhong Zhu
- Department of Clinical Laboratory, BiobankHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Haiyan Wu
- Department of PathologyChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
- Laboratory Animal Center, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenGuangdongChina
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
47
|
Leonetti AM, Galluzzo IR, McLean TAD, Stefanelli G, Ramnaraign F, Holm S, Winston SM, Reeves IL, Brimble MA, Walters BJ. The role of the m6A/m demethylase FTO in memory is both task and sex-dependent in mice. Neurobiol Learn Mem 2024; 210:107903. [PMID: 38403011 DOI: 10.1016/j.nlm.2024.107903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Formation of long-term memories requires learning-induced changes in both transcription and translation. Epitranscriptomic modifications of RNA recently emerged as critical regulators of RNA dynamics, whereby adenosine methylation (m6A) regulates translation, mRNA stability, mRNA localization, and memory formation. Prior work demonstrated a pro-memory phenotype of m6A, as loss of m6A impairs and loss of the m6A/m demethylase FTO improves memory formation. Critically, these experiments focused exclusively on aversive memory tasks and were only performed in male mice. Here we show that the task type and sex of the animal alter effects of m6A on memory, whereby FTO-depletion impaired object location memory in male mice, in contrast to the previously reported beneficial effects of FTO depletion on aversive memory. Additionally, we show that female mice have no change in performance after FTO depletion, demonstrating that sex of the mouse is a critical variable for understanding how m6A contributes to memory formation. Our study provides the first evidence for FTO regulation of non-aversive spatial memory and sexspecific effects of m6A, suggesting that identification of differentially methylated targets in each sex and task will be critical for understanding how epitranscriptomic modifications regulate memory.
Collapse
Affiliation(s)
- Amanda M Leonetti
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada; Department of Cell & Systems Biology, University of Toronto, Toronto, ON, M5S 3G3, Canada; Department of Psychology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada; Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.
| | - Isabella R Galluzzo
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, M5S 3G3, Canada.
| | - Timothy A D McLean
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, M5S 3G3, Canada.
| | - Gilda Stefanelli
- Department of Biology, University of Ottawa, Ottawa, Marie-Curie Private, ON K1N 9A, Canada.
| | - Fiona Ramnaraign
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
| | - Samuel Holm
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
| | - Stephen M Winston
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Isaiah L Reeves
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Mark A Brimble
- Dept of Host-Microbe Interactions, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Brandon J Walters
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada; Department of Cell & Systems Biology, University of Toronto, Toronto, ON, M5S 3G3, Canada.
| |
Collapse
|
48
|
Yao Y, Liu P, Li Y, Wang W, Jia H, Bai Y, Yuan Z, Yang Z. Regulatory role of m 6A epitranscriptomic modifications in normal development and congenital malformations during embryogenesis. Biomed Pharmacother 2024; 173:116171. [PMID: 38394844 DOI: 10.1016/j.biopha.2024.116171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 02/25/2024] Open
Abstract
The discovery of N6-methyladenosine (m6A) methylation and its role in translation has led to the emergence of a new field of research. Despite accumulating evidence suggesting that m6A methylation is essential for the pathogenesis of cancers and aging diseases by influencing RNA stability, localization, transformation, and translation efficiency, its role in normal and abnormal embryonic development remains unclear. An increasing number of studies are addressing the development of the nervous and gonadal systems during embryonic development, but only few are assessing that of the immune, hematopoietic, urinary, and respiratory systems. Additionally, these studies are limited by the requirement for reliable embryonic animal models and the difficulty in collecting tissue samples of fetuses during development. Multiple studies on the function of m6A methylation have used suitable cell lines to mimic the complex biological processes of fetal development or the early postnatal phase; hence, the research is still in the primary stage. Herein, we discuss current advances in the extensive biological functions of m6A methylation in the development and maldevelopment of embryos/fetuses and conclude that m6A modification occurs extensively during fetal development. Aberrant expression of m6A regulators is probably correlated with single or multiple defects in organogenesis during the intrauterine life. This comprehensive review will enhance our understanding of the pivotal role of m6A modifications involved in fetal development and examine future research directions in embryogenesis.
Collapse
Affiliation(s)
- Yifan Yao
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Peiqi Liu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Li
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Weilin Wang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huimin Jia
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
49
|
Gao S, Wang Y, Li X, Liang Y, Jin Z, Yang B, Yuan TF, Tian H, Peng B, Rao Y. Dynamics of N6-methyladenosine modification during Alzheimer's disease development. Heliyon 2024; 10:e26911. [PMID: 38496847 PMCID: PMC10944207 DOI: 10.1016/j.heliyon.2024.e26911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
N6-methyladenosine (m6A) modification is a common RNA modification in the central nervous system and has been linked to various neurological disorders, including Alzheimer's disease (AD). However, the dynamic of mRNA m6A modification and m6A enzymes during the development of AD are not well understood. Therefore, this study examined the expression profiles of m6A and its enzymes in the development of AD. The results showed that changes in the expression levels of m6A regulatory factors occur in the early stages of AD, indicating a potential role for m6A modification in the onset of the disease. Additionally, the analysis of mRNA m6A expression profiles using m6A-seq revealed significant differences in m6A modification between AD and control brains. The genes with differential methylation were found to be enriched in GO and KEGG terms related to processes such as inflammation response, immune system processes. And the differently expressed genes (DEGs) are negatively lryassociated with genes involved in microglia hemostasis, but positively associated with genes related to "disease-associated microglia" (DAM) associated genes. These findings suggest that dysregulation of mRNA m6A modification may contribute to the development of AD by affecting the function and gene expression of microglia.
Collapse
Affiliation(s)
- Shuai Gao
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, 200040, China
| | - Yuqing Wang
- Department of Neurology, Zhongshan Hospital, Department of Laboratory Animal Science, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Medical Science, Medical College of Jinzhou Medical University, Jinzhou, Liaoning, 121010, China
| | - Xiaoyu Li
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, 200040, China
| | - Yuqing Liang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhihao Jin
- Department of Neurology, Zhongshan Hospital, Department of Laboratory Animal Science, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Baozhi Yang
- Department of Neurology, Zhongshan Hospital, Department of Laboratory Animal Science, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China
| | - Hengli Tian
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Bo Peng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, 200040, China
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yanxia Rao
- Department of Neurology, Zhongshan Hospital, Department of Laboratory Animal Science, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| |
Collapse
|
50
|
Sun L, Chen X, Zhu S, Wang J, Diao S, Liu J, Xu J, Li X, Sun Y, Huang C, Meng X, Lv X, Li J. Decoding m 6A mRNA methylation by reader proteins in liver diseases. Genes Dis 2024; 11:711-726. [PMID: 37692496 PMCID: PMC10491919 DOI: 10.1016/j.gendis.2023.02.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/22/2023] [Indexed: 09/12/2023] Open
Abstract
N6-methyladenosine (m6A) is a dynamic and reversible epigenetic regulation. As the most prevalent internal post-transcriptional modification in eukaryotic RNA, it participates in the regulation of gene expression through various mechanisms, such as mRNA splicing, nuclear export, localization, translation efficiency, mRNA stability, and structural transformation. The involvement of m6A in the regulation of gene expression depends on the specific recognition of m6A-modified RNA by reader proteins. In the pathogenesis and treatment of liver disease, studies have found that the expression levels of key genes that promote or inhibit the development of liver disease are regulated by m6A modification, in which abnormal expression of reader proteins determines the fate of these gene transcripts. In this review, we introduce m6A readers, summarize the recognition and regulatory mechanisms of m6A readers on mRNA, and focus on the biological functions and mechanisms of m6A readers in liver cancer, viral hepatitis, non-alcoholic fatty liver disease (NAFLD), hepatic fibrosis (HF), acute liver injury (ALI), and other liver diseases. This information is expected to be of high value to researchers deciphering the links between m6A readers and human liver diseases.
Collapse
Affiliation(s)
- Lijiao Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xin Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Sai Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Jianan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
| | - Shaoxi Diao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinyu Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinjin Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiaofeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
| | - Yingyin Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiaoming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
| | - Xiongwen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|