1
|
Yang H, Liu Y, Chen L, Zhao J, Guo M, Zhao X, Wen Z, He Z, Chen C, Xu L. MiRNA-Based Therapies for Lung Cancer: Opportunities and Challenges? Biomolecules 2023; 13:877. [PMID: 37371458 DOI: 10.3390/biom13060877] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Lung cancer is a commonly diagnosed cancer and the leading cause of cancer-related deaths, posing a serious health risk. Despite new advances in immune checkpoint and targeted therapies in recent years, the prognosis for lung cancer patients, especially those in advanced stages, remains poor. MicroRNAs (miRNAs) have been shown to modulate tumor development at multiple levels, and as such, miRNA mimics and molecules aimed at regulating miRNAs have shown promise in preclinical development. More importantly, miRNA-based therapies can also complement conventional chemoradiotherapy, immunotherapy, and targeted therapies to reverse drug resistance and increase the sensitivity of lung cancer cells. Furthermore, small interfering RNA (siRNA) and miRNA-based therapies have entered clinical trials and have shown favorable development prospects. Therefore, in this paper, we review recent advances in miRNA-based therapies in lung cancer treatment as well as adjuvant therapy and present the current state of clinical lung cancer treatment. We also discuss the challenges facing miRNA-based therapies in the clinical application of lung cancer treatment to provide new ideas for the development of novel lung cancer therapies.
Collapse
Affiliation(s)
- Han Yang
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Yufang Liu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Longqing Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Zhenke Wen
- Institute of Biomedical Research, Soochow University, Soochow 563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
2
|
The Role of Different Types of microRNA in the Pathogenesis of Breast and Prostate Cancer. Int J Mol Sci 2023; 24:ijms24031980. [PMID: 36768298 PMCID: PMC9916830 DOI: 10.3390/ijms24031980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Micro ribonucleic acids (microRNAs or miRNAs) form a distinct subtype of non-coding RNA and are widely recognized as one of the most significant gene expression regulators in mammalian cells. Mechanistically, the regulation occurs through microRNA binding with its response elements in the 3'-untranslated region of target messenger RNAs (mRNAs), resulting in the post-transcriptional silencing of genes, expressing target mRNAs. Compared to small interfering RNAs, microRNAs have more complex regulatory patterns, making them suitable for fine-tuning gene expressions in different tissues. Dysregulation of microRNAs is well known as one of the causative factors in malignant cell growth. Today, there are numerous data points regarding microRNAs in different cancer transcriptomes, the specificity of microRNA expression changes in various tissues, and the predictive value of specific microRNAs as cancer biomarkers. Breast cancer (BCa) is the most common cancer in women worldwide and seriously impairs patients' physical health. Its incidence has been predicted to rise further. Mounting evidence indicates that microRNAs play key roles in tumorigenesis and development. Prostate cancer (PCa) is one of the most commonly diagnosed cancers in men. Different microRNAs play an important role in PCa. Early diagnosis of BCa and PCa using microRNAs is very useful for improving individual outcomes in the framework of predictive, preventive, and personalized (3P) medicine, thereby reducing the economic burden. This article reviews the roles of different types of microRNA in BCa and PCa progression.
Collapse
|
3
|
The Role of MicroRNAs in HER2-Positive Breast Cancer: Where We Are and Future Prospective. Cancers (Basel) 2022; 14:cancers14215326. [PMID: 36358746 PMCID: PMC9657949 DOI: 10.3390/cancers14215326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Breast cancer is the most diagnosed malignancy in woman worldwide and, despite the availability of new innovative therapies, it remains the first cause of death for tumor in woman. 20% of all breast cancer cases are HER2 positive, meaning that they are characterized by an aberrant expression of the growth factor receptor HER2. This receptor is involved in survival and proliferation mechanisms, conferring to this breast cancer subtype a particular aggressiveness. The introduction of anti-HER2 agents, such as trastuzumab, in the clinical practice, significantly improved the prognosis. However, a great portion of patients is not responsive to this therapy. Thus, cancer research is working to provide new tools to better manage HER2 positive breast cancers, such as biomarkers and therapeutic approaches. MicroRNAs could be used for these purposes. They are small molecules involved in almost all biological processes, including cancer promoting pathways. Researchers consider microRNAs as promising clinical tools because they are easily detectable and stable in both tissues and blood samples, and an increasing body of evidence supports their potential use as targets of therapy, prognostic and predictive biomarkers, or therapeutic agents. This review sums up the most recent scientific publications about microRNAs in HER2 positive breast cancer. Abstract Breast cancer that highly expresses human epidermal growth factor receptor 2 (HER2+) represents one of the major breast cancer subtypes, and was associated with a poor prognosis until the introduction of HER2-targeted therapies such as trastuzumab. Unfortunately, up to 30% of patients with HER2+ localized breast cancer continue to relapse, despite treatment. MicroRNAs (miRNAs) are small (approximately 20 nucleotides long) non-coding regulatory oligonucleotides. They function as post-transcriptional regulators of gene expression, binding complementarily to a target mRNA and leading to the arrest of translation or mRNA degradation. In the last two decades, translational research has focused on these small molecules because of their highly differentiated expression patterns in blood and tumor tissue, as well as their potential biological function. In cancer research, they have become pivotal for the thorough understanding of oncogenic biological processes. They might also provide an efficient approach to early monitoring of tumor progression or response to therapy. Indeed, changes in their expression patterns can represent a flag for deeper biological changes. In this review, we sum up the recent literature regarding miRNAs in HER2+ breast cancer, taking into account their potential as powerful prognostic and predictive biomarkers, as well as therapeutic tools.
Collapse
|
4
|
Jacob S, Turner TH, Cai J, Floros KV, Yu AK, Coon CM, Khatri R, Alzubi MA, Jakubik CT, Bouck YM, Puchalapalli M, Shende M, Dozmorov MG, Boikos SA, Hu B, Harrell JC, Benes CH, Koblinski JE, Costa C, Faber AC. Genomic screening reveals ubiquitin-like modifier activating enzyme 1 as a potent and druggable target in c-MYC-high triple negative breast cancer models. PNAS NEXUS 2022; 1:pgac232. [PMID: 36712364 PMCID: PMC9802478 DOI: 10.1093/pnasnexus/pgac232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/07/2022] [Indexed: 11/18/2022]
Abstract
Triple negative breast cancer (TNBC) accounts for over 30% of all breast cancer (BC)-related deaths, despite accounting for only 10% to 15% of total BC cases. Targeted therapy development has largely stalled in TNBC, underlined by a lack of traditionally druggable addictions like receptor tyrosine kinases (RTKs). Here, through full genome CRISPR/Cas9 screening of TNBC models, we have uncovered the sensitivity of TNBCs to the depletion of the ubiquitin-like modifier activating enzyme 1 (UBA1). Targeting UBA1 with the first-in-class UBA1 inhibitor TAK-243 induced unresolvable endoplasmic reticulum (ER)-stress and activating transcription factor 4 (ATF4)-mediated upregulation of proapoptotic NOXA, leading to cell death. c-MYC expression correlates with TAK-243 sensitivity and cooperates with TAK-243 to induce a stress response and cell death. Importantly, there was an order of magnitude greater sensitivity of TNBC lines to TAK-243 compared to normal tissue-derived cells. In five patient derived xenograft models (PDXs) of TNBC, TAK-243 therapy led to tumor inhibition or frank tumor regression. Moreover, in an intracardiac metastatic model of TNBC, TAK-243 markedly reduced metastatic burden, indicating UBA1 is a potential new target in TNBC expressing high levels of c-MYC.
Collapse
Affiliation(s)
- Sheeba Jacob
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Tia H Turner
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA,Wright Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Jinyang Cai
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Konstantinos V Floros
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ann K Yu
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Colin M Coon
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Rishabh Khatri
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mohammad A Alzubi
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA,Integrative Life Sciences Program, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Charles T Jakubik
- Center for Cancer Research, Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02129, USA
| | - Ynes M Bouck
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Madhavi Puchalapalli
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Mayuri Shende
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Sosipatros A Boikos
- Hematology, Oncology and Palliative Care, School of Medicine and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Bin Hu
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - J Chuck Harrell
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA,Wright Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA,Integrative Life Sciences Program, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Cyril H Benes
- Center for Cancer Research, Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02129, USA
| | | | | | | |
Collapse
|
5
|
Winder ML, Campbell KJ. MCL-1 is a clinically targetable vulnerability in breast cancer. Cell Cycle 2022; 21:1439-1455. [PMID: 35349392 PMCID: PMC9278428 DOI: 10.1080/15384101.2022.2054096] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 11/03/2022] Open
Abstract
Pro-survival members of the BCL-2 family, including MCL-1, are emerging as important proteins during the development and therapeutic response of solid tumors. Notably, high levels of MCL-1 occur in breast cancer, where functional dependency has been demonstrated using cell lines and mouse models. The utility of restoring apoptosis in cancer cells through inhibition of pro-survival BCL-2 proteins has been realized in the clinic, where the first specific inhibitor of BCL-2 is approved for use in leukemia. A variety of MCL-1 inhibitors are now undergoing clinical trials for blood cancer treatment and application of this new class of drugs is also being tested in solid cancers. On-target compounds specific to MCL-1 have demonstrated promising efficacy in preclinical models of breast cancer and show potential to enhance the anti-tumor effect of conventional therapies. Taken together, this makes MCL-1 an extremely attractive target for clinical evaluation in the context of breast cancer.Abbreviations: ADC (antibody-drug conjugate); AML (Acute myeloid leukemia); APAF1 (apoptotic protease activating factor 1); bCAFs (breast cancer associated fibroblasts); BCL-2 (B-cell lymphoma 2); BH (BCL-2 homology); CLL (chronic lymphocytic leukemia); EGF (epidermal growth factor); EMT (epithelial to mesenchymal transition); ER (estrogen receptor); FDA (food and drug administration); GEMM (genetically engineered mouse model); HER2 (human epidermal growth factor 2); IL6 (interleukin 6); IMM (inner mitochondrial membrane); IMS (intermembrane space); MCL-1 (myeloid cell leukemia-1); MOMP (mitochondrial outer membrane permeabilisation); MM (multiple myeloma); PDX (patient-derived xenograft); OMM (outer mitochondrial membrane); PROTAC (proteolysis-targeting chimeras) TNBC (triple negative breast cancer); UPS (ubiquitin mediated proteolysis system).
Collapse
Affiliation(s)
- Matthew L Winder
- CRUK Beatson Institute, Garscube Estate,Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Kirsteen J Campbell
- CRUK Beatson Institute, Garscube Estate,Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| |
Collapse
|
6
|
Rui T, Xiang A, Guo J, Tang N, Lin X, Jin X, Liu J, Zhang X. Mir-4728 is a Valuable Biomarker for Diagnostic and Prognostic Assessment of HER2-Positive Breast Cancer. Front Mol Biosci 2022; 9:818493. [PMID: 35655761 PMCID: PMC9152170 DOI: 10.3389/fmolb.2022.818493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer remains one of the most common malignancies in female cancer patients. The rapid and accurate diagnosis of human epidermal growth factor receptor 2 (HER2) status is indispensable for breast cancer patients. The pre-miR-4728 (mir-4728) is encoded within an intron of the HER2 gene. We showed here that mir-4728 was the most significantly upregulated pre-miRNA in HER2-positive breast cancer patients (fold-change: 4.37), and it could serve as a strong diagnostic factor for the HER2 status in breast cancer patients (p < 0.0001). Moreover, mir-4728 was positively correlated with tumor recurrence and appeared to be a critical independent risk factor of tumor recurrence in patients with high tumor burden (HR: 7.558, 95% CI:1.842-31.006, p = 0.005). Remarkably, HER2-positive patients with higher mir-4728 expression levels had better drug responses to targeted therapies. Furthermore, estrogen receptor (ESR), the predictive marker for endocrine therapies, was found to be the direct target of miR-4728-3p. Taken together, our results supported the potential role of mir-4728 in the diagnosis of HER2 status and the prognostic assessment of HER2-positive patients in response to targeted therapies.
Collapse
Affiliation(s)
- Tao Rui
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- *Correspondence: Tao Rui, ; Xiaobing Zhang,
| | - Aizhai Xiang
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jufeng Guo
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning Tang
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Lin
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Jin
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Liu
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaobing Zhang
- Department of Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Tao Rui, ; Xiaobing Zhang,
| |
Collapse
|
7
|
Breast Cancer Subtype-Specific miRNAs: Networks, Impacts, and the Potential for Intervention. Biomedicines 2022; 10:biomedicines10030651. [PMID: 35327452 PMCID: PMC8945552 DOI: 10.3390/biomedicines10030651] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
The regulatory and functional roles of non-coding RNAs are increasingly demonstrated as critical in cancer. Among non-coding RNAs, microRNAs (miRNAs) are the most well-studied with direct regulation of biological signals through post-transcriptional repression of mRNAs. Like the transcriptome, which varies between tissue type and disease condition, the miRNA landscape is also similarly altered and shows disease-specific changes. The importance of individual tumor-promoting or suppressing miRNAs is well documented in breast cancer; however, the implications of miRNA networks is less defined. Some evidence suggests that breast cancer subtype-specific cellular effects are influenced by distinct miRNAs and a comprehensive network of subtype-specific miRNAs and mRNAs would allow us to better understand breast cancer signaling. In this review, we discuss the altered miRNA landscape in the context of breast cancer and propose that breast cancer subtypes have distinct miRNA dysregulation. Further, given that miRNAs can be used as diagnostic and/or prognostic biomarkers, their impact as novel targets for subtype-specific therapy is also possible and suggest important implications for subtype-specific miRNAs.
Collapse
|
8
|
Splice and Dice: Intronic microRNAs, Splicing and Cancer. Biomedicines 2021; 9:biomedicines9091268. [PMID: 34572454 PMCID: PMC8465124 DOI: 10.3390/biomedicines9091268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
Introns span only a quarter of the human genome, yet they host around 60% of all known microRNAs. Emerging evidence indicates the adaptive advantage of microRNAs residing within introns is attributed to their complex co-regulation with transcription and alternative splicing of their host genes. Intronic microRNAs are often co-expressed with their host genes, thereby providing functional synergism or antagonism that is exploited or decoupled in cancer. Additionally, intronic microRNA biogenesis and the alternative splicing of host transcript are co-regulated and intertwined. The importance of intronic microRNAs is under-recognized in relation to the pathogenesis of cancer.
Collapse
|
9
|
Unmasking BCL-2 Addiction in Synovial Sarcoma by Overcoming Low NOXA. Cancers (Basel) 2021; 13:cancers13102310. [PMID: 34065859 PMCID: PMC8150384 DOI: 10.3390/cancers13102310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/24/2021] [Accepted: 05/02/2021] [Indexed: 01/30/2023] Open
Abstract
Simple Summary Synovial sarcoma is a soft-tissue sarcoma that lacks effective systemic therapy and carries poor prognosis due to frequent late local recurrence and metastases. The cancer is known to be driven in part by increased expression of the pro-survival protein BCL-2. Surprisingly, synovial sarcoma proved resistant to BCL-2 inhibitors in pre-clinical trials. We identified increased activity of a second pro-survival protein, MCL-1, as responsible for this resistance. We showed that co-targeting both BCL-2 and MCL-1 proves to be an effective therapeutic approach both in cell culture and animal models of synovial sarcoma, supporting translation into clinical trials. Abstract Synovial sarcoma (SS) is frequently diagnosed in teenagers and young adults and continues to be treated with polychemotherapy with variable success. The SS18-SSX gene fusion is pathognomonic for the disease, and high expression of the anti-apoptotic BCL-2 pathologically supports the diagnosis. As the oncogenic SS18-SSX fusion gene itself is not druggable, BCL-2 inhibitor-based therapies are an appealing therapeutic opportunity. Venetoclax, an FDA-approved BCL-2 inhibitor that is revolutionizing care in some BCL-2-expressing hematological cancers, affords an intriguing therapeutic possibility to treat SS. In addition, there are now dozens of venetoclax-based combination therapies in clinical trials in hematological cancers, attributing to the limited toxicity of venetoclax. However, preclinical studies of venetoclax in SS have demonstrated an unexpected ineffectiveness. In this study, we analyzed the response of SS to venetoclax and the underlying BCL-2 family biology in an effort to understand venetoclax treatment failure and find a therapeutic strategy to sensitize SS to venetoclax. We found remarkably depressed levels of the endogenous MCL-1 inhibitor, NOXA, in SS compared to other sarcomas. Expressing NOXA led to sensitization to venetoclax, as did the addition of the MCL-1 BH3 mimetic, S63845. Importantly, the venetoclax/S63845 combination induced tumor regressions in SS patient-derived xenograft (PDX) models. As a very close analog of S63845 (S64315) is now in clinical trials with venetoclax in AML (NCT03672695), the combination of MCL-1 BH3 mimetics and venetoclax should be considered for SS patients as a new therapy.
Collapse
|
10
|
Wang H, Guo M, Wei H, Chen Y. Targeting MCL-1 in cancer: current status and perspectives. J Hematol Oncol 2021; 14:67. [PMID: 33883020 PMCID: PMC8061042 DOI: 10.1186/s13045-021-01079-1] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Myeloid leukemia 1 (MCL-1) is an antiapoptotic protein of the BCL-2 family that prevents apoptosis by binding to the pro-apoptotic BCL-2 proteins. Overexpression of MCL-1 is frequently observed in many tumor types and is closely associated with tumorigenesis, poor prognosis and drug resistance. The central role of MCL-1 in regulating the mitochondrial apoptotic pathway makes it an attractive target for cancer therapy. Significant progress has been made with regard to MCL-1 inhibitors, some of which have entered clinical trials. Here, we discuss the mechanism by which MCL-1 regulates cancer cell apoptosis and review the progress related to MCL-1 small molecule inhibitors and their role in cancer therapy.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
11
|
Targeting transcription of MCL-1 sensitizes HER2-amplified breast cancers to HER2 inhibitors. Cell Death Dis 2021; 12:179. [PMID: 33589591 PMCID: PMC7884408 DOI: 10.1038/s41419-021-03457-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 12/23/2020] [Accepted: 01/03/2021] [Indexed: 12/22/2022]
Abstract
Human epidermal growth factor receptor 2 gene (HER2) is focally amplified in approximately 20% of breast cancers. HER2 inhibitors alone are not effective, and sensitizing agents will be necessary to move away from a reliance on heavily toxic chemotherapeutics. We recently demonstrated that the efficacy of HER2 inhibitors is mitigated by uniformly low levels of the myeloid cell leukemia 1 (MCL-1) endogenous inhibitor, NOXA. Emerging clinical data have demonstrated that clinically advanced cyclin-dependent kinase (CDK) inhibitors are effective MCL-1 inhibitors in patients, and, importantly, well tolerated. We, therefore, tested whether the CDK inhibitor, dinaciclib, could block MCL-1 in preclinical HER2-amplified breast cancer models and therefore sensitize these cancers to dual HER2/EGFR inhibitors neratinib and lapatinib, as well as to the novel selective HER2 inhibitor tucatinib. Indeed, we found dinaciclib suppresses MCL-1 RNA and is highly effective at sensitizing HER2 inhibitors both in vitro and in vivo. This combination was tolerable in vivo. Mechanistically, liberating the effector BCL-2 protein, BAK, from MCL-1 results in robust apoptosis. Thus, clinically advanced CDK inhibitors may effectively combine with HER2 inhibitors and present a chemotherapy-free therapeutic strategy in HER2-amplified breast cancer, which can be tested immediately in the clinic.
Collapse
|
12
|
Zhou Y, Yuan Y, Li L, Wang X, Quan Y, Liu C, Yu M, Hu X, Meng X, Zhou Z, Zhang CY, Chen X, Liu M, Wang C. HER2-intronic miR-4728-5p facilitates HER2 expression and accelerates cell proliferation and migration by targeting EBP1 in breast cancer. PLoS One 2021; 16:e0245832. [PMID: 33529238 PMCID: PMC7853520 DOI: 10.1371/journal.pone.0245832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 01/09/2021] [Indexed: 11/18/2022] Open
Abstract
HER2 amplification greatly contributes to the tumorigenesis of multiple cancers. Intronic miR-4728-5p is transcribed along with its host gene HER2. However, little is known about the role of miR-4728-5p in cancer. This study aims to elucidate the potential role of miR-4728-5p and the underlying mechanism in breast cancer. Kaplan-Meier analysis showed that higher expression of HER2 led to worse survival outcomes in breast cancer patients. The TCGA dataset revealed that compared to normal breast tissues, HER2 and miR-4728-5p levels were significantly upregulated in breast cancer tissues with a positive correlation. In functional assays, miR-4728-5p was confirmed to promote the proliferation and migration in breast cancer cell BT474. EBP1 was identified as a direct target of miR-4728-5p via bioinformatics and luciferase reporter assays. miR-4728-5p was further demonstrated to increase HER2 expression and promote cell proliferation and migration by directly inhibiting EBP1 in breast cancer. Taken together, the HER2-intronic miR-4728-5p/EBP1/HER2 feedback loop plays an important role in promoting breast cancer cell proliferation and migration. Our study provides novel insights for targeted therapies of breast cancer.
Collapse
Affiliation(s)
- Yu Zhou
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yuan Yuan
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Liuyi Li
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xueliang Wang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yimin Quan
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Chunyu Liu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Mengchao Yu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xiuting Hu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xiangfeng Meng
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Zhen Zhou
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Chen-Yu Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xi Chen
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Minghui Liu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- * E-mail: (CW); (LM)
| | - Chen Wang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- * E-mail: (CW); (LM)
| |
Collapse
|
13
|
Genome-Wide Characterization of RNA Editing Sites in Primary Gastric Adenocarcinoma through RNA-seq Data Analysis. Int J Genomics 2020; 2020:6493963. [PMID: 33415135 PMCID: PMC7768588 DOI: 10.1155/2020/6493963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/28/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
RNA editing is a posttranscriptional nucleotide modification in humans. Of the various types of RNA editing, the adenosine to inosine substitution is the most widespread in higher eukaryotes, which is mediated by the ADAR family enzymes. Inosine is recognized by the biological machinery as guanosine; therefore, editing could have substantial functional effects throughout the genome. RNA editing could contribute to cancer either by exclusive editing of tumor suppressor/promoting genes or by introducing transcriptomic diversity to promote cancer progression. Here, we provided a comprehensive overview of the RNA editing sites in gastric adenocarcinoma and highlighted some of their possible contributions to gastric cancer. RNA-seq data corresponding to 8 gastric adenocarcinoma and their paired nontumor counterparts were retrieved from the GEO database. After preprocessing and variant calling steps, a stringent filtering pipeline was employed to distinguish potential RNA editing sites from SNPs. The identified potential editing sites were annotated and compared with those in the DARNED database. Totally, 12362 high-confidence adenosine to inosine RNA editing sites were detected across all samples. Of these, 12105 and 257 were known and novel editing events, respectively. These editing sites were unevenly distributed across genomic regions, and nearly half of them were located in 3′UTR. Our results revealed that 4868 editing sites were common in both normal and cancer tissues. From the remaining sites, 3985 and 3509 were exclusive to normal and cancer tissues, respectively. Further analysis revealed a significant number of differentially edited events among these sites, which were located in protein coding genes and microRNAs. Given the distinct pattern of RNA editing in gastric adenocarcinoma and adjacent normal tissue, edited sites have the potential to serve as the diagnostic biomarkers and therapeutic targets in gastric cancer.
Collapse
|
14
|
Daks AA, Fedorova OA, Shuvalov OY, Parfenev SE, Barlev NA. The Role of ERBB2/HER2 Tyrosine Kinase Receptor in the Regulation of Cell Death. BIOCHEMISTRY (MOSCOW) 2020; 85:1277-1287. [PMID: 33202212 DOI: 10.1134/s0006297920100156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
HER2 (Human Epidermal Growth Factor Receptor 2), also known as ERBB2, CD340, and Neu protooncogene, is a member of the epidermal growth factor receptor (EGRF) family. Members of the ERBB family, including HER2, activate molecular cascades that stimulate proliferation and migration of cancer cells, as well as their resistance to the anticancer therapy. These proteins are often overexpressed and/or mutated in various cancer types and represent promising targets for the anti-cancer therapy. Currently, anti-HER2 drugs have been approved for the treatment of several types of solid tumors. HER2-specific therapy includes monoclonal antibodies and low-molecular weight inhibitors of tyrosine kinase receptors, such as lapatinib, neratinib, and pyrotinib. In addition to the activation of molecular pathways responsible for cell proliferation and survival under stress conditions, HER2 directly regulates programmed cell death. Here, we review the studies focused on the involvement of HER2 in various signaling pathways and its role in the regulation of apoptosis.
Collapse
Affiliation(s)
- A A Daks
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | - O A Fedorova
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | - O Y Shuvalov
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | - S E Parfenev
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | - N A Barlev
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia. .,Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Moscow Region, 141701, Russia
| |
Collapse
|
15
|
Zhou T, Zhang J, Qin B, Xu H, Zhang S, Guan H. Long non‑coding RNA NONHSAT143692.2 is involved in oxidative DNA damage repair in the lens by regulating the miR‑4728‑5p/OGG1 axis. Int J Mol Med 2020; 46:1838-1848. [PMID: 33000245 PMCID: PMC7521474 DOI: 10.3892/ijmm.2020.4707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022] Open
Abstract
Age-related cataract (ARC) is the leading cause of blindness worldwide. Oxidative DNA damage is a biochemical feature of ARC pathogenesis. The present study investigated the role of long non-coding RNAs in the DNA repair of oxidative damage, partially the regulation of the DNA repair gene, 8-oxoguanine DNA glycosylase (OGG1), in lens affected by ARC. The ogg1 mutant zebrafish model was constructed to verify the role of ogg1 in the lens. A high-throughput lncRNA profiling was performed on human lens epithelial cells (LECs) following oxidative stress. The lncRNAs with the OGG1 target gene were analyzed for possible differentiated expression levels. The lens capsule samples of patients with ARC were collected to further verify the screening results. lncRNA was then overexpressed and knocked down in LECs to observe cell proliferation and apoptosis. The association between lncRNA, miRNA and the OGG1 mRNA 3′UTR were analyzed. The ogg1 mutant zebrafish developed more severe lens lesions following oxidative challenge. lncRNA NONHSAT143692.2 was distinctly expressed in various disease models. The knockdown of NONHSAT143692.2 downregulated the expression of OGG1 mRNA (P<0.001) and OGG1 protein (P<0.001), aggravated oxidative damage to LECs, increased apoptosis (P<0.001) and decreased cell proliferation (P<0.01). The overexpression of NONHSAT143692.2 reversed the above-mentioned outcomes. miR-4728-5p was predicted to bind to NONHSAT143692.2 and OGG1 mRNA 3′UTR. The overexpression of miR-4728-5p downregulated the expression of NONHSAT143692.2 (P<0.001), OGG1 mRNA (P<0.001) and OGG1 protein (P<0.001). The knockdown of miR-4728-5p reversed the above-mentioned outcomes. Overall, the findings of the present study demonstrate that the NONHSAT143692.2/miR-4728-5p/OGG1 axis may play an important role in the development of ARC. This novel concept may provide new insight into the molecular diagnosis and treatment of ARC.
Collapse
Affiliation(s)
- Tianqiu Zhou
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Junfang Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Bai Qin
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hui Xu
- Jiangsu Key Laboratory of Neurodegeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shuqiang Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
16
|
Wang S, Zhou D, Xu Z, Song J, Qian X, Lv X, Luan J. Anti-tumor Drug Targets Analysis: Current Insight and Future Prospect. Curr Drug Targets 2020; 20:1180-1202. [PMID: 30947670 DOI: 10.2174/1389450120666190402145325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/13/2022]
Abstract
The incidence and mortality of malignant tumors are on the rise, which has become the second leading cause of death in the world. At present, anti-tumor drugs are one of the most common methods for treating cancer. In recent years, with the in-depth study of tumor biology and related disciplines, it has been gradually discovered that the essence of cell carcinogenesis is the infinite proliferation of cells caused by the disorder of cell signal transduction pathways, followed by a major shift in the concept of anti-tumor drugs research and development. The focus of research and development is shifting from traditional cytotoxic drugs to a new generation of anti-tumor drugs targeted at abnormal signaling system targets in tumor cells. In this review, we summarize the targets of anti-tumor drugs and analyse the molecular mechanisms of their effects, which lay a foundation for subsequent treatment, research and development.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Dexi Zhou
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Zhenyu Xu
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jing Song
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Xueyi Qian
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| |
Collapse
|
17
|
Crudele F, Bianchi N, Reali E, Galasso M, Agnoletto C, Volinia S. The network of non-coding RNAs and their molecular targets in breast cancer. Mol Cancer 2020; 19:61. [PMID: 32188472 PMCID: PMC7079433 DOI: 10.1186/s12943-020-01181-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Non-coding RNAs are now recognized as fundamental components of the cellular processes. Non-coding RNAs are composed of different classes, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Their detailed roles in breast cancer are still under scrutiny. Main body We systematically reviewed from recent literature the many functional and physical interactions of non-coding RNAs in breast cancer. We used a data driven approach to establish the network of direct, and indirect, interactions. Human curation was essential to de-convolute and critically assess the experimental approaches in the reviewed articles. To enrol the scientific papers in our article cohort, due to the short time span (shorter than 5 years) we considered the journal impact factor rather than the citation number. The outcome of our work is the formal establishment of different sub-networks composed by non-coding RNAs and coding genes with validated relations in human breast cancer. This review describes in a concise and unbiased fashion the core of our current knowledge on the role of lncRNAs, miRNAs and other non-coding RNAs in breast cancer. Conclusions A number of coding/non-coding gene interactions have been investigated in breast cancer during recent years and their full extent is still being established. Here, we have unveiled some of the most important networks embracing those interactions, and described their involvement in cancer development and in its malignant progression.
Collapse
Affiliation(s)
- Francesca Crudele
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA, University of Ferrara, Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, 44121, Ferrara, Italy
| | - Eva Reali
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Marco Galasso
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Agnoletto
- Area of Neuroscience, International School for Advanced Studies (SISSA-ISAS), Trieste, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy. .,LTTA, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
18
|
Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, Suciu N, Cretoiu SM, Voinea SC. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020; 9:E276. [PMID: 31979244 PMCID: PMC7072450 DOI: 10.3390/cells9020276] [Citation(s) in RCA: 749] [Impact Index Per Article: 149.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) represent a class of small, non-coding RNAs with the main roles of regulating mRNA through its degradation and adjusting protein levels. In recent years, extraordinary progress has been made in terms of identifying the origin and exact functions of miRNA, focusing on their potential use in both the research and the clinical field. This review aims at improving the current understanding of these molecules and their applicability in the medical field. A thorough analysis of the literature consulting resources available in online databases such as NCBI, PubMed, Medline, ScienceDirect, and UpToDate was performed. There is promising evidence that in spite of the lack of standardized protocols regarding the use of miRNAs in current clinical practice, they constitute a reliable tool for future use. These molecules meet most of the required criteria for being an ideal biomarker, such as accessibility, high specificity, and sensitivity. Despite present limitations, miRNAs as biomarkers for various conditions remain an impressive research field. As current techniques evolve, we anticipate that miRNAs will become a routine approach in the development of personalized patient profiles, thus permitting more specific therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Elena Condrat
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Dana Claudia Thompson
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Madalina Gabriela Barbu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Oana Larisa Bugnar
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Andreea Boboc
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Dragos Cretoiu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Nicolae Suciu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
- Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
- Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Silviu Cristian Voinea
- Department of Surgical Oncology, Prof. Dr. Alexandru Trestioreanu Oncology Institute, Carol Davila University of Medicine and Pharmacy, 252 Fundeni Rd., 022328 Bucharest, Romania;
| |
Collapse
|
19
|
Montero J, Gstalder C, Kim DJ, Sadowicz D, Miles W, Manos M, Cidado JR, Paul Secrist J, Tron AE, Flaherty K, Stephen Hodi F, Yoon CH, Letai A, Fisher DE, Haq R. Destabilization of NOXA mRNA as a common resistance mechanism to targeted therapies. Nat Commun 2019; 10:5157. [PMID: 31727958 PMCID: PMC6856172 DOI: 10.1038/s41467-019-12477-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
Most targeted cancer therapies fail to achieve complete tumor regressions or attain durable remissions. To understand why these treatments fail to induce robust cytotoxic responses despite appropriately targeting oncogenic drivers, here we systematically interrogated the dependence of cancer cells on the BCL-2 family of apoptotic proteins after drug treatment. We observe that multiple targeted therapies, including BRAF or EGFR inhibitors, rapidly deplete the pro-apoptotic factor NOXA, thus creating a dependence on the anti-apoptotic protein MCL-1. This adaptation requires a pathway leading to destabilization of the NOXA mRNA transcript. We find that interruption of this mechanism of anti-apoptotic adaptive resistance dramatically increases cytotoxic responses in cell lines and a murine melanoma model. These results identify NOXA mRNA destabilization/MCL-1 adaptation as a non-genomic mechanism that limits apoptotic responses, suggesting that sequencing of MCL-1 inhibitors with targeted therapies could overcome such widespread and clinically important resistance. MAPK-targeted therapies fail to achieve complete remission. Here, the authors show that anti-apoptosis resistance is acquired in these targeted therapies through the mRNA destabilization of NOXA which leads to dependence on MCL-1, and that sequential combination of MCL-1 inhibition with targeted therapies overcomes this resistance.
Collapse
Affiliation(s)
- Joan Montero
- Division of Hematologic Neoplasia/Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA.,Institute for Bioengineering of Catalonia, C/Baldiri Reixac 15-21, Ed. Hèlix 3ª planta · 08028, Barcelona, Spain
| | - Cécile Gstalder
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA.,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA
| | - Daniel J Kim
- Department of Dermatology and Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, 44 Fruit Street, Boston, MA, 02114, USA
| | - Dorota Sadowicz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA.,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA
| | - Wayne Miles
- Department of Molecular Genetics, The Ohio State University, 820 Biomedical Research Tower 460 West 12th Avenue, Columbus, 43210, OH, USA
| | - Michael Manos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA
| | - Justin R Cidado
- Bioscience, Oncology IMED Biotech Unit, AstraZeneca, 35 Gatehouse Dr, Waltham, Boston, 02451, MA, USA
| | - J Paul Secrist
- Bioscience, Oncology IMED Biotech Unit, AstraZeneca, 35 Gatehouse Dr, Waltham, Boston, 02451, MA, USA.,LifeMine Therapeutics, 100 Acorn Park Drive, 6th Floor Cambridge, Cambridge, MA, 02140, USA
| | - Adriana E Tron
- Bioscience, Oncology IMED Biotech Unit, AstraZeneca, 35 Gatehouse Dr, Waltham, Boston, 02451, MA, USA
| | - Keith Flaherty
- Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Harvard Medical School, 44 Fruit Street, Boston, MA, 02114, USA
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA
| | - Charles H Yoon
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, 02115, USA
| | - Anthony Letai
- Division of Hematologic Neoplasia/Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA
| | - David E Fisher
- Department of Dermatology and Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, 44 Fruit Street, Boston, MA, 02114, USA. .,Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Harvard Medical School, 44 Fruit Street, Boston, MA, 02114, USA.
| | - Rizwan Haq
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA. .,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, 02115, MA, USA.
| |
Collapse
|
20
|
Søkilde R, Persson H, Ehinger A, Pirona AC, Fernö M, Hegardt C, Larsson C, Loman N, Malmberg M, Rydén L, Saal L, Borg Å, Vallon-Christerson J, Rovira C. Refinement of breast cancer molecular classification by miRNA expression profiles. BMC Genomics 2019; 20:503. [PMID: 31208318 PMCID: PMC6580620 DOI: 10.1186/s12864-019-5887-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
Background Accurate classification of breast cancer using gene expression profiles has contributed to a better understanding of the biological mechanisms behind the disease and has paved the way for better prognostication and treatment prediction. Results We found that miRNA profiles largely recapitulate intrinsic subtypes. In the case of HER2-enriched tumors a small set of miRNAs including the HER2-encoded mir-4728 identifies the group with very high specificity. We also identified differential expression of the miR-99a/let-7c/miR-125b miRNA cluster as a marker for separation of the Luminal A and B subtypes. High expression of this miRNA cluster is linked to better overall survival among patients with Luminal A tumors. Correlation between the miRNA cluster and their precursor LINC00478 is highly significant suggesting that its expression could help improve the accuracy of present day’s signatures. Conclusions We show here that miRNA expression can be translated into mRNA profiles and that the inclusion of miRNA information facilitates the molecular diagnosis of specific subtypes, in particular the clinically relevant sub-classification of luminal tumors. Electronic supplementary material The online version of this article (10.1186/s12864-019-5887-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rolf Søkilde
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden
| | - Helena Persson
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden
| | - Anna Ehinger
- Clinical Pathology, Laboratory Medicine, Skåne University Hospital, Lund, Sweden
| | - Anna Chiara Pirona
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden.,German Cancer Research Center DKFZ, Division of Functional Genome Analysis, Heidelberg, Germany
| | - Mårten Fernö
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden
| | - Cecilia Hegardt
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden
| | - Christer Larsson
- Division of Translational Cancer Research, Lund University, Lund, Sweden.,BioCARE, Strategic Cancer Research Program, Lund, Sweden
| | - Niklas Loman
- Division of Oncology, Skåne University Hospital, Lund, Sweden
| | - Martin Malmberg
- Division of Oncology, Skåne University Hospital, Lund, Sweden
| | - Lisa Rydén
- Department of Surgery, Skåne University Hospital, Lund, Sweden
| | - Lao Saal
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden.,BioCARE, Strategic Cancer Research Program, Lund, Sweden
| | - Åke Borg
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden.,BioCARE, Strategic Cancer Research Program, Lund, Sweden
| | - Johan Vallon-Christerson
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden
| | - Carlos Rovira
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Scheelevägen 2, 223 81, Lund, Sweden. .,BioCARE, Strategic Cancer Research Program, Lund, Sweden.
| |
Collapse
|
21
|
Song KA, Hosono Y, Turner C, Jacob S, Lochmann TL, Murakami Y, Patel NU, Ham J, Hu B, Powell KM, Coon CM, Windle BE, Oya Y, Koblinski JE, Harada H, Leverson JD, Souers AJ, Hata AN, Boikos S, Yatabe Y, Ebi H, Faber AC. Increased Synthesis of MCL-1 Protein Underlies Initial Survival of EGFR-Mutant Lung Cancer to EGFR Inhibitors and Provides a Novel Drug Target. Clin Cancer Res 2018; 24:5658-5672. [PMID: 30087143 DOI: 10.1158/1078-0432.ccr-18-0304] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/29/2018] [Accepted: 08/01/2018] [Indexed: 11/16/2022]
Abstract
Purpose: EGFR inhibitors (EGFRi) are effective against EGFR-mutant lung cancers. The efficacy of these drugs, however, is mitigated by the outgrowth of resistant cells, most often driven by a secondary acquired mutation in EGFR, T790M We recently demonstrated that T790M can arise de novo during treatment; it follows that one potential therapeutic strategy to thwart resistance would be identifying and eliminating these cells [referred to as drug-tolerant cells (DTC)] prior to acquiring secondary mutations like T790M Experimental Design: We have developed DTCs to EGFRi in EGFR-mutant lung cancer cell lines. Subsequent analyses of DTCs included RNA-seq, high-content microscopy, and protein translational assays. Based on these results, we tested the ability of MCL-1 BH3 mimetics to combine with EGFR inhibitors to eliminate DTCs and shrink EGFR-mutant lung cancer tumors in vivo Results: We demonstrate surviving EGFR-mutant lung cancer cells upregulate the antiapoptotic protein MCL-1 in response to short-term EGFRi treatment. Mechanistically, DTCs undergo a protein biosynthesis enrichment resulting in increased mTORC1-mediated mRNA translation of MCL-1, revealing a novel mechanism in which lung cancer cells adapt to short-term pressures of apoptosis-inducing kinase inhibitors. Moreover, MCL-1 is a key molecule governing the emergence of early EGFR-mutant DTCs to EGFRi, and we demonstrate it can be effectively cotargeted with clinically emerging MCL-1 inhibitors both in vitro and in vivo Conclusions: Altogether, these data reveal that this novel therapeutic combination may delay the acquisition of secondary mutations, therefore prolonging therapy efficacy. Clin Cancer Res; 24(22); 5658-72. ©2018 AACR.
Collapse
Affiliation(s)
- Kyung-A Song
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Richmond, Virginia
| | - Yasuyuki Hosono
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Crystal Turner
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Richmond, Virginia
| | - Sheeba Jacob
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Richmond, Virginia
| | - Timothy L Lochmann
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Richmond, Virginia
| | - Yoshiko Murakami
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | - Neha U Patel
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Richmond, Virginia
| | - Jungoh Ham
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Richmond, Virginia
| | - Bin Hu
- Department of Pathology, VCU School of Medicine, Richmond, Virginia
| | - Krista M Powell
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Richmond, Virginia
| | - Colin M Coon
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Richmond, Virginia
| | - Brad E Windle
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Richmond, Virginia
| | - Yuko Oya
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | - Hisashi Harada
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Richmond, Virginia
| | | | | | - Aaron N Hata
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Sosipatros Boikos
- Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Massey Cancer Center, Richmond, Virginia
| | - Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan.,Precision Medicine Center, Aichi Cancer Center, Nagoya, Japan
| | - Hiromichi Ebi
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Japan. .,Precision Medicine Center, Aichi Cancer Center, Nagoya, Japan
| | - Anthony C Faber
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Richmond, Virginia.
| |
Collapse
|
22
|
Floros KV, Faber AC. One gene to rule them all…and in the darkness bind them. Mol Cell Oncol 2018; 5:e1465881. [PMID: 30250918 PMCID: PMC6149778 DOI: 10.1080/23723556.2018.1465881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 10/28/2022]
Abstract
Pharmaceutical inhibition of the Human Epidermal growth factor Receptor 2 (HER2) oncogene has dramatically improved outcomes in HER2-amplified breast cancers. However, monotherapy HER2 inhibitors are not effective. We have recently reported that a co-amplified microRNA within the HER2 amplicon, leads to activation of the oncogene Myeloid Cell Leukemia-1 (MCL-1), tempering cell death responses to HER2 inhibitors. Importantly, HER2 inhibitors are sensitized to cell death by the addition of pharmacological MCL-1 inhibitors, which are entering clinical trials.
Collapse
Affiliation(s)
| | - Anthony C. Faber
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Department of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|