1
|
Jain H, Ghosh S. Imprinting reversible deformations on a compressed soft rod network. SOFT MATTER 2024; 20:5053-5059. [PMID: 38874537 DOI: 10.1039/d4sm00099d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
We present emergent behaviour of storing mechanical deformation in compressed soft cellular materials (a network of soft polymeric rods). Under an applied compressive strain field, the soft cellular material transits from an elastic regime to a 'pseudo-plastic' regime (not to be confused with pseudoplasticity in fluids). In the elastic phase, it is capable of forgetting (or relaxing) any applied indentation once the applied indentation is removed. This relaxation will be determined by the visco-elasticity and internal relaxation timescales in polymeric hyperelastic cellular materials. In the pseudo-plastic phase, however, the material is capable of storing local indentation (or deformation) indefinitely. This deformation can be erased via removal of the external strain field and is therefore reversible. We characterise this behaviour experimentally and present a simple model that makes use of friction for understanding this behavior.
Collapse
Affiliation(s)
- Harsh Jain
- Simons Centre for the Study of Living Machines, National Center for Biological Sciences, Bengaluru-560065, India.
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai-400005, India
| | - Shankar Ghosh
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai-400005, India
| |
Collapse
|
2
|
Liu J, Teunisse M, Korovin G, Vermaire IR, Jin L, Bense H, van Hecke M. Controlled pathways and sequential information processing in serially coupled mechanical hysterons. Proc Natl Acad Sci U S A 2024; 121:e2308414121. [PMID: 38768343 PMCID: PMC11145188 DOI: 10.1073/pnas.2308414121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/21/2024] [Indexed: 05/22/2024] Open
Abstract
The complex sequential response of frustrated materials results from the interactions between material bits called hysterons. Hence, a central challenge is to understand and control these interactions, so that materials with targeted pathways and functionalities can be realized. Here, we show that hysterons in serial configurations experience geometrically controllable antiferromagnetic-like interactions. We create hysteron-based metamaterials that leverage these interactions to realize targeted pathways, including those that break the return point memory property, characteristic of independent or weakly interacting hysterons. We uncover that the complex response to sequential driving of such strongly interacting hysteron-based materials can be described by finite state machines. We realize information processing operations such as string parsing in materia, and outline a general framework to uncover and characterize the FSMs for a given physical system. Our work provides a general strategy to understand and control hysteron interactions, and opens a broad avenue toward material-based information processing.
Collapse
Affiliation(s)
- Jingran Liu
- Huygens-Kamerlingh Onnes Lab, Leiden Institute of Physics, Universiteit Leiden, NL-2300 RALeiden, The Netherlands
- Laboratory for Multiscale Mechanics and Medical Science, State Key Lab for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an710049, China
| | - Margot Teunisse
- Huygens-Kamerlingh Onnes Lab, Leiden Institute of Physics, Universiteit Leiden, NL-2300 RALeiden, The Netherlands
- AMOLF, 1098 XGAmsterdam, The Netherlands
| | - George Korovin
- Huygens-Kamerlingh Onnes Lab, Leiden Institute of Physics, Universiteit Leiden, NL-2300 RALeiden, The Netherlands
| | - Ivo R. Vermaire
- Huygens-Kamerlingh Onnes Lab, Leiden Institute of Physics, Universiteit Leiden, NL-2300 RALeiden, The Netherlands
| | - Lishuai Jin
- Huygens-Kamerlingh Onnes Lab, Leiden Institute of Physics, Universiteit Leiden, NL-2300 RALeiden, The Netherlands
- AMOLF, 1098 XGAmsterdam, The Netherlands
| | - Hadrien Bense
- AMOLF, 1098 XGAmsterdam, The Netherlands
- Nonlinear Physical Chemistry Unit, Université Libre de Bruxelles, 1050Bruxelles, Belgium
| | - Martin van Hecke
- Huygens-Kamerlingh Onnes Lab, Leiden Institute of Physics, Universiteit Leiden, NL-2300 RALeiden, The Netherlands
- AMOLF, 1098 XGAmsterdam, The Netherlands
| |
Collapse
|
3
|
Cisternas J, Navarro M, Duarte S, Concha A. Equilibrium and symmetries of altitudinal magnetic rotors on a circle. CHAOS (WOODBURY, N.Y.) 2022; 32:123120. [PMID: 36587347 DOI: 10.1063/5.0119916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Macroscopic magnets can easily be manipulated and positioned so that interactions between themselves and with external fields induce interesting dynamics and equilibrium configurations. In this work, we use rotating magnets positioned in a line or at the vertices of a regular polygon. The rotation planes of the magnets can be modified at will. The rich structure of stable and unstable configurations is dictated by symmetry and the side of the polygon. We show that both symmetric solutions and their symmetry-breaking bifurcations can be explained with group theory. Our results suggest that the predicted magnetic textures should emerge at any length scale as long as the interaction is polar, and the system is endowed with the same symmetries.
Collapse
Affiliation(s)
- J Cisternas
- Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Monseñor Alvaro del Portillo, 12455 Santiago, Chile
| | - M Navarro
- Condensed Matter i-Lab, Universidad Adolfo Ibáñez, Diagonal las Torres 2640, Building D, Peñalolén, Santiago, Chile
| | - S Duarte
- Design Engineering Center, Universidad Adolfo Ibáñez, Diagonal las Torres 2640, Building D, Peñalolén, Santiago, Chile
| | - A Concha
- Condensed Matter i-Lab, Universidad Adolfo Ibáñez, Diagonal las Torres 2640, Building D, Peñalolén, Santiago, Chile
| |
Collapse
|
4
|
Mofatteh H, Shahryari B, Mirabolghasemi A, Seyedkanani A, Shirzadkhani R, Desharnais G, Akbarzadeh A. Programming Multistable Metamaterials to Discover Latent Functionalities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202883. [PMID: 36253119 PMCID: PMC9685460 DOI: 10.1002/advs.202202883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/25/2022] [Indexed: 05/15/2023]
Abstract
Using multistable mechanical metamaterials to develop deployable structures, electrical devices, and mechanical memories raises two unanswered questions. First, can mechanical instability be programmed to design sensors and memory devices? Second, how can mechanical properties be tuned at the post-fabrication stage via external stimuli? Answering these questions requires a thorough understanding of the snapping sequences and variations of the elastic energy in multistable metamaterials. The mechanics of deformation sequences and continuous force/energy-displacement curves are comprehensively unveiled here. A 1D array, that is chain, of bistable cells is studied to explore instability-induced energy release and snapping sequences under one external mechanical stimulus. This method offers an insight into the programmability of multistable chains, which is exploited to fabricate a mechanical sensor/memory with sampling (analog to digital-A/D) and data reconstruction (digital to analog-D/A) functionalities operating based on the correlation between the deformation sequence and the mechanical input. The findings offer a new paradigm for developing programmable high-capacity read-write mechanical memories regardless of thei size scale. Furthermore, exotic mechanical properties can be tuned by harnessing the attained programmability of multistable chains. In this respect, a transversely multistable mechanical metamaterial with tensegrity-like bistable cells is designed to showcase the tunability of chirality.
Collapse
Affiliation(s)
- Hossein Mofatteh
- Department of Bioresource EngineeringMcGill UniversityMontrealQCH9X 3V9Canada
| | - Benyamin Shahryari
- Department of Bioresource EngineeringMcGill UniversityMontrealQCH9X 3V9Canada
| | | | - Alireza Seyedkanani
- Department of Bioresource EngineeringMcGill UniversityMontrealQCH9X 3V9Canada
| | - Razieh Shirzadkhani
- Department of Bioresource EngineeringMcGill UniversityMontrealQCH9X 3V9Canada
| | | | - Abdolhamid Akbarzadeh
- Department of Bioresource EngineeringMcGill UniversityMontrealQCH9X 3V9Canada
- Department of Mechanical EngineeringMcGill UniversityMontrealQCH3A 0C3Canada
| |
Collapse
|
5
|
Michaels TCT, Kusters R, Mahadevan L. Puckering and wrinkling in a growing composite ring. Proc Math Phys Eng Sci 2021. [DOI: 10.1098/rspa.2020.0999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pattern formation driven by differential strain in constrained elastic systems is a common motif in many technological and biological systems. Here we introduce a biologically motivated case of elastic patterning that allows us to explore the conditions for the existence of local puckering and global wrinkling patterns: a soft growing composite ring adhered elastically to a constraining rigid ring. We explore how differential growth of the soft ring and the elastic resistance to shear and stretching deformations induced by soft adherence lead to a range of phenomena that include uniform aperture-like modes, localized puckers that are Nambu–Goldstone-like modes and global wrinkles in the system. Our analysis combines computer simulations of a discrete rod model with a nonlinear stability analysis of the differential equations in the continuum limit. We provide phase diagrams and scaling relations that reveal the nature and extent of the deformation patterns. Overall, our study reveals how geometry and mechanics conspire to yield a rich phenomenology that could serve as a guide to the design of programmable localized elastic deformations while being relevant for the mechanical basis of biological morphogenesis.
Collapse
Affiliation(s)
- T. C. T. Michaels
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - R. Kusters
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - L. Mahadevan
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
6
|
Hou J, Ji J, Chen X, Cao H, Tan Y, Cui Y, Xiang Z, Han X. Alveolar epithelial cell-derived Sonic hedgehog promotes pulmonary fibrosis through OPN-dependent alternative macrophage activation. FEBS J 2020; 288:3530-3546. [PMID: 33314622 DOI: 10.1111/febs.15669] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/03/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022]
Abstract
The alternative activation of macrophages in the lungs has been considered as a major factor promoting pulmonary fibrogenesis; however, the mechanisms underlying this phenomenon are still elusive. In this study, we investigated the interaction between macrophages and fibrosis-associated alveolar epithelial cells using a bleomycin-induced mouse pulmonary fibrosis model and a coculture system. We demonstrated that fibrosis-promoting macrophages are spatially proximate to alveolar type II (ATII) cells, permissive for paracrine-induced macrophage polarization. Importantly, we revealed that fibrosis-associated ATII cells secrete Sonic hedgehog (Shh), a hedgehog pathway ligand, and that ATII cell-derived Shh promotes the development of pulmonary fibrosis by osteopontin (OPN)-mediated macrophage alternative activation. Mechanistically, Shh promotes the secretion of OPN in macrophages via Shh/Gli signaling cascade. The secreted OPN acts on the surrounding macrophages in an autocrine or paracrine manner and induces macrophage alternative activation through activating the JAK2/STAT3 signaling pathway. Tissue samples from idiopathic pulmonary fibrosis patients confirmed the increased expression of Shh and OPN in ATII cells and macrophages, respectively. Together, our study illustrated an alveolar epithelium-dependent mechanism for macrophage M2 polarization and pulmonary fibrogenesis and suggested that targeting Shh may offer a selective and efficient therapeutic strategy for the development and progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jiwei Hou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| | - Jie Ji
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| | - Xiang Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| | - Honghui Cao
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| | - Yi Tan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| | - Yu Cui
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| |
Collapse
|
7
|
Faber JA, Udani JP, Riley KS, Studart AR, Arrieta AF. Dome-Patterned Metamaterial Sheets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001955. [PMID: 33240759 PMCID: PMC7675196 DOI: 10.1002/advs.202001955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/04/2020] [Indexed: 05/19/2023]
Abstract
The properties of conventional materials result from the arrangement of and the interaction between atoms at the nanoscale. Metamaterials have shifted this paradigm by offering property control through structural design at the mesoscale, thus broadening the design space beyond the limits of traditional materials. A family of mechanical metamaterials consisting of soft sheets featuring a patterned array of reconfigurable bistable domes is reported here. The domes in this metamaterial architecture can be reversibly inverted at the local scale to generate programmable multistable shapes and tunable mechanical responses at the global scale. By 3D printing a robotic gripper with energy-storing skin and a structure that can memorize and compute spatially-distributed mechanical signals, it is shown that these metamaterials are an attractive platform for novel mechanologic concepts and open new design opportunities for structures used in robotics, architecture, and biomedical applications.
Collapse
Affiliation(s)
- Jakob A. Faber
- School of Mechanical EngineeringPurdue University585 Purdue MallWest LafayetteIN47907USA
- Department of MaterialsComplex MaterialsETH ZürichVladimir‐Prelog‐Weg 5Zürich8093Switzerland
| | - Janav P. Udani
- School of Mechanical EngineeringPurdue University585 Purdue MallWest LafayetteIN47907USA
| | - Katherine S. Riley
- School of Mechanical EngineeringPurdue University585 Purdue MallWest LafayetteIN47907USA
| | - André R. Studart
- Department of MaterialsComplex MaterialsETH ZürichVladimir‐Prelog‐Weg 5Zürich8093Switzerland
| | - Andres F. Arrieta
- School of Mechanical EngineeringPurdue University585 Purdue MallWest LafayetteIN47907USA
| |
Collapse
|
8
|
Michaels TCT, Kusters R, Dear AJ, Storm C, Weaver JC, Mahadevan L. Geometric localization in supported elastic struts. Proc Math Phys Eng Sci 2019; 475:20190370. [PMID: 31611731 DOI: 10.1098/rspa.2019.0370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/07/2019] [Indexed: 11/12/2022] Open
Abstract
Localized deformation patterns are a common motif in morphogenesis and are increasingly finding applications in materials science and engineering, in such instances as mechanical memories. Here, we describe the emergence of spatially localized deformations in a minimal mechanical system by exploring the impact of growth and shear on the conformation of a semi-flexible filament connected to a pliable shearable substrate. We combine numerical simulations of a discrete rod model with theoretical analysis of the differential equations recovered in the continuum limit to quantify (in the form of scaling laws) how geometry, mechanics and growth act together to give rise to such localized structures in this system. We find that spatially localized deformations along the filament emerge for intermediate shear modulus and increasing growth. Finally, we use experiments on a 3D-printed multi-material model system to demonstrate that external control of the amount of shear and growth may be used to regulate the spatial extent of the localized strain texture.
Collapse
Affiliation(s)
- T C T Michaels
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - R Kusters
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands.,University Paris Descartes, Center for Research and Interdisciplinarity (CRI), 10 Rue Charles V, Paris, France
| | - A J Dear
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - C Storm
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - J C Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - L Mahadevan
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Department of Physics, Harvard University, Cambridge, MA, USA.,Kavli Institute for Nanobio Science and Technology, Harvard University, Cambridge, MA, USA
| |
Collapse
|