1
|
Anderson DM, Jayanthi LP, Gosavi S, Meiering EM. Engineering the kinetic stability of a β-trefoil protein by tuning its topological complexity. Front Mol Biosci 2023; 10:1021733. [PMID: 36845544 PMCID: PMC9945329 DOI: 10.3389/fmolb.2023.1021733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/02/2023] [Indexed: 02/11/2023] Open
Abstract
Kinetic stability, defined as the rate of protein unfolding, is central to determining the functional lifetime of proteins, both in nature and in wide-ranging medical and biotechnological applications. Further, high kinetic stability is generally correlated with high resistance against chemical and thermal denaturation, as well as proteolytic degradation. Despite its significance, specific mechanisms governing kinetic stability remain largely unknown, and few studies address the rational design of kinetic stability. Here, we describe a method for designing protein kinetic stability that uses protein long-range order, absolute contact order, and simulated free energy barriers of unfolding to quantitatively analyze and predict unfolding kinetics. We analyze two β-trefoil proteins: hisactophilin, a quasi-three-fold symmetric natural protein with moderate stability, and ThreeFoil, a designed three-fold symmetric protein with extremely high kinetic stability. The quantitative analysis identifies marked differences in long-range interactions across the protein hydrophobic cores that partially account for the differences in kinetic stability. Swapping the core interactions of ThreeFoil into hisactophilin increases kinetic stability with close agreement between predicted and experimentally measured unfolding rates. These results demonstrate the predictive power of readily applied measures of protein topology for altering kinetic stability and recommend core engineering as a tractable target for rationally designing kinetic stability that may be widely applicable.
Collapse
Affiliation(s)
| | - Lakshmi P. Jayanthi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Elizabeth M. Meiering
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada,*Correspondence: Elizabeth M. Meiering,
| |
Collapse
|
2
|
Alberstein RG, Prelesnik JL, Nakouzi E, Zhang S, De Yoreo JJ, Pfaendtner J, Tezcan FA, Mundy CJ. Discrete Orientations of Interfacial Waters Direct Crystallization of Mica-Binding Proteins. J Phys Chem Lett 2023; 14:80-87. [PMID: 36573690 DOI: 10.1021/acs.jpclett.2c02948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Understanding the basis of templated molecular assembly on a solid surface requires a fundamental comprehension of both short- and long-range aqueous response to the surface under a variety of solution conditions. Herein we provide a detailed picture of how the molecular-scale response to different mica surfaces yields distinct solvent orientations that produce quasi-static directional potentials onto which macromolecules can adsorb. We connect this directionality to observed (a)symmetric epitaxial alignment of designed proteins onto these surfaces, corroborate our findings with 3D atomic force microscopy experiments, and identify slight differences in surface structure as the origin of this effect. Our work provides a detailed picture of the intrinsic electrolyte response in the vicinity of mineral interfaces, with clear predictions for experiment, and highlights the role of solvent on the predictive assembly of hierarchical materials on mineral surfaces.
Collapse
Affiliation(s)
- Robert G Alberstein
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Jesse L Prelesnik
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Elias Nakouzi
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Shuai Zhang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - James J De Yoreo
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Christopher J Mundy
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Zhu H, Tian F, Sun L, Zhu Y, Qiu Q, Dai L. Computational Design of Extraordinarily Stable Peptide Structures through Side-Chain-Locked Knots. J Phys Chem Lett 2022; 13:7741-7748. [PMID: 35969173 DOI: 10.1021/acs.jpclett.2c02385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Extraordinarily stable protein and peptide structures are critically demanded in many applications. Typical approaches to enhance protein and peptide stability are strengthening certain interactions. Here, we develop a very different approach: stabilizing peptide structures through side-chain-locked knots. More specifically, a peptide core consists of a knot, which is prevented from unknotting and unfolding by large side chains of amino acids at knot boundaries. These side chains impose free energy barriers for unknotting. The free energy barriers are quantified using all-atom and coarse-grained simulations. The barriers become infinitely high for large side chains and tight knot cores, resulting in stable peptide structures, which never unfold unless one chemical bond is broken. The extraordinary stability is essentially kinetic stability. Our new approach lifts the thermodynamic restriction in designing peptide structures, provides extra freedom in selecting sequence and structural motifs that are thermodynamically unstable, and should expand the functionality of peptides. This work also provides a bottom-up understanding of how knotting enhances protein stability.
Collapse
Affiliation(s)
- Haoqi Zhu
- Department of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong Special Administrative Region of the People's Republic of China
| | - Fujia Tian
- Department of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong Special Administrative Region of the People's Republic of China
| | - Liang Sun
- Department of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong Special Administrative Region of the People's Republic of China
| | - Yongjian Zhu
- Department of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong Special Administrative Region of the People's Republic of China
| | - Qiyuan Qiu
- Department of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong Special Administrative Region of the People's Republic of China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong Special Administrative Region of the People's Republic of China
| |
Collapse
|
4
|
Talluri S. Engineering and Design of Programmable Genome Editors. J Phys Chem B 2022; 126:5140-5150. [PMID: 35819243 DOI: 10.1021/acs.jpcb.2c03761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Programmable genome editors are enzymes that can be targeted to a specific location in the genome for making site-specific alterations or deletions. The engineering, design, and development of sequence-specific editors has resulted in a dramatic increase in the precision of editing for nucleotide sequences. These editors can target specific locations in a genome, in vivo. The genome editors are being deployed for the development of genetically modified organisms for agriculture and industry, and for gene therapy of inherited human genetic disorders, cancer, and immunotherapy. Experimental and computational studies of structure, binding, activity, dynamics, and folding, reviewed here, have provided valuable insights that have the potential for increasing the functional efficiency of these gene/genome editors. Biochemical and biophysical studies of the specificities of natural and engineered genome editors reveal that increased binding affinity can be detrimental because of the increase of off-target effects and that the engineering and design of genome editors with higher specificity may require modulation and control of the conformational dynamics.
Collapse
Affiliation(s)
- Sekhar Talluri
- Department of Biotechnology, GITAM, Visakhapatnam, India 530045
| |
Collapse
|
5
|
Synakewicz M, Eapen RS, Perez-Riba A, Rowling PJE, Bauer D, Weißl A, Fischer G, Hyvönen M, Rief M, Itzhaki LS, Stigler J. Unraveling the Mechanics of a Repeat-Protein Nanospring: From Folding of Individual Repeats to Fluctuations of the Superhelix. ACS NANO 2022. [PMID: 35258937 DOI: 10.1101/2021.03.27.437344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Tandem-repeat proteins comprise small secondary structure motifs that stack to form one-dimensional arrays with distinctive mechanical properties that are proposed to direct their cellular functions. Here, we use single-molecule optical tweezers to study the folding of consensus-designed tetratricopeptide repeats (CTPRs), superhelical arrays of short helix-turn-helix motifs. We find that CTPRs display a spring-like mechanical response in which individual repeats undergo rapid equilibrium fluctuations between partially folded and unfolded conformations. We rationalize the force response using Ising models and dissect the folding pathway of CTPRs under mechanical load, revealing how the repeat arrays form from the center toward both termini simultaneously. Most strikingly, we also directly observe the protein's superhelical tertiary structure in the force signal. Using protein engineering, crystallography, and single-molecule experiments, we show that the superhelical geometry can be altered by carefully placed amino acid substitutions, and we examine how these sequence changes affect intrinsic repeat stability and inter-repeat coupling. Our findings provide the means to dissect and modulate repeat-protein stability and dynamics, which will be essential for researchers to understand the function of natural repeat proteins and to exploit artificial repeats proteins in nanotechnology and biomedical applications.
Collapse
Affiliation(s)
- Marie Synakewicz
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom†
| | - Rohan S Eapen
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom†
| | - Albert Perez-Riba
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom†
| | - Pamela J E Rowling
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom†
| | - Daniela Bauer
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Andreas Weißl
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Gerhard Fischer
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Matthias Rief
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom†
| | - Johannes Stigler
- Gene Center Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 München, Germany
| |
Collapse
|
6
|
Synakewicz M, Eapen RS, Perez-Riba A, Rowling PJE, Bauer D, Weißl A, Fischer G, Hyvönen M, Rief M, Itzhaki LS, Stigler J. Unraveling the Mechanics of a Repeat-Protein Nanospring: From Folding of Individual Repeats to Fluctuations of the Superhelix. ACS NANO 2022; 16:3895-3905. [PMID: 35258937 PMCID: PMC8944806 DOI: 10.1021/acsnano.1c09162] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Tandem-repeat proteins comprise small secondary structure motifs that stack to form one-dimensional arrays with distinctive mechanical properties that are proposed to direct their cellular functions. Here, we use single-molecule optical tweezers to study the folding of consensus-designed tetratricopeptide repeats (CTPRs), superhelical arrays of short helix-turn-helix motifs. We find that CTPRs display a spring-like mechanical response in which individual repeats undergo rapid equilibrium fluctuations between partially folded and unfolded conformations. We rationalize the force response using Ising models and dissect the folding pathway of CTPRs under mechanical load, revealing how the repeat arrays form from the center toward both termini simultaneously. Most strikingly, we also directly observe the protein's superhelical tertiary structure in the force signal. Using protein engineering, crystallography, and single-molecule experiments, we show that the superhelical geometry can be altered by carefully placed amino acid substitutions, and we examine how these sequence changes affect intrinsic repeat stability and inter-repeat coupling. Our findings provide the means to dissect and modulate repeat-protein stability and dynamics, which will be essential for researchers to understand the function of natural repeat proteins and to exploit artificial repeats proteins in nanotechnology and biomedical applications.
Collapse
Affiliation(s)
- Marie Synakewicz
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Rohan S. Eapen
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Albert Perez-Riba
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Pamela J. E. Rowling
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Daniela Bauer
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Andreas Weißl
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Gerhard Fischer
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Marko Hyvönen
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Matthias Rief
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Laura S. Itzhaki
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Johannes Stigler
- Gene
Center Munich, Ludwig-Maximilians-Universität
München, Feodor-Lynen-Straße 25, 81377 München, Germany
| |
Collapse
|
7
|
Sternke M, Tripp KW, Barrick D. Surface residues and non-additive interactions stabilize a consensus homeodomain protein. Biophys J 2021; 120:5267-5278. [PMID: 34757081 DOI: 10.1016/j.bpj.2021.10.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022] Open
Abstract
Despite the widely reported success of consensus design in producing highly stabilized proteins, little is known about the physical mechanisms underlying this stabilization. Here we explore the potential sources of stabilization by performing a systematic analysis of the 29 substitutions that we previously found to collectively stabilize a consensus homeodomain compared to an extant homeodomain. By separately introducing groups of consensus substitutions that alter or preserve charge state, occur at varying degrees of residue burial, and occur at positions of varying degrees of conservation, we determine the extent to which these three features contribute to the consensus stability enhancement. Surprisingly, we find that the largest total contribution to stability comes from consensus substitutions on the protein surface and that the largest per-substitution contributions come from substitutions that maintain charge state. This finding suggests that although consensus proteins are often enriched in charged residues, consensus stabilization does not result primarily from interactions involving charged residues. Although consensus substitutions at strongly conserved positions also contribute disproportionately to stabilization, significant stabilization is also contributed from substitutions at weakly conserved positions. Furthermore, we find that identical consensus substitutions show larger stabilizing effects when introduced into the consensus background than when introduced into an extant homeodomain, indicating that synergistic, stabilizing interactions among the consensus residues contribute to consensus stability enhancement of the homeodomain. By measuring DNA binding affinity for the same set of variants, we find that although consensus design of the homeodomain increases both affinity and folding stability, it does so using a largely non-overlapping set of substitutions.
Collapse
Affiliation(s)
- Matt Sternke
- The T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 USA
| | - Katherine W Tripp
- The T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 USA
| | - Doug Barrick
- The T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 USA.
| |
Collapse
|
8
|
Izert MA, Szybowska PE, Górna MW, Merski M. The Effect of Mutations in the TPR and Ankyrin Families of Alpha Solenoid Repeat Proteins. FRONTIERS IN BIOINFORMATICS 2021; 1:696368. [PMID: 36303725 PMCID: PMC9581033 DOI: 10.3389/fbinf.2021.696368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/22/2021] [Indexed: 11/20/2022] Open
Abstract
Protein repeats are short, highly similar peptide motifs that occur several times within a single protein, for example the TPR and Ankyrin repeats. Understanding the role of mutation in these proteins is complicated by the competing facts that 1) the repeats are much more restricted to a set sequence than non-repeat proteins, so mutations should be harmful much more often because there are more residues that are heavily restricted due to the need of the sequence to repeat and 2) the symmetry of the repeats in allows the distribution of functional contributions over a number of residues so that sometimes no specific site is singularly responsible for function (unlike enzymatic active site catalytic residues). To address this issue, we review the effects of mutations in a number of natural repeat proteins from the tetratricopeptide and Ankyrin repeat families. We find that mutations are context dependent. Some mutations are indeed highly disruptive to the function of the protein repeats while mutations in identical positions in other repeats in the same protein have little to no effect on structure or function.
Collapse
Affiliation(s)
| | | | | | - Matthew Merski
- *Correspondence: Maria Wiktoria Górna, ; Matthew Merski,
| |
Collapse
|
9
|
Hsia Y, Mout R, Sheffler W, Edman NI, Vulovic I, Park YJ, Redler RL, Bick MJ, Bera AK, Courbet A, Kang A, Brunette TJ, Nattermann U, Tsai E, Saleem A, Chow CM, Ekiert D, Bhabha G, Veesler D, Baker D. Design of multi-scale protein complexes by hierarchical building block fusion. Nat Commun 2021; 12:2294. [PMID: 33863889 PMCID: PMC8052403 DOI: 10.1038/s41467-021-22276-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
A systematic and robust approach to generating complex protein nanomaterials would have broad utility. We develop a hierarchical approach to designing multi-component protein assemblies from two classes of modular building blocks: designed helical repeat proteins (DHRs) and helical bundle oligomers (HBs). We first rigidly fuse DHRs to HBs to generate a large library of oligomeric building blocks. We then generate assemblies with cyclic, dihedral, and point group symmetries from these building blocks using architecture guided rigid helical fusion with new software named WORMS. X-ray crystallography and cryo-electron microscopy characterization show that the hierarchical design approach can accurately generate a wide range of assemblies, including a 43 nm diameter icosahedral nanocage. The computational methods and building block sets described here provide a very general route to de novo designed protein nanomaterials.
Collapse
Affiliation(s)
- Yang Hsia
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, WA, USA
| | - Rubul Mout
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - William Sheffler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Natasha I Edman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Ivan Vulovic
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rachel L Redler
- Department of Cell Biology and Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Matthew J Bick
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alexis Courbet
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - T J Brunette
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Una Nattermann
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, WA, USA
| | - Evelyn Tsai
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Ayesha Saleem
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Cameron M Chow
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Damian Ekiert
- Department of Cell Biology and Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Gira Bhabha
- Department of Cell Biology and Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
10
|
Gidley F, Parmeggiani F. Repeat proteins: designing new shapes and functions for solenoid folds. Curr Opin Struct Biol 2021; 68:208-214. [PMID: 33721772 DOI: 10.1016/j.sbi.2021.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 10/21/2022]
Abstract
The modular nature of repeat proteins has inspired the design of regular and completely novel sequences and structures. Research in the past years has provided a broad set of design approaches and new repeat proteins that have found applications in molecular recognition, taking advantage of the natural ability of some of these families to bind proteins, peptides and nucleic acids. Here, we provide an overview on the recent trends in design of repeat proteins, particularly solenoid folds, and their applications. By exploiting the intrinsic modularity of repeats, new architectures have been designed that combine different types of repeat, are easily scalable by changing the number of repeats and can be quickly generated by using existing modular building blocks.
Collapse
Affiliation(s)
- Frances Gidley
- School of Chemistry, School of Biochemistry, Bristol Biodesign Institute, University of Bristol, United Kingdom
| | - Fabio Parmeggiani
- School of Chemistry, School of Biochemistry, Bristol Biodesign Institute, University of Bristol, United Kingdom.
| |
Collapse
|
11
|
Abstract
Cooperativity is a hallmark of protein folding, but the thermodynamic origins of cooperativity are difficult to quantify. Tandem repeat proteins provide a unique experimental system to quantify cooperativity due to their internal symmetry and their tolerance of deletion, extension, and in some cases fragmentation into single repeats. Analysis of repeat proteins of different lengths with nearest-neighbor Ising models provides values for repeat folding ([Formula: see text]) and inter-repeat coupling (ΔGi-1,i). In this article, we review the architecture of repeat proteins and classify them in terms of ΔGi and ΔGi-1,i; this classification scheme groups repeat proteins according to their degree of cooperativity. We then present various statistical thermodynamic models, based on the 1D-Ising model, for analysis of different classes of repeat proteins. We use these models to analyze data for highly and moderately cooperative and noncooperative repeat proteins and relate their fitted parameters to overall structural features.
Collapse
Affiliation(s)
- Mark Petersen
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA.,T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| | - Doug Barrick
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| |
Collapse
|
12
|
Cohan MC, Ruff KM, Pappu RV. Information theoretic measures for quantifying sequence-ensemble relationships of intrinsically disordered proteins. Protein Eng Des Sel 2020; 32:191-202. [PMID: 31375817 PMCID: PMC7462041 DOI: 10.1093/protein/gzz014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/19/2019] [Indexed: 01/26/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) contribute to a multitude of functions. De novo design of IDPs should open the door to modulating functions and phenotypes controlled by these systems. Recent design efforts have focused on compositional biases and specific sequence patterns as the design features. Analysis of the impact of these designs on sequence-function relationships indicates that individual sequence/compositional parameters are insufficient for describing sequence-function relationships in IDPs. To remedy this problem, we have developed information theoretic measures for sequence–ensemble relationships (SERs) of IDPs. These measures rely on prior availability of statistically robust conformational ensembles derived from all atom simulations. We show that the measures we have developed are useful for comparing sequence-ensemble relationships even when sequence is poorly conserved. Based on our results, we propose that de novo designs of IDPs, guided by knowledge of their SERs, should provide improved insights into their sequence–ensemble–function relationships.
Collapse
Affiliation(s)
- Megan C Cohan
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS) Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis MO, USA
| | - Kiersten M Ruff
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS) Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis MO, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS) Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis MO, USA
| |
Collapse
|
13
|
Weinstein J, Khersonsky O, Fleishman SJ. Practically useful protein-design methods combining phylogenetic and atomistic calculations. Curr Opin Struct Biol 2020; 63:58-64. [PMID: 32505941 DOI: 10.1016/j.sbi.2020.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Our ability to design new or improved biomolecular activities depends on understanding the sequence-function relationships in proteins. The large size and fold complexity of most proteins, however, obscure these relationships, and protein-optimization methods continue to rely on laborious experimental iterations. Recently, a deeper understanding of the roles of stability-threshold effects and biomolecular epistasis in proteins has led to the development of hybrid methods that combine phylogenetic analysis with atomistic design calculations. These methods enable reliable and even single-step optimization of protein stability, expressibility, and activity in proteins that were considered outside the scope of computational design. Furthermore, ancestral-sequence reconstruction produces insights on missing links in the evolution of enzymes and binders that may be used in protein design. Through the combination of phylogenetic and atomistic calculations, the long-standing goal of general computational methods that can be universally applied to study and optimize proteins finally seems within reach.
Collapse
Affiliation(s)
- Jonathan Weinstein
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Olga Khersonsky
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
14
|
Zhou W, Šmidlehner T, Jerala R. Synthetic biology principles for the design of protein with novel structures and functions. FEBS Lett 2020; 594:2199-2212. [PMID: 32324903 DOI: 10.1002/1873-3468.13796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/29/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022]
Abstract
Nature provides a large number of functional proteins that evolved during billions of years of evolution. The diversity of natural proteins encompasses versatile functions and more than a thousand different folds, which, however, represents only a tiny fraction of all possible folds and polypeptide sequences. Recent advances in the rational design of proteins demonstrate that it is possible to design de novo protein folds unseen in nature. Novel protein topologies have been designed based on similar principles as natural proteins using advanced computational modelling or modular construction principles, such as oligomerization domains. Designed proteins exhibit several interesting features such as extreme stability, designability of 3D topologies and folding pathways. Moreover, designed protein assemblies can implement symmetry similar to the viral capsids, while, on the other hand, single-chain pseudosymmetric designs can address each position independently. Recently, the design is expanding towards the introduction of new functions into designed proteins, and we may soon be able to design molecular machines.
Collapse
Affiliation(s)
- Weijun Zhou
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Tamara Šmidlehner
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
15
|
Quijano-Rubio A, Ulge UY, Walkey CD, Silva DA. The advent of de novo proteins for cancer immunotherapy. Curr Opin Chem Biol 2020; 56:119-128. [PMID: 32371023 DOI: 10.1016/j.cbpa.2020.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022]
Abstract
Engineered proteins are revolutionizing immunotherapy, but advances are still needed to harness their full potential. Traditional protein engineering methods use naturally existing proteins as a starting point, and therefore, are intrinsically limited to small alterations of a protein's natural structure and function. Conversely, computational de novo protein design is free of such limitation, and can produce a virtually infinite number of novel protein sequences, folds, and functions. Recently, we used de novo protein engineering to create Neoleukin-2/15 (Neo-2/15), a protein mimetic of the function of both interleukin-2 (IL-2) and interleukin-15 (IL-15). To our knowledge, Neo-2/15 is the first de novo protein with immunotherapeutic activity, and in murine cancer models, it has demonstrated enhanced therapeutic potency and reduced toxicity compared to IL-2. De novo protein design is already showcasing its tremendous potential for driving the next wave of protein-based therapeutics that are explicitly engineered to treat disease.
Collapse
Affiliation(s)
| | - Umut Y Ulge
- Neoleukin Therapeutics Inc., Seattle, WA, USA
| | | | | |
Collapse
|
16
|
Brunette TJ, Bick MJ, Hansen JM, Chow CM, Kollman JM, Baker D. Modular repeat protein sculpting using rigid helical junctions. Proc Natl Acad Sci U S A 2020; 117:8870-8875. [PMID: 32245816 PMCID: PMC7183188 DOI: 10.1073/pnas.1908768117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The ability to precisely design large proteins with diverse shapes would enable applications ranging from the design of protein binders that wrap around their target to the positioning of multiple functional sites in specified orientations. We describe a protein backbone design method for generating a wide range of rigid fusions between helix-containing proteins and use it to design 75,000 structurally unique junctions between monomeric and homo-oligomeric de novo designed and ankyrin repeat proteins (RPs). Of the junction designs that were experimentally characterized, 82% have circular dichroism and solution small-angle X-ray scattering profiles consistent with the design models and are stable at 95 °C. Crystal structures of four designed junctions were in close agreement with the design models with rmsds ranging from 0.9 to 1.6 Å. Electron microscopic images of extended tetrameric structures and ∼10-nm-diameter "L" and "V" shapes generated using the junctions are close to the design models, demonstrating the control the rigid junctions provide for protein shape sculpting over multiple nanometer length scales.
Collapse
Affiliation(s)
- T J Brunette
- Department of Biochemistry, University of Washington, Seattle, WA 98195;
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Matthew J Bick
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Jesse M Hansen
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, WA 98195
| | - Cameron M Chow
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
| |
Collapse
|
17
|
McCord JP, Grove TZ. Engineering repeat proteins of the immune system. Biopolymers 2020; 111:e23348. [PMID: 32031681 DOI: 10.1002/bip.23348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 11/06/2022]
Abstract
Limitations associated with immunoglobulins have motivated the search for novel binding scaffolds. Repeat proteins have emerged as one promising class of scaffolds, but often are limited to binding protein and peptide targets. An exception is the repeat proteins of the immune system, which have in recent years served as an inspiration for binding scaffolds which can bind glycans and other classes of biomolecule. Like other repeat proteins, these proteins can be very stable and have a monomeric mode of binding, with elongated and highly variable binding surfaces. The ability to target glycans and glycoproteins fill an important gap in current tools for research and biomedical applications.
Collapse
Affiliation(s)
- Jennifer P McCord
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, U.S.A
| | - Tijana Z Grove
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, U.S.A.,Zarkovic Grove Consulting, LLC, Blacksburg, VA, U.S.A
| |
Collapse
|
18
|
Perez-Riba A, Komives E, Main ERG, Itzhaki LS. Decoupling a tandem-repeat protein: Impact of multiple loop insertions on a modular scaffold. Sci Rep 2019; 9:15439. [PMID: 31659184 PMCID: PMC6817815 DOI: 10.1038/s41598-019-49905-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/29/2019] [Indexed: 11/25/2022] Open
Abstract
The simple topology and modular architecture of tandem-repeat proteins such as tetratricopeptide repeats (TPRs) and ankyrin repeats makes them straightforward to dissect and redesign. Repeat-protein stability can be manipulated in a predictable way using site-specific mutations. Here we explore a different type of modification - loop insertion - that will enable a simple route to functionalisation of this versatile scaffold. We previously showed that a single loop insertion has a dramatically different effect on stability depending on its location in the repeat array. Here we dissect this effect by a combination of multiple and alternated loop insertions to understand the origins of the context-dependent loss in stability. We find that the scaffold is remarkably robust in that its overall structure is maintained. However, adjacent repeats are now only weakly coupled, and consequently the increase in solvent protection, and thus stability, with increasing repeat number that defines the tandem-repeat protein class is lost. Our results also provide us with a rulebook with which we can apply these principles to the design of artificial repeat proteins with precisely tuned folding landscapes and functional capabilities, thereby paving the way for their exploitation as a versatile and truly modular platform in synthetic biology.
Collapse
Affiliation(s)
- Albert Perez-Riba
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
| | - Elizabeth Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0378, USA
| | - Ewan R G Main
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
19
|
Berezovsky IN. Towards descriptor of elementary functions for protein design. Curr Opin Struct Biol 2019; 58:159-165. [PMID: 31352188 DOI: 10.1016/j.sbi.2019.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/18/2019] [Indexed: 11/18/2022]
Abstract
We review studies of the protein evolution that help to formulate rules for protein design. Acknowledging the fundamental importance of Dayhoff's provision on the emergence of functional proteins from short peptides, we discuss multiple evidences of the omnipresent partitioning of protein globules into structural/functional units, using which greatly facilitates the engineering and design efforts. Closed loops and elementary functional loops, which are descendants of ancient ring-like peptides that formed fist protein domains in agreement with Dayhoff's hypothesis, can be considered as basic units of protein structure and function. We argue that future developments in protein design approaches should consider descriptors of the elementary functions, which will help to complement designed scaffolds with functional signatures and flexibility necessary for their functions.
Collapse
Affiliation(s)
- Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A⁎STAR), 30 Biopolis Street, #07-01, Matrix 138671, Singapore; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, 117579, Singapore.
| |
Collapse
|
20
|
Geiger-Schuller K, Mitra J, Ha T, Barrick D. Functional instability allows access to DNA in longer transcription Activator-Like effector (TALE) arrays. eLife 2019; 8:38298. [PMID: 30810525 PMCID: PMC6461438 DOI: 10.7554/elife.38298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 02/27/2019] [Indexed: 12/14/2022] Open
Abstract
Transcription activator-like effectors (TALEs) bind DNA through an array of tandem 34-residue repeats. How TALE repeat domains wrap around DNA, often extending more than 1.5 helical turns, without using external energy is not well understood. Here, we examine the kinetics of DNA binding of TALE arrays with varying numbers of identical repeats. Single molecule fluorescence analysis and deterministic modeling reveal conformational heterogeneity in both the free- and DNA-bound TALE arrays. Our findings, combined with previously identified partly folded states, indicate a TALE instability that is functionally important for DNA binding. For TALEs forming less than one superhelical turn around DNA, partly folded states inhibit DNA binding. In contrast, for TALEs forming more than one turn, partly folded states facilitate DNA binding, demonstrating a mode of ‘functional instability’ that facilitates macromolecular assembly. Increasing repeat number slows down interconversion between the various DNA-free and DNA-bound states. The DNA contains all the information needed to build an organism. It is made up of two strands that wind around each other like a twisted ladder to form the double helix. The strands consist of sugar and phosphate molecules, which attach to one of for bases. Genes are built from DNA, and contain specific sequences of these bases. Being able to modify DNA by deleting, inserting or changing certain sequences allows researchers to engineer tissues or even organisms for therapeutical and practical applications. One of these gene editing tools is the so-called transcription activator-like effector protein (or TALE for short). TALE proteins are derived from bacteria and are built from simple repeating units that can be linked to form a string-like structure. They have been found to be unstable proteins. To bind to DNA, TALES need to follow the shape of the double helix, adopting a spiral structure, but how exactly TALE proteins thread their way around the DNA is not clear. To investigate this, Geiger-Schuller et al. monitored single TALE units using fluorescent microscopy. This way, they could exactly measure the time it takes for single TALE proteins to bind and release DNA. The results showed that some TALE proteins bind DNA quickly, whereas others do this slowly. Using a computer model to analyze the different speeds of binding suggested that the fast binding comes from partly unfolded proteins that quickly associate with DNA, and that the slow binding comes from rigid, folded TALE proteins, which have a harder time wrapping around DNA. This suggest that the unstable nature of TALEs, helps these proteins to bind to DNA and turn on genes. These findings will help to design future TALE-based gene editing tools and also provide more insight into how large molecules can assemble into complex structures. A next step will be to identify TALE repeats with unstable states and to test TALE gene editing tools that have intentionally placed unstable units.
Collapse
Affiliation(s)
- Kathryn Geiger-Schuller
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, United States.,Program in Molecular Biophysics, Johns Hopkins University, Baltimore, United States
| | - Jaba Mitra
- Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, United States
| | - Taekjip Ha
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, United States.,Program in Molecular Biophysics, Johns Hopkins University, Baltimore, United States.,Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana Champaign, Urbana, United States.,Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States.,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, United States.,Howard Hughes Medical Institute, Baltimore, United States
| | - Doug Barrick
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, United States.,Program in Molecular Biophysics, Johns Hopkins University, Baltimore, United States
| |
Collapse
|