1
|
Rosell R, Codony-Servat J, González J, Santarpia M, Jain A, Shivamallu C, Wang Y, Giménez-Capitán A, Molina-Vila MA, Nilsson J, González-Cao M. KRAS G12C-mutant driven non-small cell lung cancer (NSCLC). Crit Rev Oncol Hematol 2024; 195:104228. [PMID: 38072173 DOI: 10.1016/j.critrevonc.2023.104228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 02/20/2024] Open
Abstract
KRAS G12C mutations in non-small cell lung cancer (NSCLC) partially respond to KRAS G12C covalent inhibitors. However, early adaptive resistance occurs due to rewiring of signaling pathways, activating receptor tyrosine kinases, primarily EGFR, but also MET and ligands. Evidence indicates that treatment with KRAS G12C inhibitors (sotorasib) triggers the MRAS:SHOC2:PP1C trimeric complex. Activation of MRAS occurs from alterations in the Scribble and Hippo-dependent pathways, leading to YAP activation. Other mechanisms that involve STAT3 signaling are intertwined with the activation of MRAS. The high-resolution MRAS:SHOC2:PP1C crystallization structure allows in silico analysis for drug development. Activation of MRAS:SHOC2:PP1C is primarily Scribble-driven and downregulated by HUWE1. The reactivation of the MRAS complex is carried out by valosin containing protein (VCP). Exploring these pathways as therapeutic targets and their impact on different chemotherapeutic agents (carboplatin, paclitaxel) is crucial. Comutations in STK11/LKB1 often co-occur with KRAS G12C, jeopardizing the effect of immune checkpoint (anti-PD1/PDL1) inhibitors.
Collapse
Affiliation(s)
- Rafael Rosell
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Spain; IOR, Hospital Quiron-Dexeus, Barcelona, Spain.
| | | | - Jessica González
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Spain
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Italy
| | - Anisha Jain
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, India
| | - Chandan Shivamallu
- Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Yu Wang
- Genfleet Therapeutics, Shanghai, China
| | | | | | - Jonas Nilsson
- Department Radiation Sciences, Oncology, Umeå University, Sweden
| | | |
Collapse
|
2
|
Li J, Wu Y, Liu C, Zhang S, Su X, Xie S, Yang F. A Modified Tridecapeptide Probe for Imaging Cell Junction. Molecules 2024; 29:1003. [PMID: 38474514 DOI: 10.3390/molecules29051003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Cell junctions, which are typically associated with dynamic cytoskeletons, are essential for a wide range of cellular activities, including cell migration, cell communication, barrier function and signal transduction. Observing cell junctions in real-time can help us understand the mechanisms by which they regulate these cellular activities. This study examined the binding capacity of a modified tridecapeptide from Connexin 43 (Cx43) to the cell junction protein zonula occludens-1 (ZO-1). The goal was to create a fluorescent peptide that can label cell junctions. A cell-penetrating peptide was linked to the modified tridecapeptide. The heterotrimeric peptide molecule was then synthesized. The binding of the modified tridecapeptide was tested using pulldown and immunoprecipitation assays. The ability of the peptide to label cell junctions was assessed by adding it to fixed or live Caco-2 cells. The testing assays revealed that the Cx43-derived peptide can bind to ZO-1. Additionally, the peptide was able to label cell junctions of fixed cells, although no obvious cell junction labeling was observed clearly in live cells, probably due to the inadequate affinity. These findings suggest that labeling cell junctions using a peptide-based strategy is feasible. Further efforts to improve its affinity are warranted in the future.
Collapse
Affiliation(s)
- Jingrui Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Yuhan Wu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Chunyu Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Shu Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Xin Su
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Songbo Xie
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Fengtang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
3
|
Bonsor DA, Simanshu DK. Structural insights into the role of SHOC2-MRAS-PP1C complex in RAF activation. FEBS J 2023; 290:4852-4863. [PMID: 37074066 PMCID: PMC10584989 DOI: 10.1111/febs.16800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/20/2023]
Abstract
RAF activation is a key step for signalling through the mitogen-activated protein kinase (MAPK) pathway. The SHOC2 protein, along with MRAS and PP1C, forms a high affinity, heterotrimeric holoenzyme that activates RAF kinases by dephosphorylating a specific phosphoserine. Recently, our research, along with that of three other teams, has uncovered valuable structural and functional insights into the SHOC2-MRAS-PP1C (SMP) holoenzyme complex. In this structural snapshot, we review SMP complex assembly, the dependency on the bound-nucleotide state of MRAS, the substitution of MRAS by the canonical RAS proteins and the roles of SHOC2 and MRAS on PP1C activity and specificity. Furthermore, we discuss the effect of several RASopathy mutations identified within the SMP complex and explore potential therapeutic approaches for targeting the SMP complex in RAS/RAF-driven cancers and RASopathies.
Collapse
Affiliation(s)
- Daniel A. Bonsor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dhirendra K. Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
4
|
Adachi Y, Kimura R, Hirade K, Yanase S, Nishioka Y, Kasuga N, Yamaguchi R, Ebi H. Scribble mis-localization induces adaptive resistance to KRAS G12C inhibitors through feedback activation of MAPK signaling mediated by YAP-induced MRAS. NATURE CANCER 2023; 4:829-843. [PMID: 37277529 DOI: 10.1038/s43018-023-00575-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/08/2023] [Indexed: 06/07/2023]
Abstract
Tumor cells evade targeted drugs by rewiring their genetic and epigenetic networks. Here, we identified that inhibition of MAPK signaling rapidly induces an epithelial-to-mesenchymal transition program by promoting re-localization of an apical-basal polarity protein, Scribble, in oncogene-addicted lung cancer models. Mis-localization of Scribble suppressed Hippo-YAP signaling, leading to YAP nuclear translocation. Furthermore, we discovered that a RAS superfamily protein MRAS is a direct target of YAP. Treatment with KRAS G12C inhibitors induced MRAS expression, which formed a complex with SHOC2, precipitating feedback activation of MAPK signaling. Abrogation of YAP activation or MRAS induction enhanced the efficacy of KRAS G12C inhibitor treatment in vivo. These results highlight a role for protein localization in the induction of a non-genetic mechanism of resistance to targeted therapies in lung cancer. Furthermore, we demonstrate that induced MRAS expression is a key mechanism of adaptive resistance following KRAS G12C inhibitor treatment.
Collapse
Affiliation(s)
- Yuta Adachi
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Ryo Kimura
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Kentaro Hirade
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Shogo Yanase
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Yuki Nishioka
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Natsumi Kasuga
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Rui Yamaguchi
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
- Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiromichi Ebi
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan.
- Division of Advanced Cancer Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| |
Collapse
|
5
|
Norcross RG, Abdelmoti L, Rouchka EC, Andreeva K, Tussey O, Landestoy D, Galperin E. Shoc2 controls ERK1/2-driven neural crest development by balancing components of the extracellular matrix. Dev Biol 2022; 492:156-171. [PMID: 36265687 PMCID: PMC10019579 DOI: 10.1016/j.ydbio.2022.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 02/02/2023]
Abstract
The extracellular signal-regulated kinase (ERK1/2) pathway is essential in embryonic development. The scaffold protein Shoc2 is a critical modulator of ERK1/2 signals, and mutations in the shoc2 gene lead to the human developmental disease known as Noonan-like syndrome with loose anagen hair (NSLH). The loss of Shoc2 and the shoc2 NSLH-causing mutations affect the tissues of neural crest (NC) origin. In this study, we utilized the zebrafish model to dissect the role of Shoc2-ERK1/2 signals in the development of NC. These studies established that the loss of Shoc2 significantly altered the expression of transcription factors regulating the specification and differentiation of NC cells. Using comparative transcriptome analysis of NC-derived cells from shoc2 CRISPR/Cas9 mutant larvae, we found that Shoc2-mediated signals regulate gene programs at several levels, including expression of genes coding for the proteins of extracellular matrix (ECM) and ECM regulators. Together, our results demonstrate that Shoc2 is an essential regulator of NC development. This study also indicates that disbalance in the turnover of the ECM may lead to the abnormalities found in NSLH patients.
Collapse
Affiliation(s)
- Rebecca G Norcross
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Lina Abdelmoti
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Eric C Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, 40292, USA; KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, 40292, USA
| | - Kalina Andreeva
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, 40292, USA; Department of Neuroscience Training, University of Louisville, Louisville, KY, 40292, USA; Department of Genetics, Stanford University, Palo Alto, CA, 94304, USA
| | - Olivia Tussey
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Daileen Landestoy
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
6
|
Bonsor DA, Alexander P, Snead K, Hartig N, Drew M, Messing S, Finci LI, Nissley DV, McCormick F, Esposito D, Rodriguez-Viciana P, Stephen AG, Simanshu DK. Structure of the SHOC2-MRAS-PP1C complex provides insights into RAF activation and Noonan syndrome. Nat Struct Mol Biol 2022; 29:966-977. [PMID: 36175670 PMCID: PMC10365013 DOI: 10.1038/s41594-022-00841-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/12/2022] [Indexed: 11/08/2022]
Abstract
SHOC2 acts as a strong synthetic lethal interactor with MEK inhibitors in multiple KRAS cancer cell lines. SHOC2 forms a heterotrimeric complex with MRAS and PP1C that is essential for regulating RAF and MAPK-pathway activation by dephosphorylating a specific phosphoserine on RAF kinases. Here we present the high-resolution crystal structure of the SHOC2-MRAS-PP1C (SMP) complex and apo-SHOC2. Our structures reveal that SHOC2, MRAS, and PP1C form a stable ternary complex in which all three proteins synergistically interact with each other. Our results show that dephosphorylation of RAF substrates by PP1C is enhanced upon interacting with SHOC2 and MRAS. The SMP complex forms only when MRAS is in an active state and is dependent on SHOC2 functioning as a scaffolding protein in the complex by bringing PP1C and MRAS together. Our results provide structural insights into the role of the SMP complex in RAF activation and how mutations found in Noonan syndrome enhance complex formation, and reveal new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Daniel A Bonsor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Patrick Alexander
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kelly Snead
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nicole Hartig
- UCL Cancer Institute, University College London, London, UK
| | - Matthew Drew
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lorenzo I Finci
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
7
|
Motta M, Solman M, Bonnard AA, Kuechler A, Pantaleoni F, Priolo M, Chandramouli B, Coppola S, Pizzi S, Zara E, Ferilli M, Kayserili H, Onesimo R, Leoni C, Brinkmann J, Vial Y, Kamphausen SB, Thomas-Teinturier C, Guimier A, Cordeddu V, Mazzanti L, Zampino G, Chillemi G, Zenker M, Cavé H, Hertog J, Tartaglia M. Expanding the molecular spectrum of pathogenic SHOC2 variants underlying Mazzanti syndrome. Hum Mol Genet 2022; 31:2766-2778. [PMID: 35348676 PMCID: PMC9402240 DOI: 10.1093/hmg/ddac071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
We previously molecularly and clinically characterized Mazzanti syndrome, a RASopathy related to Noonan syndrome that is mostly caused by a single recurrent missense variant (c.4A > G, p.Ser2Gly) in SHOC2, which encodes a leucine-rich repeat (LRR)-containing protein facilitating signal flow through the RAS-mitogen-associated protein kinase (MAPK) pathway. We also documented that the pathogenic p.Ser2Gly substitution causes upregulation of MAPK signaling and constitutive targeting of SHOC2 to the plasma membrane due to the introduction of an N-myristoylation recognition motif. The almost invariant occurrence of the pathogenic c.4A > G missense change in SHOC2 is mirrored by a relatively homogeneous clinical phenotype of Mazzanti syndrome. Here we provide new data on the clinical spectrum and molecular diversity of this disorder, and functionally characterize new pathogenic variants. The clinical phenotype of six unrelated individuals carrying novel disease-causing SHOC2 variants is delineated, and public and newly collected clinical data are utilized to profile the disorder. In silico, in vitro and in vivo characterization of the newly identified variants provides evidence that the consequences of these missense changes on SHOC2 functional behavior differ from what had been observed for the canonical p.Ser2Gly change but converge towards an enhanced activation of the RAS-MAPK pathway. Our findings expand the molecular spectrum of pathogenic SHOC2 variants, provide a more accurate picture of the phenotypic expression associated with variants in this gene, and definitively establish a GoF behavior as the mechanism of disease.
Collapse
Affiliation(s)
- Marialetizia Motta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Maja Solman
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Adeline A Bonnard
- Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Département de Génétique, 75019 Paris, France
- INSERM UMR 1131, Institut de Recherche Saint-Louis, Université de Paris, 75010 Paris, France
| | - Alma Kuechler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, 45147 Essen, Germany
| | - Francesca Pantaleoni
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Manuela Priolo
- UOSD Genetica Medica, Grandeospedale Metropolitano “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italia
| | | | - Simona Coppola
- National Centre Rare Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Erika Zara
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Ferilli
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Hülya Kayserili
- Genetic Diseases Evaluation Center, Medical Genetics Department, Koç University School of Medicine, 34010 İstanbul, Turkey
| | - Roberta Onesimo
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Julia Brinkmann
- Institute of Human Genetics, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Yoann Vial
- Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Département de Génétique, 75019 Paris, France
- INSERM UMR 1131, Institut de Recherche Saint-Louis, Université de Paris, 75010 Paris, France
| | - Susanne B Kamphausen
- Institute of Human Genetics, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Cécile Thomas-Teinturier
- Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, Hôpital Bicêtre, Department of Pediatric Endocrinology, 94270 Le Kremlin Bicêtre, France
- INSERM UMR 1018, Cancer and Radiation team, CESP, 94800 Villejuif, France
| | - Anne Guimier
- Service de Médecine Genomique des Maladies Rares, CRMR Anomalies du développement, Hôpital Necker-Enfants Malades, Assistance Publique des Hôpitaux de Paris, 75015 Paris, France
| | - Viviana Cordeddu
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Laura Mazzanti
- Alma Mater Studiorum, University of Bologna, 40125 Bologna, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
- Department of Woman and Child Health and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-food and Forest systems, Università della Tuscia, 01100 Viterbo, Italy
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Centro Nazionale delle Ricerche, 70126 Bari, Italy
| | - Martin Zenker
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, 45147 Essen, Germany
| | - Hélène Cavé
- Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Département de Génétique, 75019 Paris, France
- INSERM UMR 1131, Institut de Recherche Saint-Louis, Université de Paris, 75010 Paris, France
| | - Jeroen Hertog
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
- Lead contact
| |
Collapse
|
8
|
Blaschuk OW. Potential Therapeutic Applications of N-Cadherin Antagonists and Agonists. Front Cell Dev Biol 2022; 10:866200. [PMID: 35309924 PMCID: PMC8927039 DOI: 10.3389/fcell.2022.866200] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
This review focuses on the cell adhesion molecule (CAM), known as neural (N)-cadherin (CDH2). The molecular basis of N-cadherin-mediated intercellular adhesion is discussed, as well as the intracellular signaling pathways regulated by this CAM. N-cadherin antagonists and agonists are then described, and several potential therapeutic applications of these intercellular adhesion modulators are considered. The usefulness of N-cadherin antagonists in treating fibrotic diseases and cancer, as well as manipulating vascular function are emphasized. Biomaterials incorporating N-cadherin modulators for tissue regeneration are also presented. N-cadherin antagonists and agonists have potential for broad utility in the treatment of numerous maladies.
Collapse
|
9
|
Hirose Y, Hirai Y. Cooperation of membrane-translocated syntaxin4 and basement membrane for dynamic mammary epithelial morphogenesis. J Cell Sci 2021; 134:273506. [PMID: 34676419 DOI: 10.1242/jcs.258905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/18/2021] [Indexed: 11/20/2022] Open
Abstract
Mammary epithelia undergo dramatic morphogenesis after puberty. During pregnancy, luminal epithelial cells in ductal trees are arranged to form well-polarized cystic structures surrounded by a myoepithelial cell layer, an active supplier of the basement membrane (BM). Here, we identified a novel regulatory mechanism involved in this process by using a reconstituted BM-based three-dimensional culture and aggregates of a model mouse cell line, EpH4, that had either been manipulated for inducible expression of the t-SNARE protein syntaxin4 in intact or signal peptide-connected forms, or that were genetically deficient in syntaxin4. We found that cells extruded syntaxin4 upon stimulation with the lactogenic hormone prolactin, which in turn accelerated the turnover of E-cadherin. In response to extracellular expression of syntaxin4, cell populations that were less affected by the BM actively migrated and integrated into the cell layer facing the BM. Concurrently, the BM-facing cells, which were simultaneously stimulated with syntaxin4 and BM, acquired unique epithelial characteristics to undergo dramatic cellular arrangement for cyst formation. These results highlight the importance of the concerted action of extracellular syntaxin4 extruded in response to the lactogenic hormone and BM components in epithelial morphogenesis.
Collapse
Affiliation(s)
- Yuina Hirose
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda 669-1337, Japan
| | - Yohei Hirai
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda 669-1337, Japan.,Department of Biomedical Sciences, Graduate School of Biological and Environmental Sciences, Kwansei Gakuin University, 2-1, Gakuen, Sanda 669-1337, Japan
| |
Collapse
|
10
|
Hu Y, Chen C, Tong X, Chen S, Hu X, Pan B, Sun X, Chen Z, Shi X, Hu Y, Shen X, Xue X, Lu M. NSUN2 modified by SUMO-2/3 promotes gastric cancer progression and regulates mRNA m5C methylation. Cell Death Dis 2021; 12:842. [PMID: 34504059 PMCID: PMC8429414 DOI: 10.1038/s41419-021-04127-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/08/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
The 5-methylcytosine (m5C) RNA methyltransferase NSUN2 is involved in the regulation of cell proliferation and metastasis formation and is upregulated in multiple cancers. However, the biological significance of NSUN2 in gastric cancer (GC) and the modification of NSUN2 itself have not been fully investigated. Here, we analyzed the expression level of NSUN2 in tissue microarrays containing 403 GC tissues by immunohistochemistry. NSUN2 was upregulated in GC, and that it was a predictor of poor prognosis. NSUN2 promotes the proliferation, migration, and invasion of GC cells in vitro. We also demonstrated that small ubiquitin-like modifier (SUMO)-2/3 interacts directly with NSUN2 by stabilizing it and mediating its nuclear transport. This facilitates the carcinogenic activity of NSUN2. Furthermore, m5C bisulfite sequencing (Bis-seq) in NSUN2-deficient GC cells showed that m5C-methylated genes are involved in multiple cancer-related signaling pathways. PIK3R1 and PCYT1A may be the target genes that participate in GC progression. Our findings revealed a novel mechanism by which NSUN2 functions in GC progression. This may provide new treatment options for GC patients.
Collapse
Affiliation(s)
- Yuanbo Hu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Chenbin Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Xinya Tong
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Sian Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Xianjing Hu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Bujian Pan
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Xiangwei Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Zhiyuan Chen
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Xinyu Shi
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Yingying Hu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiangyang Xue
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China.
| | - Mingdong Lu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
11
|
A Leucine-Rich Repeat Protein Provides a SHOC2 the RAS Circuit: a Structure-Function Perspective. Mol Cell Biol 2021; 41:MCB.00627-20. [PMID: 33526449 DOI: 10.1128/mcb.00627-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
SHOC2 is a prototypical leucine-rich repeat protein that promotes downstream receptor tyrosine kinase (RTK)/RAS signaling and plays important roles in several cellular and developmental processes. Gain-of-function germ line mutations of SHOC2 drive the RASopathy Noonan-like syndrome, and SHOC2 mediates adaptive resistance to mitogen-activated protein kinase (MAPK) inhibitors. Similar to many scaffolding proteins, SHOC2 facilitates signal transduction by enabling proximal protein interactions and regulating the subcellular localization of its binding partners. Here, we review the structural features of SHOC2 that mediate its known functions, discuss these elements in the context of various binding partners and signaling pathways, and highlight areas of SHOC2 biology where a consensus view has not yet emerged.
Collapse
|
12
|
Kurley SJ, Tischler V, Bierie B, Novitskiy SV, Noske A, Varga Z, Zürrer-Härdi U, Brandt S, Carnahan RH, Cook RS, Muller WJ, Richmond A, Reynolds AB. A requirement for p120-catenin in the metastasis of invasive ductal breast cancer. J Cell Sci 2021; 134:jcs250639. [PMID: 33097605 PMCID: PMC7990862 DOI: 10.1242/jcs.250639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022] Open
Abstract
We report here the effects of targeted p120-catenin (encoded by CTNND1; hereafter denoted p120) knockout (KO) in a PyMT mouse model of invasive ductal (mammary) cancer (IDC). Mosaic p120 ablation had little effect on primary tumor growth but caused significant pro-metastatic alterations in the tumor microenvironment, ultimately leading to a marked increase in the number and size of pulmonary metastases. Surprisingly, although early effects of p120-ablation included decreased cell-cell adhesion and increased invasiveness, cells lacking p120 were almost entirely unable to colonized distant metastatic sites in vivo The relevance of this observation to human IDC was established by analysis of a large clinical dataset of 1126 IDCs. As reported by others, p120 downregulation in primary IDC predicted worse overall survival. However, as in the mice, distant metastases were almost invariably p120 positive, even in matched cases where the primary tumors were p120 negative. Collectively, our results demonstrate a strong positive role for p120 (and presumably E-cadherin) during metastatic colonization of distant sites. On the other hand, downregulation of p120 in the primary tumor enhanced metastatic dissemination indirectly via pro-metastatic conditioning of the tumor microenvironment.
Collapse
Affiliation(s)
- Sarah J Kurley
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Verena Tischler
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Brian Bierie
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Sergey V Novitskiy
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Aurelia Noske
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Zsuzsanna Varga
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Ursina Zürrer-Härdi
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Simone Brandt
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Robert H Carnahan
- Department of Pediatrics, Vanderbilt University, Nashville, TN 37232, USA
- Goodman Cancer Centre, Montreal, Quebec, H3A 1A3, Canada
| | - Rebecca S Cook
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - William J Muller
- Goodman Cancer Centre, Montreal, Quebec, H3A 1A3, Canada
- Departments of Biochemistry and Medicine, McGill University, Montreal, Quebec, H3A OG4, Canada
| | - Ann Richmond
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| | - Albert B Reynolds
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| |
Collapse
|
13
|
Jang H, Stevens P, Gao T, Galperin E. The leucine-rich repeat signaling scaffolds Shoc2 and Erbin: cellular mechanism and role in disease. FEBS J 2021; 288:721-739. [PMID: 32558243 PMCID: PMC7958993 DOI: 10.1111/febs.15450] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022]
Abstract
Leucine-rich repeat-containing proteins (LRR proteins) are involved in supporting a large number of cellular functions. In this review, we summarize recent advancements in understanding functions of the LRR proteins as signaling scaffolds. In particular, we explore what we have learned about the mechanisms of action of the LRR scaffolds Shoc2 and Erbin and their roles in normal development and disease. We discuss Shoc2 and Erbin in the context of their multiple known interacting partners in various cellular processes and summarize often unexpected functions of these proteins through analysis of their roles in human pathologies. We also review these LRR scaffold proteins as promising therapeutic targets and biomarkers with potential application across various pathologies.
Collapse
Affiliation(s)
- HyeIn Jang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Payton Stevens
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
14
|
Key Enzymes for the Mevalonate Pathway in the Cardiovascular System. J Cardiovasc Pharmacol 2021; 77:142-152. [PMID: 33538531 DOI: 10.1097/fjc.0000000000000952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022]
Abstract
ABSTRACT Isoprenylation is an important post-transcriptional modification of small GTPases required for their activation and function. Isoprenoids, including farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate, are indispensable for isoprenylation by serving as donors of a prenyl moiety to small G proteins. In the human body, isoprenoids are mainly generated by the mevalonate pathway (also known as the cholesterol-synthesis pathway). The hydroxymethylglutaryl coenzyme A reductase catalyzes the first rate-limiting steps of the mevalonate pathway, and its inhibitor (statins) are widely used as lipid-lowering agents. In addition, the FPP synthase is also of critical importance for the regulation of the isoprenoids production, for which the inhibitor is mainly used in the treatment of osteoporosis. Synthetic FPP can be further used to generate geranylgeranyl pyrophosphate and cholesterol. Recent studies suggest a role for isoprenoids in the genesis and development of cardiovascular disorders, such as pathological cardiac hypertrophy, fibrosis, endothelial dysfunction, and fibrotic responses of smooth-muscle cells. Furthermore, statins and FPP synthase inhibitors have also been applied for the management of heart failure and other cardiovascular diseases rather than their clinical use for hyperlipidemia or bone diseases. In this review, we focus on the function of several critical enzymes, including hydroxymethylglutaryl coenzyme A reductase, FPP synthase, farnesyltransferase, and geranylgeranyltransferase in the mevalonate pathway which are involved in regulating the generation of isoprenoids and isoprenylation of small GTPases, and their pathophysiological role in the cardiovascular system. Moreover, we summarize recent research into applications of statins and the FPP synthase inhibitors to treat cardiovascular diseases, rather than for their traditional indications respectively.
Collapse
|
15
|
Chen J, Li X, Liu Q, Wu Y, Shu L, He Z, Ye C, Ma M. Fabrication of multilayered electrospun poly(lactic-co-glycolic acid)/polyvinyl pyrrolidone + poly(ethylene oxide) scaffolds and biocompatibility evaluation. J Biomed Mater Res A 2020; 109:1468-1478. [PMID: 33289293 DOI: 10.1002/jbm.a.37137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 10/28/2020] [Accepted: 11/28/2020] [Indexed: 12/13/2022]
Abstract
Poly(lactic-co-glycolic acid)/polyvinyl pyrrolidone + poly(ethylene oxide) [PLGA/(PVP + PEO)] scaffolds with different polymer concentrations were fabricated using multilayered electrospinning, and their physicochemical properties and biocompatibility were examined to screen for scaffolds with excellent performance in tissue engineering (TE). PLGA solution (15% w/v) was used as the bottom solution, and a mixed solution of 12% w/v PVP + PEO was applied as the surface layer solution. The mass ratios of PVP vs. PEO in each 10 ml surface layer mixed solution were 1.08 g: 0.12 g; 0.96 g: 0.24 g; and 0.84 g: 0.36 g. Compared to the conventional electrospinning method used to fabricate the pure PVP + PEO (0.96 g: 0.24 g, Group A) scaffold and pure PLGA (Group E) scaffold, the multilayer electrospinning technique of alternating sprays of the bottom layer solution and the surface layer solution was adopted to fabricate multilayer nanofiber scaffolds, including PLGA/(PVP + PEO) (1.08 g: 0.12 g, Group B), PLGA/(PVP + PEO) (0.96 g: 0.24 g, Group C), and PLGA/(PVP + PEO) (0.84 g: 0.36 g, Group D). The morphology and characteristics of the five scaffolds were analyzed, and the biocompatibilities of the cell-scaffold composites were assessed through methods including Cell Counting Kit-8 (CCK8) analysis, 4',6-diamidino-2-phenylindole (DAPI) staining, and scanning electron microscopy. Therefore, with a PVP-to-PEO mass ratio of 0.96 g: 0.24 g, an optimal multilayer nanofiber scaffold was fabricated by the multilayer electrospinning technique. The excellent biocompatibility and mechanical properties of the scaffold were confirmed by in vitro experiments, which demonstrated the scaffold's promising application potential in the field of TE.
Collapse
Affiliation(s)
- Jiao Chen
- The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, China.,Stomatological Hospital of GuiYang, Guiyang, China.,National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guiyang, China.,Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
| | - Xuanze Li
- Stomatological Hospital of GuiYang, Guiyang, China.,National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guiyang, China.,Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
| | - Qin Liu
- The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, China.,Stomatological Hospital of GuiYang, Guiyang, China.,National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guiyang, China.,Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
| | - Ying Wu
- The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, China.,Stomatological Hospital of GuiYang, Guiyang, China.,National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guiyang, China.,Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
| | - Liping Shu
- Stomatological Hospital of GuiYang, Guiyang, China.,National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guiyang, China.,Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
| | - Zhixu He
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
| | - Chuan Ye
- Stomatological Hospital of GuiYang, Guiyang, China.,National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guiyang, China.,Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China.,China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Minxian Ma
- Stomatological Hospital of GuiYang, Guiyang, China.,National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guiyang, China.,Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China.,Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guiyang, China
| |
Collapse
|
16
|
Endo T. M-Ras is Muscle-Ras, Moderate-Ras, Mineral-Ras, Migration-Ras, and Many More-Ras. Exp Cell Res 2020; 397:112342. [PMID: 33130177 DOI: 10.1016/j.yexcr.2020.112342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/23/2020] [Indexed: 11/19/2022]
Abstract
The Ras family of small GTPases comprises about 36 members in humans. M-Ras is related to classical Ras with regard to its regulators and effectors, but solely constitutes a subfamily among the Ras family members. Although classical Ras strongly binds Raf and highly activates the ERK pathway, M-Ras less strongly binds Raf and moderately but sustainedly activates the ERK pathway to induce neuronal differentiation. M-Ras also possesses specific effectors, including RapGEFs and the PP1 complex Shoc2-PP1c, which dephosphorylates Raf to activate the ERK pathway. M-Ras is highly expressed in the brain and plays essential roles in dendrite formation during neurogenesis, in contrast to the axon formation by R-Ras. M-Ras is also highly expressed in the bone and induces osteoblastic differentiation and transdifferentiation accompanied by calcification. Moreover, M-Ras elicits epithelial-mesenchymal transition-mediated collective and single cell migration through the PP1 complex-mediated ERK pathway activation. Activating missense mutations in the MRAS gene have been detected in Noonan syndrome, one of the RASopathies, and MRAS gene amplification occurs in several cancers. Furthermore, several SNPs in the MRAS gene are associated with coronary artery disease, obesity, and dyslipidemia. Therefore, M-Ras carries out a variety of cellular, physiological, and pathological functions. Further investigations may reveal more functions of M-Ras.
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
17
|
Patterson VL, Burdine RD. Swimming toward solutions: Using fish and frogs as models for understanding RASopathies. Birth Defects Res 2020; 112:749-765. [PMID: 32506834 DOI: 10.1002/bdr2.1707] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 12/16/2022]
Abstract
The RAS signaling pathway regulates cell growth, survival, and differentiation, and its inappropriate activation is associated with disease in humans. The RASopathies, a set of developmental syndromes, arise when the pathway is overactive during development. Patients share a core set of symptoms, including congenital heart disease, craniofacial anomalies, and neurocognitive delay. Due to the conserved nature of the pathway, animal models are highly informative for understanding disease etiology, and zebrafish and Xenopus are emerging as advantageous model systems. Here we discuss these aquatic models of RASopathies, which recapitulate many of the core symptoms observed in patients. Craniofacial structures become dysmorphic upon expression of disease-associated mutations, resulting in wider heads. Heart defects manifest as delays in cardiac development and changes in heart size, and behavioral deficits are beginning to be explored. Furthermore, early convergence and extension defects cause elongation of developing embryos: this phenotype can be quantitatively assayed as a readout of mutation strength, raising interesting questions regarding the relationship between pathway activation and disease. Additionally, the observation that RAS signaling may be simultaneously hyperactive and attenuated suggests that downregulation of signaling may also contribute to etiology. We propose that models should be characterized using a standardized approach to allow easier comparison between models, and a better understanding of the interplay between mutation and disease presentation.
Collapse
Affiliation(s)
- Victoria L Patterson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Rebecca D Burdine
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
18
|
Liu Z, Yu Y, Huang Z, Kong Y, Hu X, Xiao W, Quan J, Fan X. CircRNA-5692 inhibits the progression of hepatocellular carcinoma by sponging miR-328-5p to enhance DAB2IP expression. Cell Death Dis 2019; 10:900. [PMID: 31776329 PMCID: PMC6881381 DOI: 10.1038/s41419-019-2089-9] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/20/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022]
Abstract
Circular RNAs (circRNAs), one kind of noncoding RNAs, can interact with miRNA and transcription factors to regulate gene expression. However, little is known on which circRNA is crucial for the pathogenesis of hepatocellular carcinoma (HCC). CircRNA expression profile was analyzed by a microarray. Regulatory gene targets were predicted by bioinformatics analysis and validated by luciferase assay. Their expression was determined by qRT-PCR and Western blotting. DNA methylation was determined by methylation-specific PCR. Gene knockdown and overexpression were mediated by lentivirus-mediated shRNA and transfection with plasmids for cDNA expression, respectively. MTT assay, wound-healing assay, transwell invasion assay, and flow cytometry were used to determine malignant behaviors of HCC cells. HCC xenograft mouse model was used to determine the in vivo effects of circRNA-5692. CircRNA-5692 expression was downregulated in HCC tissues, and circRNA-5692 overexpression attenuated the malignant behaviors of HCC cells. Bioinformatics predicted that circRNA-5692 interacted with miR-328-5p, which targeted the DAB2IP mRNA. Actually, miR-328-5p promoted the malignant behaviors of HCC cells, while DAB2IP had opposite effects. Moreover, circRNA-5692 overexpression inhibited the growth of xenograft HCC tumors in vivo by decreasing miR-328-5p expression to enhance DAB2IP expression. In conclusion, the circRNA-5692–miR-328-5p–DAB2IP regulatory pathway inhibits the progression of HCC. Our findings may provide potential new targets for the diagnosis and therapy of HCC.
Collapse
Affiliation(s)
- Zhenguo Liu
- Department of Infectious Disease, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China.,Department of Infectious Disease, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yaqun Yu
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical College, Guilin, 541002, China
| | - Zebing Huang
- Department of Infectious Disease, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yi Kong
- The Department of Hepatopancreatobiliary Medicine, Hunan Cancer Hospital, Changsha, 410013, China
| | - Xingwang Hu
- Department of Infectious Disease, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wei Xiao
- Department of Infectious Disease, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jun Quan
- Department of Infectious Disease, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Xuegong Fan
- Department of Infectious Disease, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
19
|
Grau Ribes A, De Decker Y, Rongy L. Connecting gene expression to cellular movement: A transport model for cell migration. Phys Rev E 2019; 100:032412. [PMID: 31639952 DOI: 10.1103/physreve.100.032412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Indexed: 12/13/2022]
Abstract
The adhesion properties and the mobility of biological cells play key roles in the propagation of cancer. These properties are expected to depend on intracellular processes and on the concentrations of chemicals inside the cell. While most existing reaction-diffusion models for cell migration consider that cell mobility and proliferation rate are constant or depend on an external diffusing species, they do not include the gene expression dynamics taking place in moving cells that affect cellular transport. In this work, we propose a multiscale model where mobility and proliferation depend explicitly on the cell's internal state. We focus more specifically on the case of cellular mobility in epithelial tissues. Wound-healing experiments have demonstrated that the loss of a key protein, E-cadherin, results in a significant increase in both mobility and invasiveness of epithelial cells, with dramatic consequences on cancer progression. We can reproduce the results of these experiments under various genetic conditions with a single set of parameters.
Collapse
Affiliation(s)
- Alexis Grau Ribes
- Nonlinear Physical Chemistry Unit, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Yannick De Decker
- Nonlinear Physical Chemistry Unit, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurence Rongy
- Nonlinear Physical Chemistry Unit, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
20
|
Macabenta F, Stathopoulos A. Sticking to a plan: adhesion and signaling control spatial organization of cells within migrating collectives. Curr Opin Genet Dev 2019; 57:39-46. [PMID: 31404788 DOI: 10.1016/j.gde.2019.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/03/2019] [Accepted: 07/07/2019] [Indexed: 01/23/2023]
Abstract
Collective cell migration is required in a vast array of biological phenomena, including organogenesis and embryonic development. The mechanisms that underlie collective cell migration not only involve the morphogenetic changes associated with single cell migration, but also require the maintenance of cell-cell junctions during movement. Additionally, cell shape changes and polarity must be coordinated in a multicellular manner in order to preserve directional movement in the migrating cohort, and often relates to multiple functions of common signaling pathways. In this review, we summarize the current understanding of the mechanisms underlying higher order tissue organization during migration, with particular focus on the interplay between cell adhesion and signaling that we propose can be tuned to support different types of collective movements.
Collapse
Affiliation(s)
- Frank Macabenta
- California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, United States.
| | - Angelike Stathopoulos
- California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, United States.
| |
Collapse
|
21
|
SHOC2 phosphatase-dependent RAF dimerization mediates resistance to MEK inhibition in RAS-mutant cancers. Nat Commun 2019; 10:2532. [PMID: 31182717 PMCID: PMC6557854 DOI: 10.1038/s41467-019-10367-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
Targeted inhibition of the ERK-MAPK pathway, upregulated in a majority of human cancers, has been hindered in the clinic by drug resistance and toxicity. The MRAS-SHOC2-PP1 (SHOC2 phosphatase) complex plays a key role in RAF-ERK pathway activation by dephosphorylating a critical inhibitory site on RAF kinases. Here we show that genetic inhibition of SHOC2 suppresses tumorigenic growth in a subset of KRAS-mutant NSCLC cell lines and prominently inhibits tumour development in autochthonous murine KRAS-driven lung cancer models. On the other hand, systemic SHOC2 ablation in adult mice is relatively well tolerated. Furthermore, we show that SHOC2 deletion selectively sensitizes KRAS- and EGFR-mutant NSCLC cells to MEK inhibitors. Mechanistically, SHOC2 deletion prevents MEKi-induced RAF dimerization, leading to more potent and durable ERK pathway suppression that promotes BIM-dependent apoptosis. These results present a rationale for the generation of SHOC2 phosphatase targeted therapies, both as a monotherapy and to widen the therapeutic index of MEK inhibitors. Targeted inhibition of the ERK-MAPK pathway is challenged by the development of resistance and toxicity. Here, the authors show that SHOC2 genetic inhibition impairs lung tumour development and improves MEK inhibitor efficacy in RAS- and EGFR-mutant cells.
Collapse
|