1
|
Liu W, Nestorovich EM. Probing Protein Nanopores with Poly(ethylene glycol)s. Proteomics 2022; 22:e2100055. [PMID: 35030301 DOI: 10.1002/pmic.202100055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/16/2021] [Accepted: 01/10/2022] [Indexed: 11/08/2022]
Abstract
Neutral water-soluble poly(ethylene glycol)s (PEGs) have been extensively explored in protein nanopore research for the past several decades. The principal use of PEGs is to investigate the membrane protein ion channel physical characteristics and transport properties. In addition, protein nanopores are used to study polymer-protein interactions and polymer physicochemical properties. In this review, we focus on the biophysical studies on probing protein ion channels with PEGs, specifically on nanopore sizing by PEG partitioning. We discuss the fluctuation analysis of ion channel currents in response to the PEGs moving within their confined geometries. The advantages, limitations, and recent developments of the approach are also addressed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wenxing Liu
- Department of Biology, The Catholic University of America, 620 Michigan Ave, Washington, DC, 20064, USA
| | - Ekaterina M Nestorovich
- Department of Biology, The Catholic University of America, 620 Michigan Ave, Washington, DC, 20064, USA
| |
Collapse
|
2
|
Robertson JW, Ghimire M, Reiner JE. Nanopore sensing: A physical-chemical approach. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183644. [PMID: 33989531 PMCID: PMC9793329 DOI: 10.1016/j.bbamem.2021.183644] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022]
Abstract
Protein nanopores have emerged as an important class of sensors for the understanding of biophysical processes, such as molecular transport across membranes, and for the detection and characterization of biopolymers. Here, we trace the development of these sensors from the Coulter counter and squid axon studies to the modern applications including exquisite detection of small volume changes and molecular reactions at the single molecule (or reactant) scale. This review focuses on the chemistry of biological pores, and how that influences the physical chemistry of molecular detection.
Collapse
Affiliation(s)
- Joseph W.F. Robertson
- Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg MD. 20899, correspondence to:
| | - Madhav Ghimire
- Department of Physics, Virginia Commonwealth University, Richmond, VA
| | - Joseph E. Reiner
- Department of Physics, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
3
|
Wang H, Kasianowicz JJ, Robertson JWF, Poster DL, Ettedgui J. A comparison of ion channel current blockades caused by individual poly(ethylene glycol) molecules and polyoxometalate nanoclusters. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:83. [PMID: 31250227 DOI: 10.1140/epje/i2019-11838-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Proteinaceous nanometer-scale pores have been used to detect and physically characterize many different types of analytes at the single-molecule limit. The method is based on the ability to measure the transient reduction in the ionic channel conductance caused by molecules that partition into the pore. The distribution of blockade depth amplitudes and residence times of the analytes in the pore are used to physically and chemically characterize them. Here we compare the current blockade events caused by flexible linear polymers of ethylene glycol (PEGs) and structurally well-defined tungsten polyoxymetallate nanoparticles in the nanopores formed by Staphylococcus aureusα-hemolysin and Aeromonas hydrophila aerolysin. Surprisingly, the variance in the ionic current blockade depth values for the relatively rigid metallic nanoparticles is much greater than that for the flexible PEGs, possibly because of multiple charged states of the polyoxymetallate clusters.
Collapse
Affiliation(s)
- Haiyan Wang
- National Institute of Standards and Technology, Physical Measurement Laboratory, 20899, Gaithersburg, MD, USA
- Shenzhen Key Laboratory of Biomedical Engineering, School of Medicine, Shenzhen University, 3688 Nanhai Road, 508060, Shenzhen, China
| | - John J Kasianowicz
- National Institute of Standards and Technology, Physical Measurement Laboratory, 20899, Gaithersburg, MD, USA.
- Columbia University, Department of Applied Physics Applied Mathematics, 10027, New York, NY, USA.
| | - Joseph W F Robertson
- National Institute of Standards and Technology, Physical Measurement Laboratory, 20899, Gaithersburg, MD, USA
| | - Dianne L Poster
- National Institute of Standards and Technology, Material Measurement Laboratory, 20899, Gaithersburg, MD, USA
| | - Jessica Ettedgui
- National Institute of Standards and Technology, Physical Measurement Laboratory, 20899, Gaithersburg, MD, USA
- Columbia University, Department of Chemical Engineering, 10027, New York, NY, USA
| |
Collapse
|
4
|
Larimi MG, Mayse LA, Movileanu L. Interactions of a Polypeptide with a Protein Nanopore Under Crowding Conditions. ACS NANO 2019; 13:4469-4477. [PMID: 30925041 PMCID: PMC6482057 DOI: 10.1021/acsnano.9b00008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Molecular crowding, a ubiquitous feature of the cellular environment, has significant implications in the kinetics and equilibrium of biopolymer interactions. In this study, a single charged polypeptide is exposed to competing forces that drive it into a transmembrane protein pore versus forces that pull it outside. Using single-molecule electrophysiology, we provide compelling experimental evidence that the kinetic details of the polypeptide-pore interactions are substantially affected by high concentrations of less-penetrating polyethylene glycols (PEGs). At a polymer concentration above a critical value, the presence of these neutral macromolecular crowders increases the rate constant of association but decreases the rate constant of dissociation, resulting in a stronger polypeptide-pore interaction. Moreover, a larger-molecular weight PEG exhibits a lower rate constant of association but a higher rate constant of dissociation than those values corresponding to a smaller-molecular weight PEG. These outcomes are in accord with a lower diffusion constant of the polypeptide and higher depletion-attraction forces between the polypeptide and transmembrane protein pore under crowding and confinement conditions.
Collapse
Affiliation(s)
- Motahareh Ghahari Larimi
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Lauren Ashley Mayse
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, USA
| |
Collapse
|
5
|
|
6
|
Qing Y, Pulcu GS, Bell NAW, Bayley H. Bioorthogonal Cycloadditions with Sub-Millisecond Intermediates. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yujia Qing
- Department of Chemistry; University of Oxford; Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
| | - Gökçe Su Pulcu
- Department of Chemistry; University of Oxford; Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
| | - Nicholas A. W. Bell
- Department of Chemistry; University of Oxford; Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
| | - Hagan Bayley
- Department of Chemistry; University of Oxford; Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
7
|
Qing Y, Pulcu GS, Bell NAW, Bayley H. Bioorthogonal Cycloadditions with Sub-Millisecond Intermediates. Angew Chem Int Ed Engl 2018; 57:1218-1221. [DOI: 10.1002/anie.201710262] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Yujia Qing
- Department of Chemistry; University of Oxford; Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
| | - Gökçe Su Pulcu
- Department of Chemistry; University of Oxford; Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
| | - Nicholas A. W. Bell
- Department of Chemistry; University of Oxford; Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
| | - Hagan Bayley
- Department of Chemistry; University of Oxford; Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
8
|
Yao Y, Suzuki Y, Seiwert J, Steinhart M, Frey H, Butt HJ, Floudas G. Capillary Imbibition, Crystallization, and Local Dynamics of Hyperbranched Poly(ethylene oxide) Confined to Nanoporous Alumina. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01843] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yang Yao
- Max Planck Institute
for Polymer Research, D-55128 Mainz, Germany
| | - Yasuhito Suzuki
- Max Planck Institute
for Polymer Research, D-55128 Mainz, Germany
| | - Jan Seiwert
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, D-55099 Mainz, Germany
| | - Martin Steinhart
- Institut
für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - Holger Frey
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, D-55099 Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute
for Polymer Research, D-55128 Mainz, Germany
| | - George Floudas
- Max Planck Institute
for Polymer Research, D-55128 Mainz, Germany
- Department
of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece
| |
Collapse
|
9
|
Thakur AK, Larimi MG, Gooden K, Movileanu L. Aberrantly Large Single-Channel Conductance of Polyhistidine Arm-Containing Protein Nanopores. Biochemistry 2017; 56:4895-4905. [PMID: 28812882 DOI: 10.1021/acs.biochem.7b00577] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There have been only a few studies reporting on the impact of polyhistidine affinity tags on the structure, function, and dynamics of proteins. Because of the relatively short size of the tags, they are often thought to have little or no effect on the conformation or activity of a protein. Here, using membrane protein design and single-molecule electrophysiology, we determined that the presence of a hexahistidine arm at the N-terminus of a truncated FhuA-based protein nanopore, leaving the C-terminus untagged, produces an unusual increase in the unitary conductance to ∼8 nS in 1 M KCl. To the best of our knowledge, this is the largest single-channel conductance ever recorded with a monomeric β-barrel outer membrane protein. The hexahistidine arm was captured by an anti-polyhistidine tag monoclonal antibody added to the side of the channel-forming protein addition, but not to the opposite side, documenting that this truncated FhuA-based protein nanopore inserts into a planar lipid bilayer with a preferred orientation. This finding is in agreement with the protein insertion in vivo, in which the large loops face the extracellular side of the membrane. The aberrantly large single-channel conductance, likely induced by a greater cross-sectional area of the pore lumen, along with the vectorial insertion into a lipid membrane, will have profound implications for further developments of engineered protein nanopores.
Collapse
Affiliation(s)
- Avinash Kumar Thakur
- Department of Physics, Syracuse University , 201 Physics Building, Syracuse, New York 13244-1130, United States.,Structural Biology, Biochemistry, and Biophysics Program, Syracuse University , 111 College Place, Syracuse, New York 13244-4100, United States
| | - Motahareh Ghahari Larimi
- Department of Physics, Syracuse University , 201 Physics Building, Syracuse, New York 13244-1130, United States
| | - Kristin Gooden
- Department of Physics and Astronomy, University of Missouri , 223 Physics Building, Columbia, Missouri 65211-7010, United States
| | - Liviu Movileanu
- Department of Physics, Syracuse University , 201 Physics Building, Syracuse, New York 13244-1130, United States.,Structural Biology, Biochemistry, and Biophysics Program, Syracuse University , 111 College Place, Syracuse, New York 13244-4100, United States.,Department of Biomedical and Chemical Engineering, Syracuse University , 329 Link Hall, Syracuse, New York 13244, United States
| |
Collapse
|
10
|
Lee J, Boersma A, Boudreau MA, Cheley S, Daltrop O, Li J, Tamagaki H, Bayley H. Semisynthetic Nanoreactor for Reversible Single-Molecule Covalent Chemistry. ACS NANO 2016; 10:8843-50. [PMID: 27537396 PMCID: PMC5043417 DOI: 10.1021/acsnano.6b04663] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/18/2016] [Indexed: 05/27/2023]
Abstract
Protein engineering has been used to remodel pores for applications in biotechnology. For example, the heptameric α-hemolysin pore (αHL) has been engineered to form a nanoreactor to study covalent chemistry at the single-molecule level. Previous work has been confined largely to the chemistry of cysteine side chains or, in one instance, to an irreversible reaction of an unnatural amino acid side chain bearing a terminal alkyne. Here, we present four different αHL pores obtained by coupling either two or three fragments by native chemical ligation (NCL). The synthetic αHL monomers were folded and incorporated into heptameric pores. The functionality of the pores was validated by hemolysis assays and by single-channel current recording. By using NCL to introduce a ketone amino acid, the nanoreactor approach was extended to an investigation of reversible covalent chemistry on an unnatural side chain at the single-molecule level.
Collapse
Affiliation(s)
- Joongoo Lee
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Arnold
J. Boersma
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Marc A. Boudreau
- Department
of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Stephen Cheley
- Department
of Pharmacology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Oliver Daltrop
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Jianwei Li
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Hiroko Tamagaki
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Hagan Bayley
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| |
Collapse
|
11
|
Semisynthetic protein nanoreactor for single-molecule chemistry. Proc Natl Acad Sci U S A 2015; 112:13768-73. [PMID: 26504203 DOI: 10.1073/pnas.1510565112] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The covalent chemistry of individual reactants bound within a protein pore can be monitored by observing the ionic current flow through the pore, which acts as a nanoreactor responding to bond-making and bond-breaking events. In the present work, we incorporated an unnatural amino acid into the α-hemolysin (αHL) pore by using solid-phase peptide synthesis to make the central segment of the polypeptide chain, which forms the transmembrane β-barrel of the assembled heptamer. The full-length αHL monomer was obtained by native chemical ligation of the central synthetic peptide to flanking recombinant polypeptides. αHL pores with one semisynthetic subunit were then used as nanoreactors for single-molecule chemistry. By introducing an amino acid with a terminal alkyne group, we were able to visualize click chemistry at the single-molecule level, which revealed a long-lived (4.5-s) reaction intermediate. Additional side chains might be introduced in a similar fashion, thereby greatly expanding the range of single-molecule covalent chemistry that can be investigated by the nanoreactor approach.
Collapse
|
12
|
Kasianowicz JJ, Balijepalli AK, Ettedgui J, Forstater JH, Wang H, Zhang H, Robertson JWF. Analytical applications for pore-forming proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:593-606. [PMID: 26431785 DOI: 10.1016/j.bbamem.2015.09.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/28/2015] [Accepted: 09/25/2015] [Indexed: 01/13/2023]
Abstract
Proteinaceous nanometer-scale pores are ubiquitous in biology. The canonical ionic channels (e.g., those that transport Na(+), K(+), Ca(2+), and Cl(-) across cell membranes) play key roles in many cellular processes, including nerve and muscle activity. Another class of channels includes bacterial pore-forming toxins, which disrupt cell function, and can lead to cell death. We describe here the recent development of these toxins for a wide range of biological sensing applications. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
Affiliation(s)
- John J Kasianowicz
- NIST, Physical Measurement Laboratory, Gaithersburg, MD 20899, United States.
| | | | - Jessica Ettedgui
- NIST, Physical Measurement Laboratory, Gaithersburg, MD 20899, United States
| | - Jacob H Forstater
- NIST, Physical Measurement Laboratory, Gaithersburg, MD 20899, United States
| | - Haiyan Wang
- NIST, Physical Measurement Laboratory, Gaithersburg, MD 20899, United States
| | - Huisheng Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Dept. of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | | |
Collapse
|
13
|
Baaken G, Halimeh I, Bacri L, Pelta J, Oukhaled A, Behrends JC. High-Resolution Size-Discrimination of Single Nonionic Synthetic Polymers with a Highly Charged Biological Nanopore. ACS NANO 2015; 9:6443-6449. [PMID: 26028280 DOI: 10.1021/acsnano.5b02096] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Electrophysiological studies of the interaction of polymers with pores formed by bacterial toxins (1) provide a window on single molecule interaction with proteins in real time, (2) report on the behavior of macromolecules in confinement, and (3) enable label-free single molecule sensing. Using pores formed by the staphylococcal toxin α-hemolysin (aHL), a particularly pertinent observation was that, under high salt conditions (3-4 M KCl), the current through the pore is blocked for periods of hundreds of microseconds to milliseconds by poly(ethylene glycol) (PEG) oligomers (degree of polymerization approximately 10-60). Notably, this block showed monomeric sensitivity on the degree of polymerization of individual oligomers, allowing the construction of size or mass spectra from the residual current values. Here, we show that the current through the pore formed by aerolysin (AeL) from Aeromonas hydrophila is also blocked by PEG but with drastic differences in the voltage-dependence of the interaction. In contrast to aHL, AeL strongly binds PEG at high transmembrane voltages. This fact, which is likely related to AeL's highly charged pore wall, allows discrimination of polymer sizes with particularly high resolution. Multiple applications are now conceivable with this pore to screen various nonionic or charged polymers.
Collapse
Affiliation(s)
- Gerhard Baaken
- ‡Ionera Technologies GmbH, Hermann Herder Strasse 7, 79104 Freiburg, Germany
| | - Ibrahim Halimeh
- ‡Ionera Technologies GmbH, Hermann Herder Strasse 7, 79104 Freiburg, Germany
| | - Laurent Bacri
- §Laboratoire LAMBE, Équipe Polymères aux Interfaces, LAMBE UMR 8587 CNRS, Évry and Cergy University, Cergy-Pontoise 95011 cedex, France
| | - Juan Pelta
- §Laboratoire LAMBE, Équipe Polymères aux Interfaces, LAMBE UMR 8587 CNRS, Évry and Cergy University, Cergy-Pontoise 95011 cedex, France
| | - Abdelghani Oukhaled
- §Laboratoire LAMBE, Équipe Polymères aux Interfaces, LAMBE UMR 8587 CNRS, Évry and Cergy University, Cergy-Pontoise 95011 cedex, France
| | - Jan C Behrends
- ∥Freiburg Materials Research Centre (FMF), University of Freiburg, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
- ⊥Centre for Interactive Materials and Bioinspired Technologies (FIT), Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
14
|
Mutlu H, Lutz JF. Reading Polymers: Sequencing of Natural and Synthetic Macromolecules. Angew Chem Int Ed Engl 2014; 53:13010-9. [DOI: 10.1002/anie.201406766] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 07/24/2014] [Indexed: 11/07/2022]
|
15
|
Mutlu H, Lutz JF. “Lesen” von Polymeren: Die Sequenzierung natürlicher und synthetischer Makromoleküle. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406766] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Chung JW, Shin D, Kwak JM, Seog J. Direct force measurement of single DNA-peptide interactions using atomic force microscopy. J Mol Recognit 2013; 26:268-75. [PMID: 23595808 DOI: 10.1002/jmr.2269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/24/2013] [Accepted: 02/01/2013] [Indexed: 11/10/2022]
Abstract
The selective interactions between DNA and miniature (39 residues) engineered peptide were directly measured at the single-molecule level by using atomic force microscopy. This peptide (p007) contains an α-helical recognition site similar to leucine zipper GCN4 and specifically recognizes the ATGAC sequence in the DNA with nanomolar affinity. The average rupture force was 42.1 pN, which is similar to the unbinding forces of the digoxigenin-antidigoxigenin complex, one of the strongest interactions in biological systems. The single linear fit of the rupture forces versus the logarithm of pulling rates showed a single energy barrier with a transition state located at 0.74 nm from the bound state. The smaller koff compared with that of other similar systems was presumably due to the increased stability of the helical structure by putative folding residues in p007. This strong sequence-specific DNA-peptide interaction has a potential to be utilized to prepare well-defined mechanically stable DNA-protein hybrid nanostructures.
Collapse
Affiliation(s)
- Ji W Chung
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
17
|
Panja D, Barkema GT, Kolomeisky AB. Through the eye of the needle: recent advances in understanding biopolymer translocation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:413101. [PMID: 24025200 DOI: 10.1088/0953-8984/25/41/413101] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In recent years polymer translocation, i.e., transport of polymeric molecules through nanometer-sized pores and channels embedded in membranes, has witnessed strong advances. It is now possible to observe single-molecule polymer dynamics during the motion through channels with unprecedented spatial and temporal resolution. These striking experimental studies have stimulated many theoretical developments. In this short theory-experiment review, we discuss recent progress in this field with a strong focus on non-equilibrium aspects of polymer dynamics during the translocation process.
Collapse
Affiliation(s)
- Debabrata Panja
- Institute for Theoretical Physics, Universiteit Utrecht, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands. Institute for Theoretical Physics, Universiteit van Amsterdam, Science Park 904, Postbus 94485, 1090 GL Amsterdam, The Netherlands
| | | | | |
Collapse
|
18
|
Balijepalli A, Robertson JWF, Reiner JE, Kasianowicz JJ, Pastor RW. Theory of polymer-nanopore interactions refined using molecular dynamics simulations. J Am Chem Soc 2013; 135:7064-72. [PMID: 23590258 DOI: 10.1021/ja4026193] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Molecular dynamics simulations were used to refine a theoretical model that describes the interaction of single polyethylene glycol (PEG) molecules with α-hemolysin (αHL) nanopores. The simulations support the underlying assumptions of the model, that PEG decreases the pore conductance by binding cations (which reduces the number of mobile ions in the pore) and by volume exclusion, and provide bounds for fits to new experimental data. Estimation of cation binding indicates that four monomers coordinate a single K(+) in a crown-ether-like structure, with, on average, 1.5 cations bound to a PEG 29-mer at a bulk electrolyte concentration of 4 M KCl. Additionally, PEG is more cylindrical and has a larger cross-section area in the pore than in solution, although its volume is similar. Two key experimental quantities of PEG are described by the model: the ratio of single channel current in the presence of PEG to that in the polymer's absence (blockade depth) and the mean residence time of PEG in the pore. The refined theoretical model is simultaneously fit to the experimentally determined current blockade depth and the mean residence times for PEGs with 15 to 45 monomers, at applied transmembrane potentials of -40 to -80 mV and for three electrolyte concentrations. The model estimates the free energy of the PEG-cation complexes to be -5.3 kBT. Finally the entropic penalty of confining PEG to the pore is found to be inversely proportional to the electrolyte concentration.
Collapse
Affiliation(s)
- Arvind Balijepalli
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | | | | | | | | |
Collapse
|
19
|
A theoretical study on entropy-driven polymer translocation through a finite-sized nanochannel. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.02.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Lamichhane U, Islam T, Prasad S, Weingart H, Mahendran KR, Winterhalter M. Peptide translocation through the mesoscopic channel: binding kinetics at the single molecule level. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 42:363-9. [DOI: 10.1007/s00249-012-0885-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/30/2012] [Accepted: 12/13/2012] [Indexed: 12/21/2022]
|
21
|
Affiliation(s)
| | - Sergey M. Bezrukov
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, U.S.A
| |
Collapse
|
22
|
Niedzwiecki D, Mohammad M, Movileanu L. Inspection of the engineered FhuA ΔC/Δ4L protein nanopore by polymer exclusion. Biophys J 2012; 103:2115-24. [PMID: 23200045 PMCID: PMC3512039 DOI: 10.1016/j.bpj.2012.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/03/2012] [Accepted: 10/10/2012] [Indexed: 12/11/2022] Open
Abstract
Extensive engineering of protein nanopores for biotechnological applications using native scaffolds requires further inspection of their internal geometry and size. Recently, we redesigned ferric hydroxamate uptake component A (FhuA), a 22-β-stranded protein containing an N-terminal 160-residue cork domain (C). The cork domain and four large extracellular loops (4L) were deleted to obtain an unusually stiff engineered FhuA ΔC/Δ4L nanopore. We employed water-soluble poly(ethylene glycols) and dextran polymers to examine the interior of FhuA ΔC/Δ4L. When this nanopore was reconstituted into a synthetic planar lipid bilayer, addition of poly(ethylene glycols) produced modifications in the single-channel conductance, allowing for the evaluation of the nanopore diameter. Here, we report that FhuA ΔC/Δ4L features an approximate conical internal geometry with the cis entrance smaller than the trans entrance, in accord with the asymmetric nature of the crystal structure of the wild-type FhuA protein. Further experiments with impermeable dextran polymers indicated an average internal diameter of ~2.4 nm, a conclusion we arrived at based upon the polymer-induced alteration of the access resistance contribution to the nanopore's total resistance. Molecular insights inferred from this work represent a platform for future protein engineering of FhuA that will be employed for specific tasks in biotechnological applications.
Collapse
Affiliation(s)
| | | | - Liviu Movileanu
- Department of Physics, Syracuse University, Syracuse, New York
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, Syracuse, New York
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York
| |
Collapse
|
23
|
Kasianowicz JJ, Reiner JE, Robertson JWF, Henrickson SE, Rodrigues C, Krasilnikov OV. Detecting and characterizing individual molecules with single nanopores. Methods Mol Biol 2012; 870:3-20. [PMID: 22528255 DOI: 10.1007/978-1-61779-773-6_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Single-nanometer-scale pores have demonstrated the capability for the detection, identification, and characterization of individual molecules. This measurement method could soon extend the existing commercial instrumentation or provide solutions to niche applications in many fields, including health care and the basic sciences. However, that paradigm shift requires a significantly better understanding of the physics and chemistry that govern the interactions between nanopores and analytes. We describe herein some of our methods and approaches to address this issue.
Collapse
Affiliation(s)
- John J Kasianowicz
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Liu J, Eren E, Vijayaraghavan J, Cheneke BR, Indic M, van den Berg B, Movileanu L. OccK channels from Pseudomonas aeruginosa exhibit diverse single-channel electrical signatures but conserved anion selectivity. Biochemistry 2012; 51:2319-30. [PMID: 22369314 DOI: 10.1021/bi300066w] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium that utilizes substrate-specific outer membrane (OM) proteins for the uptake of small, water-soluble nutrients employed in the growth and function of the cell. In this paper, we present for the first time a comprehensive single-channel examination of seven members of the OM carboxylate channel K (OccK) subfamily. Recent biochemical, functional, and structural characterization of the OccK proteins revealed their common features, such as a closely related, monomeric, 18-stranded β-barrel conformation with a kidney-shaped transmembrane pore and the presence of a basic ladder within the channel lumen. Here, we report that the OccK proteins exhibited fairly distinct unitary conductance values, in a much broader range than previously expected, which includes low (~40-100 pS) and medium (~100-380 pS) conductance. These proteins showed diverse single-channel dynamics of current gating transitions, revealing one-open substate (OccK3), two-open substate (OccK4-OccK6), and three-open substate (OccK1, OccK2, and OccK7) kinetics with functionally distinct conformations. Interestingly, we discovered that anion selectivity is a conserved trait among the members of the OccK subfamily, confirming the presence of a net pool of positively charged residues within their central constriction. Moreover, these results are in accord with an increased specificity and selectivity of these protein channels for negatively charged, carboxylate-containing substrates. Our findings might ignite future functional examinations and full atomistic computational studies for unraveling a mechanistic understanding of the passage of small molecules across the lumen of substrate-specific, β-barrel OM proteins.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Physics, Syracuse University, Syracuse, New York 13244-1130, United States
| | | | | | | | | | | | | |
Collapse
|
25
|
Oukhaled AG, Biance AL, Pelta J, Auvray L, Bacri L. Transport of long neutral polymers in the semidilute regime through a protein nanopore. PHYSICAL REVIEW LETTERS 2012; 108:088104. [PMID: 22463579 DOI: 10.1103/physrevlett.108.088104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Indexed: 05/31/2023]
Abstract
We investigate the entrance of single poly(ethylene glycol) chains into an α-hemolysin channel. We detect the frequency and duration of the current blockades induced by large neutral polymers, where chain radius is larger than pore diameter. In the semidilute regime, these chains pass only if the monomer concentration is larger than a well-defined threshold. Experiments are performed in a very large domain of concentration and molecular mass, up to 35% and 200 kDa, respectively, which was previously unexplored. The variation of the dwell time as a function of molecular mass shows that the chains are extracted from the semidilute solution in contact with the pore by a reptation mechanism.
Collapse
Affiliation(s)
- Abdel Ghani Oukhaled
- LAMBE UMR 8587 CNRS, Universités d'Évry Val d'Essonne and Cergy-Pontoise, 91025 Évry, France
| | | | | | | | | |
Collapse
|
26
|
Nikoofard N, Fazli H. Electric-field-driven polymer entry into asymmetric nanoscale channels. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:021804. [PMID: 22463233 DOI: 10.1103/physreve.85.021804] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/19/2011] [Indexed: 05/31/2023]
Abstract
The electric-field-driven entry process of flexible charged polymers such as single-stranded DNA (ssDNA) into asymmetric nanoscale channels such as the α-hemolysin protein channel is studied theoretically and using molecular dynamics simulations. Dependence of the height of the free-energy barrier on the polymer length, the strength of the applied electric field, and the channel entrance geometry is investigated. It is shown that the squeezing effect of the driving field on the polymer and the lateral confinement of the polymer before its entry to the channel crucially affect the barrier height and its dependence on the system parameters. The attempt frequency of the polymer for passing the channel is also discussed. Our theoretical and simulation results support each other and describe related data sets of polymer translocation experiments through the α-hemolysin protein channel reasonably well.
Collapse
Affiliation(s)
- Narges Nikoofard
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | | |
Collapse
|
27
|
Abstract
The use of nanopores is a powerful new frontier in single-molecule sciences. Nanopores have been used effectively in exploring various biophysical features of small polypeptides and proteins, such as their folding state and structure, ligand interactions, and enzymatic activity. In particular, the α-hemolysin (αHL) protein pore has been used extensively for the detection, characterization, and analysis of polypeptides because this protein nanopore is highly robust, versatile, and tractable under various experimental conditions. Inspired by the mechanisms of protein translocation across the outer membrane translocases of mitochondria, we have shown the ability to use nanopore-probe techniques in controlling a single protein using engineered αHL pores. Here, we provide a detailed protocol for the preparation of αHL protein nanopores. Moreover, we demonstrate that placing attractive electrostatic traps is instrumental in tackling single-molecule stochastic sensing of folded proteins.
Collapse
|
28
|
Merstorf C, Cressiot B, Pastoriza-Gallego M, Oukhaled AG, Bacri L, Gierak J, Pelta J, Auvray L, Mathé J. DNA unzipping and protein unfolding using nanopores. Methods Mol Biol 2012; 870:55-75. [PMID: 22528258 DOI: 10.1007/978-1-61779-773-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We present here an overview on unfolding of biomolecular structures as DNA double strands or protein folds. After some theoretical considerations giving orders of magnitude about transport timescales through pores, forces involved in unzipping processes … we present our experiments on DNA unzipping or protein unfolding using a nanopore. We point out the difficulties that can be encountered during these experiments, such as the signal analysis problems, noise issues, or experimental limitations of such system.
Collapse
Affiliation(s)
- Céline Merstorf
- Laboratoire LAMBE (Equipe MPI) CNRS UMR 8587, Université d'Evry-val d'Essonne, Evry, France
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Galloway JF, Winter A, Lee KH, Park JH, Dvoracek CM, Devreotes P, Searson PC. Quantitative characterization of the lipid encapsulation of quantum dots for biomedical applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 8:1190-9. [PMID: 22197728 DOI: 10.1016/j.nano.2011.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 12/12/2011] [Indexed: 11/26/2022]
Abstract
UNLABELLED The water solubilization of nanoparticles is key for many applications in biomedicine. Despite the importance of surface functionalization, progress has been largely empirical and very few systematic studies have been performed. Here we report on the water solubilization of quantum dots using lipid encapsulation. We systematically evaluate the monodispersity, zeta potential, stability, and quantum yield for quantum dots encapsulated with single and double acyl-chain lipids, pegylated double acyl-chain lipids, and single alkyl-chain surfactant molecules with charged head groups. We show that charged surfactants and pegylated lipids are important to obtain monodisperse suspensions with high yield and excellent long-term stability. FROM THE CLINICAL EDITOR This study reports on solubilization of nanoparticles in water, a key, but often neglected aspect for biomedical applications. The authors demonstrate that charged surfactants and PEGylated lipids are important to obtain monodisperse suspensions with high yield and long-term stability.
Collapse
Affiliation(s)
- Justin F Galloway
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Cheneke BR, van den Berg B, Movileanu L. Analysis of gating transitions among the three major open states of the OpdK channel. Biochemistry 2011; 50:4987-97. [PMID: 21548584 PMCID: PMC3107985 DOI: 10.1021/bi200454j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OpdK is an outer membrane protein of the pathogenic bacterium Pseudomonas aeruginosa. The recent crystal structure of this protein revealed a monomeric, 18-stranded β-barrel with a kidney-shaped pore, whose constriction features a diameter of 8 Å. Using systematic single-channel electrical recordings of this protein pore reconstituted into planar lipid bilayers under a broad range of ion concentrations, we were able to probe its discrete gating kinetics involving three major and functionally distinct conformations, in which a dominant open substate O(2) is accompanied by less thermodynamically stable substates O(1) and O(3). Single-channel electrical data enabled us to determine the alterations in the energetics and kinetics of the OpdK protein when experimental conditions were changed. In the future, such a semiquantitative analysis might provide a better understanding on the dynamics of current fluctuations of other β-barrel membrane protein channels.
Collapse
Affiliation(s)
- Belete R. Cheneke
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Bert van den Berg
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, USA
- Syracuse Biomaterials Institute, Syracuse University, 121 Link Hall, Syracuse, New York 13244, USA
| |
Collapse
|
32
|
YANG Y, SUN Z, AN L. MONTE CARLO STUDIES OF THE CONFINEMENT EFFECTS ON THE ENTANGLEMENT OF POLYMER CHAINS. ACTA POLYM SIN 2011. [DOI: 10.3724/sp.j.1105.2011.10134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Nikoofard N, Fazli H. Free-energy barrier for electric-field-driven polymer entry into nanoscale channels. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:050801. [PMID: 21728476 DOI: 10.1103/physreve.83.050801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Indexed: 05/31/2023]
Abstract
Free-energy barrier for entry of a charged polymer into a nanoscale channel by a driving electric field is studied theoretically and using molecular dynamics simulations. Dependence of the barrier height on the polymer length, the driving field strength, and the channel entrance geometry is investigated. Squeezing effect of the electric field on the polymer before its entry to the channel is taken into account. It is shown that lateral confinement of the polymer prior to its entry changes the polymer length dependence of the barrier height noticeably. Our theory and simulation results are in good agreement and reasonably describe related experimental data.
Collapse
Affiliation(s)
- Narges Nikoofard
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | | |
Collapse
|
34
|
Zheng W, Rohrdanz MA, Maggioni M, Clementi C. Polymer reversal rate calculated via locally scaled diffusion map. J Chem Phys 2011; 134:144109. [DOI: 10.1063/1.3575245] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Mohammad MM, Howard KR, Movileanu L. Redesign of a plugged beta-barrel membrane protein. J Biol Chem 2011; 286:8000-8013. [PMID: 21189254 PMCID: PMC3048687 DOI: 10.1074/jbc.m110.197723] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/16/2010] [Indexed: 11/06/2022] Open
Abstract
The redesign of biological nanopores is focused on bacterial outer membrane proteins and pore-forming toxins, because their robust β-barrel structure makes them the best choice for developing stochastic biosensing elements. Using membrane protein engineering and single-channel electrical recordings, we explored the ferric hydroxamate uptake component A (FhuA), a monomeric 22-stranded β-barrel protein from the outer membrane of Escherichia coli. FhuA has a luminal cross-section of 3.1 × 4.4 nm and is filled by a globular N-terminal cork domain. Various redesigned FhuA proteins were investigated, including single, double, and multiple deletions of the large extracellular loops and the cork domain. We identified four large extracellular loops that partially occlude the lumen when the cork domain is removed. The newly engineered protein, FhuAΔC/Δ4L, was the result of a removal of almost one-third of the total number of amino acids of the wild-type FhuA (WT-FhuA) protein. This extensive protein engineering encompassed the entire cork domain and four extracellular loops. Remarkably, FhuAΔC/Δ4L forms a functional open pore in planar lipid bilayers, with a measured unitary conductance of ∼4.8 nanosiemens, which is much greater than the values recorded previously with other engineered FhuA protein channels. There are numerous advantages and prospects of using such an engineered outer membrane protein not only in fundamental studies of membrane protein folding and design, and the mechanisms of ion conductance and gating, but also in more applicative areas of stochastic single-molecule sensing of proteins and nucleic acids.
Collapse
Affiliation(s)
- Mohammad M Mohammad
- From the Department of Physics, Syracuse University, Syracuse, New York 13244-1130
| | - Khalil R Howard
- the Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, Syracuse, New York 13244-4100, and
| | - Liviu Movileanu
- From the Department of Physics, Syracuse University, Syracuse, New York 13244-1130,; the Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, Syracuse, New York 13244-4100, and; the Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York 13244.
| |
Collapse
|
36
|
Bacri L, Oukhaled AG, Schiedt B, Patriarche G, Bourhis E, Gierak J, Pelta J, Auvray L. Dynamics of Colloids in Single Solid-State Nanopores. J Phys Chem B 2011; 115:2890-8. [DOI: 10.1021/jp200326w] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- L. Bacri
- LAMBE UMR CNRS 8587, Evry and Cergy-Pontoise University, France
| | - A. G. Oukhaled
- LAMBE UMR CNRS 8587, Evry and Cergy-Pontoise University, France
- LPN/CNRS, UPR 20, Marcoussis, France
| | - B. Schiedt
- LAMBE UMR CNRS 8587, Evry and Cergy-Pontoise University, France
- LPN/CNRS, UPR 20, Marcoussis, France
| | | | | | - J. Gierak
- LPN/CNRS, UPR 20, Marcoussis, France
| | - J. Pelta
- LAMBE UMR CNRS 8587, Evry and Cergy-Pontoise University, France
| | - L. Auvray
- Matière et Systèmes Complexes, UMR 7057, Paris Diderot University, France
| |
Collapse
|
37
|
Asandei A, Apetrei A, Luchian T. Uni-molecular detection and quantification of selected β-lactam antibiotics with a hybrid α-hemolysin protein pore. J Mol Recognit 2011; 24:199-207. [DOI: 10.1002/jmr.1038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Bikwemu R, Wolfe AJ, Xing X, Movileanu L. Facilitated translocation of polypeptides through a single nanopore. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:454117. [PMID: 21339604 PMCID: PMC3108026 DOI: 10.1088/0953-8984/22/45/454117] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The transport of polypeptides through nanopores is a key process in biology and medical biotechnology. Despite its critical importance, the underlying kinetics of polypeptide translocation through protein nanopores is not yet comprehensively understood. Here, we present a simple two-barrier, one-well kinetic model for the translocation of short positively charged polypeptides through a single transmembrane protein nanopore that is equipped with negatively charged rings, simply called traps. We demonstrate that the presence of these traps within the interior of the nanopore dramatically alters the free energy landscape for the partitioning of the polypeptide into the nanopore interior, as revealed by significant modifications in the activation free energies required for the transitions of the polypeptide from one state to the other. Our kinetic model permits the calculation of the relative and absolute exit frequencies of the short cationic polypeptides through either opening of the nanopore. Moreover, this approach enabled quantitative assessment of the kinetics of translocation of the polypeptides through a protein nanopore, which is strongly dependent on several factors, including the nature of the translocating polypeptide, the position of the traps, the strength of the polypeptide-attractive trap interactions and the applied transmembrane voltage.
Collapse
Affiliation(s)
- Robert Bikwemu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Aaron J. Wolfe
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Xiangjun Xing
- Institute of Natural Sciences and Department of Physics, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, USA
- The Syracuse Biomaterials Institute, Syracuse University, 121 Link Hall, Syracuse, New York 13244, USA
| |
Collapse
|
39
|
Polymer partitioning and ion selectivity suggest asymmetrical shape for the membrane pore formed by epsilon toxin. Biophys J 2010; 99:782-9. [PMID: 20682255 DOI: 10.1016/j.bpj.2010.05.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 04/27/2010] [Accepted: 05/03/2010] [Indexed: 12/25/2022] Open
Abstract
Using poly-(ethylene glycol)s of different molecular weights, we probe the channels formed in planar lipid bilayers by epsilon toxin secreted by the anaerobic bacterium Clostridium perfringens. We find that the pore is highly asymmetric. The cutoff size of polymers entering the pore through its opening from the cis side, the side of toxin addition, is approximately 500 Da, whereas the cutoff size for the polymers entering from the trans side is approximately 2300 Da. Comparing these characteristic molecular weights with those reported earlier for OmpF porin and the alpha-Hemolysin channel, we estimate the radii of cis and trans openings as 0.4 nm and 1.0 nm, respectively. The simplest geometry corresponding to these findings is that of a truncated cone. The asymmetry of the pore is also confirmed by measurements of the reversal potential at oppositely directed salt gradients. The moderate anionic selectivity of the channel is salted-out more efficiently when the salt concentration is higher at the trans side of the pore.
Collapse
|
40
|
Niedzwiecki DJ, Grazul J, Movileanu L. Single-molecule observation of protein adsorption onto an inorganic surface. J Am Chem Soc 2010; 132:10816-22. [PMID: 20681715 PMCID: PMC2917251 DOI: 10.1021/ja1026858] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the interactions between silicon-based materials and proteins from the bloodstream is of key importance in a myriad of realms, such as the design of nanofluidic devices and functional biomaterials, biosensors, and biomedical molecular diagnosis. By using nanopores fabricated in 20 nm-thin silicon nitride membranes and highly sensitive electrical recordings, we show single-molecule observation of nonspecific protein adsorption onto an inorganic surface. A transmembrane potential was applied across a single nanopore-containing membrane immersed into an electrolyte-filled chamber. Through the current fluctuations measured across the nanopore, we detected long-lived captures of bovine serum albumin (BSA), a major multifunctional protein present in the circulatory system. Based upon single-molecule electrical signatures observed in this work, we judge that the bindings of BSA to the nitride surface occurred in two distinct orientations. With some adaptation and further experimentation, this approach, applied on a parallel array of synthetic nanopores, holds potential for use in methodical quantitative studies of protein adsorption onto inorganic surfaces.
Collapse
Affiliation(s)
- David J. Niedzwiecki
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - John Grazul
- Cornell Center for Materials Research, Cornell University, 627 Clark Hall of Science, Ithaca, New York 14853, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, USA
- Syracuse Biomaterials Institute, Syracuse University, 121 Link Hall, Syracuse, NY 13244, USA
| |
Collapse
|
41
|
Majd S, Yusko EC, Billeh YN, Macrae MX, Yang J, Mayer M. Applications of biological pores in nanomedicine, sensing, and nanoelectronics. Curr Opin Biotechnol 2010; 21:439-76. [PMID: 20561776 PMCID: PMC3121537 DOI: 10.1016/j.copbio.2010.05.002] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/03/2010] [Accepted: 05/06/2010] [Indexed: 12/29/2022]
Abstract
Biological protein pores and pore-forming peptides can generate a pathway for the flux of ions and other charged or polar molecules across cellular membranes. In nature, these nanopores have diverse and essential functions that range from maintaining cell homeostasis and participating in cell signaling to activating or killing cells. The combination of the nanoscale dimensions and sophisticated - often regulated - functionality of these biological pores make them particularly attractive for the growing field of nanobiotechnology. Applications range from single-molecule sensing to drug delivery and targeted killing of malignant cells. Potential future applications may include the use of nanopores for single strand DNA sequencing and for generating bio-inspired, and possibly, biocompatible visual detection systems and batteries. This article reviews the current state of applications of pore-forming peptides and proteins in nanomedicine, sensing, and nanoelectronics.
Collapse
Affiliation(s)
- Sheereen Majd
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109-2110, USA
| | | | | | | | | | | |
Collapse
|
42
|
Duret G, Delcour AH. Size and dynamics of the Vibrio cholerae porins OmpU and OmpT probed by polymer exclusion. Biophys J 2010; 98:1820-9. [PMID: 20441745 DOI: 10.1016/j.bpj.2010.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 12/08/2009] [Accepted: 01/07/2010] [Indexed: 11/26/2022] Open
Abstract
The trimeric OmpU and OmpT porins form large, triple-barrel hydrophilic channels in the outer membrane of the pathogen Vibrio cholerae. They have distinct pore properties, such as conductance, block by deoxycholic acid, and sensitivity to acidic pH. Their three-dimensional structures are unknown, but they share significant sequence homologies. To gain insight into the molecular basis for the distinct functional properties of these two similar porins, we carried out polymer exclusion experiments using planar lipid bilayer and patch-clamp electrophysiology. By studying the partitioning of polyethylene glycols (PEGs) of different molecular weights into each porin, we determined an effective radius of 0.55 nm and 0.43 nm for OmpU and OmpT respectively, and found an increased OmpU effective radius at acidic pH. PEGs or high buffer ionic strength promotes the appearance of single step closures in OmpU similar to the acidic-pH induced closures we documented previously. In addition, these closing events can be triggered by nonpenetrating PEGs applied asymmetrically. We believe our results support a model whereby acidic pH, high ionic strength, or exposure to PEGs stabilizes a less conductive state that corresponds to the appearance of an additional resistive element on one side of the OmpU protein and common to the three monomers.
Collapse
Affiliation(s)
- Guillaume Duret
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | | |
Collapse
|
43
|
Mohammad MM, Movileanu L. Impact of distant charge reversals within a robust beta-barrel protein pore. J Phys Chem B 2010; 114:8750-9. [PMID: 20540583 PMCID: PMC2907733 DOI: 10.1021/jp101311s] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Among all beta-barrel pores, staphylococcal alpha-hemolysin (alphaHL), a heptameric transmembrane protein of known high-resolution crystal structure, features a high stability in planar lipid bilayers under a wide range of harsh experimental conditions. Here, we employed single-channel electrical recordings and standard protein engineering to explore the impact of two distant charge reversals within the interior of the beta-barrel part of the pore. The charge reversals were replacements of lysines with aspartic acids. A charge reversal within the structurally stiff region of the beta barrel near the pore constriction reduced the open-state current of the pore, but produced a quiet pore, showing current fluctuation-free channel behavior. In contrast, a charge reversal on the trans entrance, within the structurally flexible glycine-rich turn of the beta barrel, increased the open-state current and produced gating activity of the pore in the form of large-amplitude and frequent current fluctuations. Remarkably, cumulative insertion of the two distant charge reversals resulted in a large-amplitude permanent blockade of the beta barrel, as judged by both single-channel and macroscopic current measurements. The results from this work suggest that these distant charge reversals are energetically coupled, producing different impacts on the ionic transport, the unitary conductance and the open-state probability of the pore.
Collapse
Affiliation(s)
- Mohammad M. Mohammad
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, USA
- The Syracuse Biomaterials Institute, Syracuse University, 121 Link Hall, Syracuse, New York 13244, USA
| |
Collapse
|
44
|
Theory for polymer analysis using nanopore-based single-molecule mass spectrometry. Proc Natl Acad Sci U S A 2010; 107:12080-5. [PMID: 20566890 DOI: 10.1073/pnas.1002194107] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nanometer-scale pores have demonstrated potential for the electrical detection, quantification, and characterization of molecules for biomedical applications and the chemical analysis of polymers. Despite extensive research in the nanopore sensing field, there is a paucity of theoretical models that incorporate the interactions between chemicals (i.e., solute, solvent, analyte, and nanopore). Here, we develop a model that simultaneously describes both the current blockade depth and residence times caused by individual poly(ethylene glycol) (PEG) molecules in a single alpha-hemolysin ion channel. Modeling polymer-cation binding leads to a description of two significant effects: a reduction in the mobile cation concentration inside the pore and an increase in the affinity between the polymer and the pore. The model was used to estimate the free energy of formation for K(+)-PEG inside the nanopore (approximately -49.7 meV) and the free energy of PEG partitioning into the nanopore ( approximately 0.76 meV per ethylene glycol monomer). The results suggest that rational, physical models for the analysis of analyte-nanopore interactions will develop the full potential of nanopore-based sensing for chemical and biological applications.
Collapse
|
45
|
Movileanu L. Interrogating single proteins through nanopores: challenges and opportunities. Trends Biotechnol 2009; 27:333-41. [PMID: 19394097 DOI: 10.1016/j.tibtech.2009.02.008] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 02/18/2009] [Accepted: 02/20/2009] [Indexed: 11/18/2022]
Abstract
A single nanopore represents an amazingly versatile single-molecule probe that can be employed to reveal several important features of polypeptides, such as their folding state, backbone flexibility, mechanical stability, binding affinity to other interacting ligands and enzymatic activity. Moreover, groundwork in this area using engineered protein nanopores has demonstrated new opportunities for discovering the biophysical rules that govern the transport of proteins through transmembrane protein pores. In this review, I summarize the current knowledge in the field and discuss how nanopore probe techniques will provide a new generation of research tools in nanomedicine for quantitatively examining the details of complex recognition and, furthermore, will represent a crucial step in designing other pore-based nanostructures and high-throughput devices for molecular biomedical diagnosis.
Collapse
Affiliation(s)
- Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA.
| |
Collapse
|
46
|
|
47
|
Abstract
The mechanisms of KCl-induced enhancement in identification of individual molecules of poly(ethylene glycol) using solitary alpha-hemolysin nanoscale pores are described. The interaction of single molecules with the nanopore causes changes in the ionic current flowing through the pore. We show that the on-rate constant of the process is several hundred times larger and that the off-rate is several hundred times smaller in 4 M KCl than in 1 M KCl. These shifts dramatically improve detection and make single molecule identification feasible. KCl also changes the solubility of poly(ethylene glycol) by the same order of magnitude as it changes the rate constants. In addition, the polymer-nanopore interaction is determined to be a strong non-monotonic function of voltage, indicating that the flexible, nonionic poly(ethylene glycol) acts as a charged molecule. Therefore, salting-out and Coulombic interactions are responsible for the KCl-induced enhancement. These results will advance the development of devices with sensor elements based on single nanopores.
Collapse
|
48
|
Baaken G, Sondermann M, Schlemmer C, Rühe J, Behrends JC. Planar microelectrode-cavity array for high-resolution and parallel electrical recording of membrane ionic currents. LAB ON A CHIP 2008; 8:938-944. [PMID: 18497915 DOI: 10.1039/b800431e] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Increasing the throughput and resolution of electrical recording of currents through ion conducting channels and pores is an important technical challenge both for the functional analysis of ion channel proteins and for the application of nanoscale pores in single molecule analytical tasks. We present a novel design based on sub-picoliter-cavities arrayed in a polymer substrate and endowed with individual planar microelectrodes that allows low-noise and parallel electrical recording from ion channels and pores. Resolution of voltage-dependent current transitions of alamethicin channels as well as polyethylene-glycol-induced blocking events of alpha-hemolysin nanopores on the submillisecond time scale is demonstrated using this device.
Collapse
Affiliation(s)
- Gerhard Baaken
- Laboratory of Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Germany
| | | | | | | | | |
Collapse
|
49
|
Mohammad MM, Movileanu L. Excursion of a single polypeptide into a protein pore: simple physics, but complicated biology. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:913-25. [PMID: 18368402 DOI: 10.1007/s00249-008-0309-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 01/04/2008] [Accepted: 03/10/2008] [Indexed: 10/22/2022]
Abstract
Despite its fundamental and critical importance in molecular biology and practical medical biotechnology, how a polypeptide interacts with a transmembrane protein pore is not yet comprehensively understood. Here, we employed single-channel electrical recordings to reveal the interactions of short polypeptides and small folded proteins with a robust beta-barrel protein pore. The short polypeptides were approximately 25 residues in length, resembling positively charged targeting presequences involved in protein import. The proteins were consisted of positively charged pre-cytochrome b2 fragments (pb2) fused to the small ribonuclease barnase (approximately 110 residues, Ba). Single-molecule experiments exploring the interaction of a folded pb2-Ba protein with a single beta-barrel pore, which contained negatively charged electrostatic traps, revealed the complexity of a network of intermolecular forces, including driving and electrostatic ones. In addition, the interaction was dependent on other factors, such as the hydrophobic content of the interacting polypeptide, the location of the electrostatic trap, the length of the pb2 presequence and temperature. This single-molecule approach together with protein design of either the interacting polypeptide or the pore lumen opens new opportunities for the exploration of the polypeptide-pore interaction at high temporal resolution. Such future studies are also expected to unravel the advantages and limitations of the nanopore technique for the detection and exploration of individual polypeptides.
Collapse
Affiliation(s)
- Mohammad M Mohammad
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA
| | | |
Collapse
|
50
|
Huang L, Makarov DE. The rate constant of polymer reversal inside a pore. J Chem Phys 2008; 128:114903. [DOI: 10.1063/1.2890006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|