1
|
Marie-Orleach L, Glémin S, Brandrud MK, Brysting AK, Gizaw A, Gustafsson ALS, Rieseberg LH, Brochmann C, Birkeland S. How Does Selfing Affect the Pace and Process of Speciation? Cold Spring Harb Perspect Biol 2024; 16:a041426. [PMID: 38503508 PMCID: PMC11529850 DOI: 10.1101/cshperspect.a041426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Surprisingly little attention has been given to the impact of selfing on speciation, even though selfing reduces gene flow between populations and affects other key population genetics parameters. Here we review recent theoretical work and compile empirical data from crossing experiments and genomic and phylogenetic studies to assess the effect of mating systems on the speciation process. In accordance with theoretical predictions, we find that accumulation of hybrid incompatibilities seems to be accelerated in selfers, but there is so far limited empirical support for a predicted bias toward underdominant loci. Phylogenetic evidence is scarce and contradictory, including studies suggesting that selfing either promotes or hampers speciation rate. Further studies are therefore required, which in addition to measures of reproductive barrier strength and selfing rate should routinely include estimates of demographic history and genetic divergence as a proxy for divergence time.
Collapse
Affiliation(s)
- Lucas Marie-Orleach
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
- CNRS, Université de Rennes, ECOBIO-UMR 6553, Campus de Beaulieu, Rennes 35042, France
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours 37200, France
| | - Sylvain Glémin
- CNRS, Université de Rennes, ECOBIO-UMR 6553, Campus de Beaulieu, Rennes 35042, France
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Evolutionsbiologiskt Centrum EBC, Uppsala, Sweden
| | | | - Anne K Brysting
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Abel Gizaw
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
| | | | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | | | - Siri Birkeland
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| |
Collapse
|
2
|
Soliman HK, Coughlan JM. United by conflict: Convergent signatures of parental conflict in angiosperms and placental mammals. J Hered 2024; 115:625-642. [PMID: 38366852 PMCID: PMC11498613 DOI: 10.1093/jhered/esae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Endosperm in angiosperms and placenta in eutherians are convergent innovations for efficient embryonic nutrient transfer. Despite advantages, this reproductive strategy incurs metabolic costs that maternal parents disproportionately shoulder, leading to potential inter-parental conflict over optimal offspring investment. Genomic imprinting-parent-of-origin-biased gene expression-is fundamental for endosperm and placenta development and has convergently evolved in angiosperms and mammals, in part, to resolve parental conflict. Here, we review the mechanisms of genomic imprinting in these taxa. Despite differences in the timing and spatial extent of imprinting, these taxa exhibit remarkable convergence in the molecular machinery and genes governing imprinting. We then assess the role of parental conflict in shaping evolution within angiosperms and eutherians using four criteria: 1) Do differences in the extent of sibling relatedness cause differences in the inferred strength of parental conflict? 2) Do reciprocal crosses between taxa with different inferred histories of parental conflict exhibit parent-of-origin growth effects? 3) Are these parent-of-origin growth effects caused by dosage-sensitive mechanisms and do these loci exhibit signals of positive selection? 4) Can normal development be restored by genomic perturbations that restore stoichiometric balance in the endosperm/placenta? Although we find evidence for all criteria in angiosperms and eutherians, suggesting that parental conflict may help shape their evolution, many questions remain. Additionally, myriad differences between the two taxa suggest that their respective biologies may shape how/when/where/to what extent parental conflict manifests. Lastly, we discuss outstanding questions, highlighting the power of comparative work in quantifying the role of parental conflict in evolution.
Collapse
Affiliation(s)
- Hagar K Soliman
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, United States
- Department of Biotechnology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Jenn M Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, United States
| |
Collapse
|
3
|
Khouider S, Gehring M. Parental dialectic: Epigenetic conversations in endosperm. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102591. [PMID: 38944896 PMCID: PMC11392645 DOI: 10.1016/j.pbi.2024.102591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
Endosperm is a major evolutionary innovation of flowering plants, and its proper development critically impacts seed growth and viability. Epigenetic regulators have a key function in parental control of endosperm development. Notably, epigenetic regulation of parental genome dosage is a major determinant of seed development success, and disruption of this balance can produce inviable seed, as observed in some interploidy and interspecific crosses. These postzygotic reproduction barriers are also a potent driver of speciation. The molecular machinery and regulatory architecture governing endosperm development is proposed to have evolved under parental conflict. In this review, we emphasize parental conflict as a dialectic conflict and discuss recent findings about the epigenetic molecular machinery that mediates parental conflict in the endosperm.
Collapse
Affiliation(s)
- Souraya Khouider
- Whitehead Institute for Biomedical Research, Cambridge MA 02142, USA
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139, USA.
| |
Collapse
|
4
|
Baraniecka P, Seibt W, Groten K, Kessler D, McGale E, Gase K, Baldwin IT, Pannell JR. Prezygotic mate selection is only partially correlated with the expression of NaS-like RNases and affects offspring phenotypes. THE NEW PHYTOLOGIST 2024; 242:2832-2844. [PMID: 38581189 DOI: 10.1111/nph.19741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
Nicotiana attenuata styles preferentially select pollen from among accessions with corresponding expression patterns of NaS-like-RNases (SLRs), and the postpollination ethylene burst (PPEB) is an accurate predictor of seed siring success. However, the ecological consequences of mate selection, its effect on the progeny, and the role of SLRs in the control of ethylene signaling remain unknown. We explored the link between the magnitude of the ethylene burst and expression of the SLRs in a set of recombinant inbred lines (RILs), dissected the genetic underpinnings of mate selection through genome-wide association study (GWAS), and examined its outcome for phenotypes in the next generation. We found that high levels of PPEB are associated with the absence of SLR2 in most of the tested RILs. We identified candidate genes potentially involved in the control of mate selection and showed that pollination of maternal genotypes with their favored pollen donors produces offspring with longer roots. When the maternal genotypes are only able to select against nonfavored pollen donors, the selection for such positive traits is abolished. We conclude that plants' ability of mate choice contributes to measurable changes in progeny phenotypes and is thus likely a target of selection.
Collapse
Affiliation(s)
| | - Wibke Seibt
- MPI for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| | - Karin Groten
- MPI for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| | - Danny Kessler
- MPI for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| | - Erica McGale
- Department of Ecology and Evolution, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Klaus Gase
- MPI for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| | - Ian T Baldwin
- MPI for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| | - John R Pannell
- Department of Ecology and Evolution, University of Lausanne, Lausanne, CH-1015, Switzerland
| |
Collapse
|
5
|
Farnitano MC, Sweigart AL. Strong postmating reproductive isolation in Mimulus section Eunanus. J Evol Biol 2023; 36:1393-1410. [PMID: 37691442 PMCID: PMC10592011 DOI: 10.1111/jeb.14219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 09/12/2023]
Abstract
Postmating reproductive isolation can help maintain species boundaries when premating barriers to reproduction are incomplete. The strength and identity of postmating reproductive barriers are highly variable among diverging species, leading to questions about their genetic basis and evolutionary drivers. These questions have been tackled in model systems but are less often addressed with broader phylogenetic resolution. In this study we analyse patterns of genetic divergence alongside direct measures of postmating reproductive barriers in an overlooked group of sympatric species within the model monkeyflower genus, Mimulus. Within this Mimulus brevipes species group, we find substantial divergence among species, including a cryptic genetic lineage. However, rampant gene discordance and ancient signals of introgression suggest a complex history of divergence. In addition, we find multiple strong postmating barriers, including postmating prezygotic isolation, hybrid seed inviability and hybrid male sterility. M. brevipes and M. fremontii have substantial but incomplete postmating isolation. For all other tested species pairs, we find essentially complete postmating isolation. Hybrid seed inviability appears linked to differences in seed size, providing a window into possible developmental mechanisms underlying this reproductive barrier. While geographic proximity and incomplete mating isolation may have allowed gene flow within this group in the distant past, strong postmating reproductive barriers today have likely played a key role in preventing ongoing introgression. By producing foundational information about reproductive isolation and genomic divergence in this understudied group, we add new diversity and phylogenetic resolution to our understanding of the mechanisms of plant speciation.
Collapse
|
6
|
Steinecke C, Lee J, Friedman J. A standardized and efficient technique to estimate seed traits in plants with numerous small propagules. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11552. [PMID: 37915429 PMCID: PMC10617364 DOI: 10.1002/aps3.11552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 11/03/2023]
Abstract
Premise Variation in seed traits is common within and among populations of plant species and often has ecological and evolutionary implications. However, due to the time-consuming nature of manual seed measurements and the level of variability in imaging techniques, quantifying and interpreting the extent of seed variation can be challenging. Methods We developed a standardized high-throughput technique to measure seed number, as well as individual seed area and color, using a derived empirical scale to constrain area in Arabidopsis thaliana, Brassica rapa, and Mimulus guttatus. We develop a specific rational model using seed area measured at various spatial scales relative to the pixel count, observing the asymptotic value of the seed area as the modeled number of pixels approaches infinity. Results We found that our model has high reliability in estimating seed traits and efficiently processes large numbers of images, facilitating the quantification of seed traits in studies with large sample sizes. Discussion This technique facilitates consistency between imaging sessions and standardizes the measurement of seed traits. These novel advances allow researchers to directly and reliably measure seed traits, which will enable tests of the ecological and evolutionary causes of their variation.
Collapse
Affiliation(s)
- Christina Steinecke
- Biology DepartmentQueen's UniversityKingstonOntarioK7L 3N6Canada
- Present address:
Department of Organismic and Evolutionary BiologyHarvard University, Cambridge, Massachusetts 02138, USA; Arnold Arboretum of Harvard UniversityBostonMassachusetts02131USA
| | - Jeremiah Lee
- Biology DepartmentQueen's UniversityKingstonOntarioK7L 3N6Canada
- Department of Geography and PlanningQueen's UniversityKingstonOntarioK7L 3N6Canada
| | - Jannice Friedman
- Biology DepartmentQueen's UniversityKingstonOntarioK7L 3N6Canada
| |
Collapse
|
7
|
Chow HT, Mosher RA. Small RNA-mediated DNA methylation during plant reproduction. THE PLANT CELL 2023; 35:1787-1800. [PMID: 36651080 DOI: 10.1093/plcell/koad010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 05/30/2023]
Abstract
Reproductive tissues are a rich source of small RNAs, including several classes of short interfering (si)RNAs that are restricted to this stage of development. In addition to RNA polymerase IV-dependent 24-nt siRNAs that trigger canonical RNA-directed DNA methylation, abundant reproductive-specific siRNAs are produced from companion cells adjacent to the developing germ line or zygote and may move intercellularly before inducing methylation. In some cases, these siRNAs are produced via non-canonical biosynthesis mechanisms or from sequences with little similarity to transposons. While the precise role of these siRNAs and the methylation they trigger is unclear, they have been implicated in specifying a single megaspore mother cell, silencing transposons in the male germ line, mediating parental dosage conflict to ensure proper endosperm development, hypermethylation of mature embryos, and trans-chromosomal methylation in hybrids. In this review, we summarize the current knowledge of reproductive siRNAs, including their biosynthesis, transport, and function.
Collapse
Affiliation(s)
- Hiu Tung Chow
- The School of Plant Sciences, The University of Arizona, Tucson, Arizona 85721-0036, USA
| | - Rebecca A Mosher
- The School of Plant Sciences, The University of Arizona, Tucson, Arizona 85721-0036, USA
| |
Collapse
|
8
|
Coughlan JM. The role of hybrid seed inviability in angiosperm speciation. AMERICAN JOURNAL OF BOTANY 2023; 110:1-14. [PMID: 36801827 DOI: 10.1002/ajb2.16135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 05/11/2023]
Abstract
Understanding which reproductive barriers contribute to speciation is essential to understanding the diversity of life on earth. Several contemporary examples of strong hybrid seed inviability (HSI) between recently diverged species suggest that HSI may play a fundamental role in plant speciation. Yet, a broader synthesis of HSI is needed to clarify its role in diversification. Here, I review the incidence and evolution of HSI. Hybrid seed inviability is common and evolves rapidly, suggesting that it may play an important role early in speciation. The developmental mechanisms that underlie HSI involve similar developmental trajectories in endosperm, even between evolutionarily deeply diverged incidents of HSI. In hybrid endosperm, HSI is often accompanied by whole-scale gene misexpression, including misexpression of imprinted genes which have a key role in endosperm development. I explore how an evolutionary perspective can clarify the repeated and rapid evolution of HSI. In particular, I evaluate the evidence for conflict between maternal and paternal interests in resource allocation to offspring (i.e., parental conflict). I highlight that parental conflict theory generates explicit predictions regarding the expected hybrid phenotypes and genes responsible for HSI. While much phenotypic evidence supports a role of parental conflict in the evolution of HSI, an understanding of the underlying molecular mechanisms of this barrier is essential to test parental conflict theory. Lastly, I explore what factors may influence the strength of parental conflict in natural plant populations as an explanation for why rates of HSI may differ between plant groups and the consequences of strong HSI in secondary contact.
Collapse
Affiliation(s)
- Jenn M Coughlan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
9
|
Coughlan JM. Indirect Effects of Parental Conflict on Conspecific Offspring Development. Am Nat 2023; 201:154-162. [PMID: 36524928 DOI: 10.1086/721919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractHybrid seed inviability is a common reproductive barrier in angiosperms. Recent work suggests that the rapid evolution of hybrid seed inviability may, in part, be due to conflict between maternal and paternal optima for resource allocation to developing offspring (i.e., parental conflict). However, parental conflict requires that paternally derived resource-acquiring alleles impose a maternal cost. I test this requirement using three closely related species in the Mimulus guttatus species complex that exhibit significant hybrid seed inviability and differ in their inferred histories of parental conflict. I show that the presence of hybrid seeds significantly affects conspecific seed size for almost all crosses, such that conspecific seeds are smaller after developing with hybrids sired by fathers with a stronger history of conflict and are larger after developing with hybrids sired by fathers with a weaker history of conflict. This work demonstrates a potential maternal cost of paternally derived alleles and also has implications for species fitness in secondary contact.
Collapse
|
10
|
Mating system and speciation I: Accumulation of genetic incompatibilities in allopatry. PLoS Genet 2022; 18:e1010353. [PMID: 36520924 PMCID: PMC9799327 DOI: 10.1371/journal.pgen.1010353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/29/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Self-fertilisation is widespread among hermaphroditic species across the tree of life. Selfing has many consequences on the genetic diversity and the evolutionary dynamics of populations, which may in turn affect macroevolutionary processes such as speciation. On the one hand, because selfing increases genetic drift and reduces migration rate among populations, it may be expected to promote speciation. On the other hand, because selfing reduces the efficacy of selection, it may be expected to hamper ecological speciation. To better understand under which conditions and in which direction selfing affects the build-up of reproductive isolation, an explicit population genetics model is required. Here, we focus on the interplay between genetic drift, selection and genetic linkage by studying speciation without gene flow. We test how fast populations with different rates of selfing accumulate mutations leading to genetic incompatibilities. When speciation requires populations to pass through a fitness valley caused by underdominant and compensatory mutations, selfing reduces the depth and/or breadth of the valley, and thus overall facilitates the fixation of incompatibilities. When speciation does not require populations to pass through a fitness valley, as for Bateson-Dobzhanzky-Muller incompatibilities (BDMi), the lower effective population size and higher genetic linkage in selfing populations both facilitate the fixation of incompatibilities. Interestingly, and contrary to intuitive expectations, local adaptation does not always accelerate the fixation of incompatibilities in outcrossing relative to selfing populations. Our work helps to clarify how incompatibilities accumulate in selfing vs. outcrossing lineages, and has repercussions on the pace of speciation as well as on the genetic architecture of reproductive isolation.
Collapse
|
11
|
Paczesniak D, Pellino M, Goertzen R, Guenter D, Jahnke S, Fischbach A, Lovell JT, Sharbel TF. Seed size, endosperm and germination variation in sexual and apomictic Boechera. FRONTIERS IN PLANT SCIENCE 2022; 13:991531. [PMID: 36466233 PMCID: PMC9716183 DOI: 10.3389/fpls.2022.991531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Asexual reproduction results in offspring that are genetically identical to the mother. Among apomictic plants (reproducing asexually through seeds) many require paternal genetic contribution for proper endosperm development (pseudogamous endosperm). We examined phenotypic diversity in seed traits using a diverse panel of sexual and apomictic accessions from the genus Boechera. While genetic uniformity resulting from asexual reproduction is expected to reduce phenotypic diversity in seeds produced by apomictic individuals, pseudogamous endosperm, variable endosperm ploidy, and the deviations from 2:1 maternal:paternal genome ratio in endosperm can all contribute to increased phenotypic diversity among apomictic offspring. We characterized seed size variation in 64 diploid sexual and apomictic (diploid and triploid) Boechera lineages. In order to find out whether individual seed size was related to endosperm ploidy we performed individual seed measurements (projected area and mass) using the phenoSeeder robot system and flow cytometric seed screen. In order to test whether individual seed size had an effect on resulting fitness we performed a controlled growth experiment and recorded seedling life history traits (germination success, germination timing, and root growth rate). Seeds with triploid embryos were 33% larger than those with diploid embryos, but no average size difference was found between sexual and apomictic groups. We identified a maternal effect whereby chloroplast lineage 2 had 30% larger seeds than lineage 3, despite having broad and mostly overlapping geographic ranges. Apomictic seeds were not more uniform in size than sexual seeds, despite genetic uniformity of the maternal gametophyte in the former. Among specific embryo/endosperm ploidy combinations, seeds with tetraploid (automomous) endosperm were on average smaller, and the proportion of such seeds was highest in apomicts. Larger seeds germinated more quickly than small seeds, and lead to higher rates of root growth in young seedlings. Seed mass is under balancing selection in Boechera, and it is an important predictor of several traits, including germination probability and timing, root growth rates, and developmental abnormalities in apomictic accessions.
Collapse
Affiliation(s)
- Dorota Paczesniak
- Global Institute for Food Security (GIFS), University of Saskatchewan, Saskatoon, SK, Canada
- Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Marco Pellino
- Global Institute for Food Security (GIFS), University of Saskatchewan, Saskatoon, SK, Canada
- Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Richard Goertzen
- Global Institute for Food Security (GIFS), University of Saskatchewan, Saskatoon, SK, Canada
| | - Devan Guenter
- Global Institute for Food Security (GIFS), University of Saskatchewan, Saskatoon, SK, Canada
| | - Siegfried Jahnke
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Jülich, Germany
| | - Andreas Fischbach
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Jülich, Germany
| | - John T. Lovell
- Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Timothy F. Sharbel
- Global Institute for Food Security (GIFS), University of Saskatchewan, Saskatoon, SK, Canada
- Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
12
|
Larios E, Mazer SJ. Genotype × environment interaction obscures genetic sources of variation in seed size in Dithyrea californica but provides the opportunity for selection on phenotypic plasticity. AMERICAN JOURNAL OF BOTANY 2022; 109:1847-1860. [PMID: 36350645 DOI: 10.1002/ajb2.16091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
PREMISE In many species, seed size influences individual fitness, but its heritability is low, impeding its evolution. In heterogeneous environments, even if heritability of seed size is low, genetic variation in phenotypic plasticity for seed size may provide the opportunity for selection, but this possibility has rarely been investigated in wild species. The evolutionary trajectory of seed size depends on whether additive, maternal, or non-additive genetic variance dominates; moreover, the expression of any of these sources of variance may be environment-dependent, reflecting genetic variation in plasticity. In this study, we examined these sources of variation in seed size and their response to drought in Dithyrea californica. METHODS We used a diallel design to estimate variance components for seed size in three greenhouse-raised populations sampled from California and northern Mexico. We replicated diallels in two watering treatments to examine genetic parameters and genotype × environment interactions affecting seed size. We estimated general (GCA) and specific (SCA) combining ability, reciprocal effects (RGCA and RSCA), and their interactions with water availability, and we sought evidence that sexual conflict influences seed size. RESULTS Norms of reaction revealed genetic variation in plasticity for seed size in each population. Seed size in D. californica is determined by the combination of watering treatment, GCA and RGCA; parental identity and water availability do not consistently affect seed size, and we detected no evidence for sexual conflict. CONCLUSIONS Multiple sources of genetic variation in phenotypic plasticity for seed size have the potential to influence its evolutionary trajectory in heterogenous environments.
Collapse
Affiliation(s)
- Eugenio Larios
- Department of Ecology Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Susan J Mazer
- Department of Ecology Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
13
|
Sandstedt GD, Sweigart AL. Developmental evidence for parental conflict in driving Mimulus species barriers. THE NEW PHYTOLOGIST 2022; 236:1545-1557. [PMID: 35999713 PMCID: PMC9826125 DOI: 10.1111/nph.18438] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/08/2022] [Indexed: 05/25/2023]
Abstract
The endosperm, a tissue that nourishes the embryo in the seeds of flowering plants, is often disrupted in inviable hybrid seeds of closely related species. A key question is whether parental conflict is a major driver of this common form of reproductive isolation. Here, we performed reciprocal crosses between pairs of three monkeyflower species (Mimulus caespitosa, Mimulus tilingii, and Mimulus guttatus). The severity of hybrid seed inviability varies among these crosses, which we inferred to be due to species divergence in effective ploidy. By performing a time series experiment of seed development, we discovered parent-of-origin phenotypes that provide strong evidence for parental conflict in shaping endosperm evolution. We found that the chalazal haustorium, a tissue within the endosperm that is found at the maternal-filial boundary, shows pronounced differences between reciprocal hybrid seeds formed from Mimulus species that differ in effective ploidy. These parent-of-origin effects suggest that the chalazal haustorium might act as a mediator of parental conflict, potentially by controlling sucrose movement from the maternal parent into the endosperm. Our study suggests that parental conflict in the endosperm may function as a driver of speciation by targeting regions and developmental stages critical for resource allocation and thus proper seed development.
Collapse
|
14
|
Tsuchimatsu T, Fujii S. The selfing syndrome and beyond: diverse evolutionary consequences of mating system transitions in plants. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200510. [PMID: 35634918 PMCID: PMC9149797 DOI: 10.1098/rstb.2020.0510] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/04/2021] [Indexed: 07/20/2023] Open
Abstract
The shift from outcrossing to self-fertilization (selfing) is considered one of the most prevalent evolutionary transitions in flowering plants. Selfing species tend to share similar reproductive traits in morphology and function, and such a set of traits is called the 'selfing syndrome'. Although the genetic basis of the selfing syndrome has been of great interest to evolutionary biologists, knowledge of the causative genes or mutations was limited until recently. Thanks to advances in population genomic methodologies combined with high-throughput sequencing technologies, several studies have successfully unravelled the molecular and genetic basis for evolution of the selfing syndrome in Capsella, Arabidopsis, Solanum and other genera. Here we first introduce recent research examples that have explored the loci, genes and mutations responsible for the selfing syndrome traits, such as reductions in petal size or in pollen production, that are mainly relevant to pre-pollination processes. Second, we review the relationship between the evolution of selfing and interspecific pollen transfer, highlighting the findings of post-pollination reproductive barriers at the molecular level. We then discuss the emerging view of patterns in evolution of the selfing syndrome, such as the pervasive involvement of loss-of-function mutations and the relative importance of selection versus neutral degradation. This article is part of the theme issue 'Genetic basis of adaptation and speciation: from loci to causative mutations'.
Collapse
Affiliation(s)
- Takashi Tsuchimatsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-0033, Japan
| | - Sota Fujii
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku 113-8657, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE) Fellow, Bunkyo, Japan
| |
Collapse
|
15
|
RNA Pol IV induces antagonistic parent-of-origin effects on Arabidopsis endosperm. PLoS Biol 2022; 20:e3001602. [PMID: 35389984 PMCID: PMC9017945 DOI: 10.1371/journal.pbio.3001602] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/19/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022] Open
Abstract
Gene expression in endosperm-a seed tissue that mediates transfer of maternal resources to offspring-is under complex epigenetic control. We show here that plant-specific RNA polymerase IV (Pol IV) mediates parental control of endosperm gene expression. Pol IV is required for the production of small interfering RNAs that typically direct DNA methylation. We compared small RNAs (sRNAs), DNA methylation, and mRNAs in Arabidopsis thaliana endosperm from heterozygotes produced by reciprocally crossing wild-type (WT) plants to Pol IV mutants. We find that maternally and paternally acting Pol IV induce distinct effects on endosperm. Loss of maternal or paternal Pol IV impacts sRNAs and DNA methylation at different genomic sites. Strikingly, maternally and paternally acting Pol IV have antagonistic impacts on gene expression at some loci, divergently promoting or repressing endosperm gene expression. Antagonistic parent-of-origin effects have only rarely been described and are consistent with a gene regulatory system evolving under parental conflict.
Collapse
|
16
|
Roy SW. How illuminates why in plant germline methylation. TRENDS IN PLANT SCIENCE 2022; 27:325-327. [PMID: 35074266 DOI: 10.1016/j.tplants.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
In modern biology, inquiry into proximal mechanistic and ultimate evolutionary causes are often segregated, pursued by different communities of specialists. Yet, the two are often mutually informative. As a case in point, a recent study by Long et al. on mechanisms of arabidopsis (Arabidopsisthaliana) male germline methylation promises insights into long-obscure ultimate causes.
Collapse
|
17
|
Tateyama H, Chimura K, Tsuchimatsu T. Evolution of seed mass associated with mating systems in multiple plant families. J Evol Biol 2021; 34:1981-1987. [PMID: 34662478 PMCID: PMC9298147 DOI: 10.1111/jeb.13949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 11/28/2022]
Abstract
In flowering plants, the evolution of self‐fertilization (selfing) from obligate outcrossing is regarded as one of the most prevalent evolutionary transitions. The evolution of selfing is often accompanied by various changes in genomic, physiological and morphological properties. In particular, a set of reproductive traits observed typically in selfing species is called the “selfing syndrome”. A mathematical model based on the kinship theory of genetic imprinting predicted that seed mass should become smaller in selfing species compared with outcrossing congeners, as a consequence of the reduced conflict between maternally and paternally derived alleles in selfing plants. Here, we test this prediction by examining the association between mating system and seed mass across a wide range of taxa (642 species), considering potential confounding factors: phylogenetic relationships and growth form. We focused on three plant families—Solanaceae, Brassicaceae and Asteraceae—where information on mating systems is abundant, and the analysis was performed for each family separately. When phylogenetic relationships were controlled, we consistently observed that selfers (represented by self‐compatible species) tended to have a smaller seed mass compared with outcrossers (represented by self‐incompatible species) in these families. In summary, our analysis suggests that small seeds should also be considered a hallmark of the selfing syndrome, although we note that mating systems have relatively small effects on seed mass variation.
Collapse
Affiliation(s)
- Hirofumi Tateyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Graduate School of Science and Technology, Chiba University, Chiba, Japan
| | - Kaori Chimura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takashi Tsuchimatsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Is There More to Within-plant Variation in Seed Size than Developmental Noise? Evol Biol 2021. [DOI: 10.1007/s11692-021-09544-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractWithin-plant variation in seed size may merely reflect developmental instability, or it may be adaptive in facilitating diversifying bet-hedging, that is, production of phenotypically diverse offspring when future environments are unpredictable. To test the latter hypothesis, we analyzed patterns of variation in seed size in 11 populations of the perennial vine Dalechampia scandens grown in a common greenhouse environment. We tested whether population differences in the mean and variation of seed size covaried with environmental predictability at two different timescales. We also tested whether within-plant variation in seed size was correlated with independent measures of floral developmental instability and increased under stressful conditions. Populations differed genetically in the amount of seed-size variation occurring among plants, among infructescences within plants, and among seeds within infructescences. Within-individual variation was not detectably correlated with measures of developmental instability and did not increase under stress, but it increased weakly with short-term environmental unpredictability of precipitation at the source-population site. These results support the hypothesis that greater variation in seed size is adaptive when environmental predictability is low.
Collapse
|
19
|
Städler T, Florez-Rueda AM, Roth M. A revival of effective ploidy: the asymmetry of parental roles in endosperm-based hybridization barriers. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102015. [PMID: 33639340 DOI: 10.1016/j.pbi.2021.102015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 05/15/2023]
Abstract
Interest in understanding hybrid seed failure (HSF) has mushroomed, both in terms of identifying underlying molecular processes and their evolutionary drivers. We review phenotypic and molecular advances with a focus on the 'effective ploidy' concept, witnessing a recent revival after long obscurity. Endosperm misdevelopment has now been shown to underlie HSF in many inter-specific, homoploid crosses. The consistent asymmetries in seed size and developmental trajectories likely reflect parental divergence in key, dosage-sensitive processes. Transcriptomic and epigenomic studies reveal genome-wide, polarized expression perturbations and shifts in parental expression proportions, consistent with small-RNA imbalances between parental roles. Among-species differences in levels of parental conflict over resource allocation enjoy strong support in explaining why differences in effective ploidy may evolve.
Collapse
Affiliation(s)
- Thomas Städler
- Institute of Integrative Biology, ETH Zurich & Zurich-Basel Plant Science Center, Universitätstrasse 16, 8092 Zurich, Switzerland.
| | - Ana M Florez-Rueda
- Department of Plant and Microbial Biology, University of Zurich and Zurich-Basel Plant Science Center, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Morgane Roth
- GAFL INRAE, Allée des Chênes 67, 84140 Montfavet, France
| |
Collapse
|
20
|
İltaş Ö, Svitok M, Cornille A, Schmickl R, Lafon Placette C. Early evolution of reproductive isolation: A case of weak inbreeder/strong outbreeder leads to an intraspecific hybridization barrier in Arabidopsis lyrata. Evolution 2021; 75:1466-1476. [PMID: 33900634 DOI: 10.1111/evo.14240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/08/2021] [Accepted: 04/10/2021] [Indexed: 12/18/2022]
Abstract
Reproductive strategies play a major role in plant speciation. Notably, transitions from outcrossing to selfing may lead to relaxed sexual selection and parental conflict. Shifts in mating systems can affect maternal and paternal interests, and thus parent-specific influence on endosperm development, leading to reproductive isolation: if selfing and outcrossing species hybridize, the resulting seeds may not be viable due to endosperm failure. Nevertheless, it remains unclear how the switch in mating systems can impact reproductive isolation between recently diverged lineages, that is, during the process of speciation. We investigated this question using Arabidopsis lyrata, which recently transitioned to selfing (10,000 years ago) in certain North American populations, where European populations remain outcrossing. We performed reciprocal crosses between selfers and outcrossers, and measured seed viability and endosperm development. We show that parental genomes in the hybrid seed negatively interact, as predicted by parental conflict. This leads to extensive hybrid seed lethality associated with endosperm cellularization disturbance. Our results suggest that this is primarily driven by divergent evolution of the paternal genome between selfers and outcrossers. In addition, we observed other hybrid seed defects, suggesting that sex-specific interests are not the only processes contributing to postzygotic reproductive isolation.
Collapse
Affiliation(s)
- Ömer İltaş
- Department of Botany, Faculty of Science, Charles University, Prague, CZ-128 01, Czech Republic
| | - Marek Svitok
- Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, Zvolen, SK-960 01, Slovakia.,Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, CZ-370 05, Czech Republic
| | - Amandine Cornille
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette, 91190, France
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Prague, CZ-128 01, Czech Republic.,Institute of Botany, The Czech Academy of Sciences, Průhonice, CZ-252 43, Czech Republic
| | - Clément Lafon Placette
- Department of Botany, Faculty of Science, Charles University, Prague, CZ-128 01, Czech Republic
| |
Collapse
|
21
|
Köhler C, Dziasek K, Del Toro-De León G. Postzygotic reproductive isolation established in the endosperm: mechanisms, drivers and relevance. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200118. [PMID: 33866810 DOI: 10.1098/rstb.2020.0118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The endosperm is a developmental innovation of angiosperms that supports embryo growth and germination. Aside from this essential reproductive function, the endosperm fuels angiosperm evolution by rapidly establishing reproductive barriers between incipient species. Specifically, the endosperm prevents hybridization of newly formed polyploids with their non-polyploid progenitors, a phenomenon termed the triploid block. Furthermore, recently diverged diploid species are frequently reproductively isolated by endosperm-based hybridization barriers. Current genetic approaches have revealed a prominent role for epigenetic processes establishing these barriers. In particular, imprinted genes, which are expressed in a parent-of-origin-specific manner, underpin the interploidy barrier in the model species Arabidopsis. We will discuss the mechanisms establishing hybridization barriers in the endosperm, the driving forces for these barriers and their impact for angiosperm evolution. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Claudia Köhler
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Katarzyna Dziasek
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Gerardo Del Toro-De León
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| |
Collapse
|
22
|
Coughlan JM, Wilson Brown M, Willis JH. Patterns of Hybrid Seed Inviability in the Mimulus guttatus sp. Complex Reveal a Potential Role of Parental Conflict in Reproductive Isolation. Curr Biol 2020; 30:83-93.e5. [PMID: 31883810 PMCID: PMC7017923 DOI: 10.1016/j.cub.2019.11.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/01/2019] [Accepted: 11/06/2019] [Indexed: 11/19/2022]
Abstract
Genomic conflicts may play a central role in the evolution of reproductive barriers. Theory predicts that early-onset hybrid inviability may stem from conflict between parents for resource allocation to offspring. Here, we describe M. decorus: a group of cryptic species within the M. guttatus species complex that are largely reproductively isolated by hybrid seed inviability (HSI). HSI between M. guttatus and M. decorus is common and strong, but populations of M. decorus vary in the magnitude and directionality of HSI with M. guttatus. Patterns of HSI between M. guttatus and M. decorus, as well as within M. decorus, conform to the predictions of parental conflict: first, reciprocal F1s exhibit size differences and parent-of-origin-specific endosperm defects; second, the extent of asymmetry between reciprocal F1 seed size is correlated with asymmetry in HSI; and third, inferred differences in the extent of conflict predict the extent of HSI between populations. We also find that HSI is rapidly evolving, as populations that exhibit the most HSI are each others' closest relative. Lastly, although all populations appear largely outcrossing, we find that the differences in the inferred strength of conflict scale positively with π, suggesting that demographic or life history factors other than transitions to self-fertilization may influence the rate of parental-conflict-driven evolution. Overall, these patterns suggest the rapid evolution of parent-of-origin-specific resource allocation alleles coincident with HSI within and between M. guttatus and M. decorus. Parental conflict may therefore be an important evolutionary driver of reproductive isolation.
Collapse
Affiliation(s)
- Jenn M Coughlan
- Biological Sciences, Duke University, 25 Science Drive, Durham, NC 27708, USA; Biology Department, University of North Carolina, Chapel Hill, 120 South Road, Chapel Hill, NC 27599, USA.
| | - Maya Wilson Brown
- Biological Sciences, Duke University, 25 Science Drive, Durham, NC 27708, USA
| | - John H Willis
- Biological Sciences, Duke University, 25 Science Drive, Durham, NC 27708, USA
| |
Collapse
|
23
|
Lafon Placette C. Endosperm genome dosage, hybrid seed failure, and parental imprinting: sexual selection as an alternative to parental conflict. AMERICAN JOURNAL OF BOTANY 2020; 107:17-19. [PMID: 31797356 DOI: 10.1002/ajb2.1401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/04/2019] [Indexed: 05/15/2023]
Affiliation(s)
- Clément Lafon Placette
- Department of Botany, Faculty of Science, Charles University, CZ-128 01, Prague, Czech Republic
| |
Collapse
|
24
|
Differences in Effective Ploidy Drive Genome-Wide Endosperm Expression Polarization and Seed Failure in Wild Tomato Hybrids. Genetics 2019; 212:141-152. [PMID: 30902809 DOI: 10.1534/genetics.119.302056] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/18/2019] [Indexed: 01/24/2023] Open
Abstract
Parental imbalances in the endosperm leading to impaired development and eventual hybrid seed failure are common causes of postzygotic isolation in flowering plants. Endosperm sensitivity to parental dosage is reflected by canonical phenotypes of "parental excess" in reciprocal interploid crosses. Moreover, parental-excess traits are also evident in many homoploid interspecific crosses, potentially reflecting among-lineage variation in "effective ploidy" driven by endosperm properties. However, the genetic basis of effective ploidy is unknown and genome-wide expression perturbations in parental-excess endosperms from homoploid crosses have yet to be reported. The tomato clade (Solanum section Lycopersicon), encompassing closely related diploids with partial-to-complete hybrid seed failure, provides outstanding opportunities to study these issues. Here, we compared replicated endosperm transcriptomes from six crosses within and among three wild tomato lineages. Strikingly, strongly inviable hybrid crosses displayed conspicuous, asymmetric expression perturbations that mirror previously characterized parental-excess phenotypes. Solanum peruvianum, the species inferred to have evolved higher effective ploidy than the other two, drove expression landscape polarization between maternal and paternal roles. This global expression divergence was mirrored in functionally important gene families such as MADS-box transcription factors and E3 ubiquitin ligases, and revealed differences in cell cycle tuning that match phenotypic differences in developing endosperm and mature seed size between reciprocal crosses. Our work starts to uncover the complex interactions between expression divergence, parental conflict, and hybrid seed failure that likely contributed to plant diversity.
Collapse
|
25
|
|