1
|
Augière C, Campolina-Silva G, Vijayakumaran A, Medagedara O, Lavoie-Ouellet C, Joly Beauparlant C, Droit A, Barrachina F, Ottino K, Battistone MA, Narayan K, Hess R, Mennella V, Belleannée C. ARL13B controls male reproductive tract physiology through primary and Motile Cilia. Commun Biol 2024; 7:1318. [PMID: 39397107 PMCID: PMC11471856 DOI: 10.1038/s42003-024-07030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
ARL13B is a small regulatory GTPase that controls ciliary membrane composition in both motile cilia and non-motile primary cilia. In this study, we investigated the role of ARL13B in the efferent ductules, tubules of the male reproductive tract essential to male fertility in which primary and motile cilia co-exist. We used a genetically engineered mouse model to delete Arl13b in efferent ductule epithelial cells, resulting in compromised primary and motile cilia architecture and functions. This deletion led to disturbances in reabsorptive/secretory processes and triggered an inflammatory response. The observed male reproductive phenotype showed significant variability linked to partial infertility, highlighting the importance of ARL13B in maintaining a proper physiological balance in these small ducts. These results emphasize the dual role of both motile and primary cilia functions in regulating efferent duct homeostasis, offering deeper insights into how cilia related diseases affect the male reproductive system.
Collapse
Affiliation(s)
- Céline Augière
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada.
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| | - Gabriel Campolina-Silva
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Aaran Vijayakumaran
- Medical Research Council Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
| | - Odara Medagedara
- Medical Research Council Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
| | - Camille Lavoie-Ouellet
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | | | - Arnaud Droit
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada
| | - Ferran Barrachina
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Kiera Ottino
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Maria Agustina Battistone
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rex Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, IL, USA
| | - Vito Mennella
- Medical Research Council Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
- Department of Pathology, 10 Tennis Court Road, University of Cambridge, Cambridge, UK
| | - Clémence Belleannée
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada.
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
2
|
Lyu Q, Li Q, Zhou J, Zhao H. Formation and function of multiciliated cells. J Cell Biol 2024; 223:e202307150. [PMID: 38032388 PMCID: PMC10689204 DOI: 10.1083/jcb.202307150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
In vertebrates, multiciliated cells (MCCs) are terminally differentiated cells that line the airway tracts, brain ventricles, and reproductive ducts. Each MCC contains dozens to hundreds of motile cilia that beat in a synchronized manner to drive fluid flow across epithelia, the dysfunction of which is associated with a group of human diseases referred to as motile ciliopathies, such as primary cilia dyskinesia. Given the dynamic and complex process of multiciliogenesis, the biological events essential for forming multiple motile cilia are comparatively unelucidated. Thanks to advancements in genetic tools, omics technologies, and structural biology, significant progress has been achieved in the past decade in understanding the molecular mechanism underlying the regulation of multiple motile cilia formation. In this review, we discuss recent studies with ex vivo culture MCC and animal models, summarize current knowledge of multiciliogenesis, and particularly highlight recent advances and their implications.
Collapse
Affiliation(s)
- Qian Lyu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
3
|
Chen Z, Lei Y, Finnell RH, Ding Y, Su Z, Wang Y, Xie H, Chen F. Whole-exome sequencing study of hypospadias. iScience 2023; 26:106663. [PMID: 37168556 PMCID: PMC10165268 DOI: 10.1016/j.isci.2023.106663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/01/2023] [Accepted: 04/07/2023] [Indexed: 05/13/2023] Open
Abstract
Hypospadias results from the impaired urethral development, which is influenced by androgens, but its genetic etiology is still unknown. Through whole exome sequencing analysis, we identified NR5A1, SRD5A2, and AR as mutational hotspots in the etiology of severe hypospadias, as these genes are related to androgen signaling. Additionally, rare damaging variants in cilia-related outer dynein arm heavy chain (ODNAH) genes (DNAH5, DNAH8, DNAH9, DNAH11, and DNAH17) (p = 8.5 × 10-47) were significantly enriched in hypospadias cases. The Dnah8 KO mice exhibited significantly decreased testosterone levels, which had an impact on urethral development and disrupted steroid biosynthesis. Combined with trios data, transcriptomic, and phenotypical and proteomic characterization of a mouse model, our work links ciliary genes with hypospadias. Overall, a panel of ODNAH genes with rare damaging variants was identified in 24% of hypospadias patients, providing significant insights into the underlying pathogenesis of hypospadias as well as genetic counseling.
Collapse
Affiliation(s)
- Zhongzhong Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Urogenital Development Research Center, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Yunping Lei
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard H. Finnell
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yu Ding
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Zhixi Su
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yaping Wang
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Hua Xie
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Fang Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Clinical Research Center For Hypospadias Pediatric College, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| |
Collapse
|
4
|
Higgins K, Moore BA, Berberovic Z, Adissu HA, Eskandarian M, Flenniken AM, Shao A, Imai DM, Clary D, Lanoue L, Newbigging S, Nutter LMJ, Adams DJ, Bosch F, Braun RE, Brown SDM, Dickinson ME, Dobbie M, Flicek P, Gao X, Galande S, Grobler A, Heaney JD, Herault Y, de Angelis MH, Chin HJG, Mammano F, Qin C, Shiroishi T, Sedlacek R, Seong JK, Xu Y, Lloyd KCK, McKerlie C, Moshiri A. Analysis of genome-wide knockout mouse database identifies candidate ciliopathy genes. Sci Rep 2022; 12:20791. [PMID: 36456625 PMCID: PMC9715561 DOI: 10.1038/s41598-022-19710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/02/2022] [Indexed: 12/05/2022] Open
Abstract
We searched a database of single-gene knockout (KO) mice produced by the International Mouse Phenotyping Consortium (IMPC) to identify candidate ciliopathy genes. We first screened for phenotypes in mouse lines with both ocular and renal or reproductive trait abnormalities. The STRING protein interaction tool was used to identify interactions between known cilia gene products and those encoded by the genes in individual knockout mouse strains in order to generate a list of "candidate ciliopathy genes." From this list, 32 genes encoded proteins predicted to interact with known ciliopathy proteins. Of these, 25 had no previously described roles in ciliary pathobiology. Histological and morphological evidence of phenotypes found in ciliopathies in knockout mouse lines are presented as examples (genes Abi2, Wdr62, Ap4e1, Dync1li1, and Prkab1). Phenotyping data and descriptions generated on IMPC mouse line are useful for mechanistic studies, target discovery, rare disease diagnosis, and preclinical therapeutic development trials. Here we demonstrate the effective use of the IMPC phenotype data to uncover genes with no previous role in ciliary biology, which may be clinically relevant for identification of novel disease genes implicated in ciliopathies.
Collapse
Affiliation(s)
- Kendall Higgins
- The University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Bret A Moore
- Department of Small Animal Clinical Sciences, University of Florida, College of Veterinary Medicine, Gainesville, FL, 32608, USA
| | - Zorana Berberovic
- The Centre for Phenogenomics, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | | | - Mohammad Eskandarian
- The Centre for Phenogenomics, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Ann M Flenniken
- The Centre for Phenogenomics, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Andy Shao
- University of Reno, Nevada, School of Medicine, Reno, NV, 89557, USA
| | - Denise M Imai
- Comparative Pathology Laboratory, U.C. Davis, Davis, 95616, USA
| | - Dave Clary
- Mouse Biology Program, U.C. Davis, Davis, CA, 95618, USA
| | - Louise Lanoue
- Mouse Biology Program, U.C. Davis, Davis, CA, 95618, USA
| | - Susan Newbigging
- The Centre for Phenogenomics, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Lauryl M J Nutter
- The Centre for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - David J Adams
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Fatima Bosch
- Centre of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | | | - Steve D M Brown
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Mary E Dickinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael Dobbie
- Phenomics Australia, The Australian National University, 131 Garran Rd, Acton, Canberra, ACT, 2601, Australia
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Xiang Gao
- SKL of Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, 210061, China
| | - Sanjeev Galande
- Indian Institutes of Science Education and Research, Dr. Homi Bhabha Rd, Ward No. 8, NCL Colony, Pashan, Pune, Maharashtra, 411008, India
| | - Anne Grobler
- Faculty of Health Sciences, PCDDP North-West University, North-West University Potchefstroom Campus 11 Hoffman Street, Potchefstroom, 2531, South Africa
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67400, Illkirch, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, Université of Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden, France
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Hsian-Jean Genie Chin
- National Laboratory Animal Center, National Applied Research Laboratories (NARLabs), 3F., No. 106, Sec. 2, Heping E. Rd., Da'an Dist., Taipei City, 106214, Taiwan (R.O.C.)
| | - Fabio Mammano
- Monterotondo Mouse Clinic, Italian National Research Council (CNR), Institute of Cell Biology and Neurobiology, Adriano Buzzati-Traverso Campus, Via Ramarini, 00015, Monterotondo Scalo, Italy
| | - Chuan Qin
- National Laboratory Animal Center, National Applied Research Laboratories (NARLabs), Beijing, China
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Science, 5 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | | | - Radislav Sedlacek
- Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, IMG BIOCEV Building SO.02 Prumyslova 595, 252 50, Vestec, Czech Republic
| | - J-K Seong
- Korea Mouse Phenotyping Consortium (KMPC) and BK21 Program for Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea
| | - Ying Xu
- CAM-SU Genomic Resource Center, Soochow University, Organization Planning of No. 1 Shizi Street, Suzhou, 215123, China
| | - K C Kent Lloyd
- Mouse Biology Program, U.C. Davis, Davis, CA, 95618, USA
- Department of Surgery, School of Medicine, U.C. Davis, Sacramento, CA, 95817, USA
| | - Colin McKerlie
- The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children (SickKids), The Centre for Phenogenomics, Faculty of Medicine, University of Toronto, 25 Orde Street, Toronto, ON, M5T 3H7, USA.
| | - Ala Moshiri
- Department of Ophthalmology and Vision Science, School of Medicine, U.C. Davis Eye Center, 4860 Y. Street, Suite 2400, Sacramento, CA, 95817, USA.
| |
Collapse
|
5
|
Pantos K, Grigoriadis S, Tomara P, Louka I, Maziotis E, Pantou A, Nitsos N, Vaxevanoglou T, Kokkali G, Agarwal A, Sfakianoudis K, Simopoulou M. Investigating the Role of the microRNA-34/449 Family in Male Infertility: A Critical Analysis and Review of the Literature. Front Endocrinol (Lausanne) 2021; 12:709943. [PMID: 34276570 PMCID: PMC8281345 DOI: 10.3389/fendo.2021.709943] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
There is a great body of evidence suggesting that in both humans and animal models the microRNA-34/449 (miR-34/449) family plays a crucial role for normal testicular functionality as well as for successful spermatogenesis, regulating spermatozoa maturation and functionality. This review and critical analysis aims to summarize the potential mechanisms via which miR-34/449 dysregulation could lead to male infertility. Existing data indicate that miR-34/449 family members regulate ciliogenesis in the efferent ductules epithelium. Upon miR-34/449 dysregulation, ciliogenesis in the efferent ductules is significantly impaired, leading to sperm aggregation and agglutination as well as to defective reabsorption of the seminiferous tubular fluids. These events in turn cause obstruction of the efferent ductules and thus accumulation of the tubular fluids resulting to high hydrostatic pressure into the testis. High hydrostatic pressure progressively leads to testicular dysfunction as well as to spermatogenic failure and finally to male infertility, which could range from severe oligoasthenozoospermia to azoospermia. In addition, miR-34/449 family members act as significant regulators of spermatogenesis with an essential role in controlling expression patterns of several spermatogenesis-related proteins. It is demonstrated that these microRNAs are meiotic specific microRNAs as their expression is relatively higher at the initiation of meiotic divisions during spermatogenesis. Moreover, data indicate that these molecules are essential for proper formation as well as for proper function of spermatozoa per se. MicroRNA-34/449 family seems to exert significant anti-oxidant and anti-apoptotic properties and thus contribute to testicular homeostatic regulation. Considering the clinical significance of these microRNAs, data indicate that the altered expression of the miR-34/449 family members is strongly associated with several aspects of male infertility. Most importantly, miR-34/449 levels in spermatozoa, in testicular tissues as well as in seminal plasma seem to be directly associated with severity of male infertility, indicating that these microRNAs could serve as potential sensitive biomarkers for an accurate individualized differential diagnosis, as well as for the assessment of the severity of male factor infertility. In conclusion, dysregulation of miR-34/449 family detrimentally affects male reproductive potential, impairing both testicular functionality as well as spermatogenesis. Future studies are needed to verify these conclusions.
Collapse
Affiliation(s)
| | - Sokratis Grigoriadis
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Penelope Tomara
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Louka
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Maziotis
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Agni Pantou
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Nitsos
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
| | | | - Georgia Kokkali
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, United States
| | | | - Mara Simopoulou
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Mara Simopoulou,
| |
Collapse
|