1
|
Kilian M, Bischofs IB. Co-evolution at protein-protein interfaces guides inference of stoichiometry of oligomeric protein complexes by de novo structure prediction. Mol Microbiol 2023; 120:763-782. [PMID: 37777474 DOI: 10.1111/mmi.15169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023]
Abstract
The quaternary structure with specific stoichiometry is pivotal to the specific function of protein complexes. However, determining the structure of many protein complexes experimentally remains a major bottleneck. Structural bioinformatics approaches, such as the deep learning algorithm Alphafold2-multimer (AF2-multimer), leverage the co-evolution of amino acids and sequence-structure relationships for accurate de novo structure and contact prediction. Pseudo-likelihood maximization direct coupling analysis (plmDCA) has been used to detect co-evolving residue pairs by statistical modeling. Here, we provide evidence that combining both methods can be used for de novo prediction of the quaternary structure and stoichiometry of a protein complex. We achieve this by augmenting the existing AF2-multimer confidence metrics with an interpretable score to identify the complex with an optimal fraction of native contacts of co-evolving residue pairs at intermolecular interfaces. We use this strategy to predict the quaternary structure and non-trivial stoichiometries of Bacillus subtilis spore germination protein complexes with unknown structures. Co-evolution at intermolecular interfaces may therefore synergize with AI-based de novo quaternary structure prediction of structurally uncharacterized bacterial protein complexes.
Collapse
Affiliation(s)
- Max Kilian
- Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
- BioQuant Center for Quantitative Analysis of Molecular and Cellular Biosystems, Heidelberg University, Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Ilka B Bischofs
- Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
- BioQuant Center for Quantitative Analysis of Molecular and Cellular Biosystems, Heidelberg University, Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| |
Collapse
|
2
|
Li XG, Dai J, Zhang WJ, Jiang AJ, Li DH, Wu LF. Genome analysis of Tepidibacter sp. SWIR-1, an anaerobic endospore-forming bacterium isolated from a deep-sea hydrothermal vent. Mar Genomics 2023; 71:101049. [PMID: 37620056 DOI: 10.1016/j.margen.2023.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 08/26/2023]
Abstract
Tepidibacter sp. SWIR-1, a putative new species isolated from deep-sea hydrothermal vent field on the Southwest Indian Ridge (SWIR), is an anaerobic, mesophilic and endospore-forming bacterium belonging to the family Peptostreptococcaceae. In this study, we present the complete genome sequence of strain SWIR-1, consists of a single circular chromosome comprising 4,122,966 nucleotides with 29.25% G + C content and a circular plasmid comprising 38,843 nucleotides with 29.46% G + C content. In total, 3861 protein coding genes, 104 tRNA genes and 46 rRNA genes were obtained. SWIR-1 genome contains numerous genes related to sporulation and germination. Compared with the other three Tepidibacter species, SWIR-1 contained more spore germination receptor proteins. In addition, SWIR-1 contained more genes involved in chemotaxis and two-component systems than other Tepidibacter species. These results indicated that SWIR-1 has developed versatile adaptability to the Southwest Indian Ridge hydrothermal vent environment. The genome of strain SWIR-1 will be helpful for further understanding adaptive strategies used by bacteria dwelling in the deep-sea hydrothermal vent environments of different oceans.
Collapse
Affiliation(s)
- Xue-Gong Li
- Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China; International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS-Sanya, China; CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China; Institution of Deep-sea Life Sciences, IDSSE-BGI, Hainan Deep-sea Technology Laboratory, China.
| | - Jie Dai
- Aix Marseille Univ, CNRS, LCB, IMM, IM2B, Marseille, France
| | - Wei-Jia Zhang
- Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China; International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS-Sanya, China; CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China; Institution of Deep-sea Life Sciences, IDSSE-BGI, Hainan Deep-sea Technology Laboratory, China
| | - Ai-Jun Jiang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong, China
| | - Deng-Hui Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong, China
| | - Long-Fei Wu
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS-Sanya, China; Aix Marseille Univ, CNRS, LCB, IMM, IM2B, Marseille, France.
| |
Collapse
|
3
|
Gao Y, Amon JD, Artzi L, Ramírez-Guadiana FH, Brock KP, Cofsky JC, Marks DS, Kruse AC, Rudner DZ. Bacterial spore germination receptors are nutrient-gated ion channels. Science 2023; 380:387-391. [PMID: 37104613 PMCID: PMC11154005 DOI: 10.1126/science.adg9829] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023]
Abstract
Bacterial spores resist antibiotics and sterilization and can remain metabolically inactive for decades, but they can rapidly germinate and resume growth in response to nutrients. Broadly conserved receptors embedded in the spore membrane detect nutrients, but how spores transduce these signals remains unclear. Here, we found that these receptors form oligomeric membrane channels. Mutations predicted to widen the channel initiated germination in the absence of nutrients, whereas those that narrow it prevented ion release and germination in response to nutrients. Expressing receptors with widened channels during vegetative growth caused loss of membrane potential and cell death, whereas the addition of germinants to cells expressing wild-type receptors triggered membrane depolarization. Therefore, germinant receptors act as nutrient-gated ion channels such that ion release initiates exit from dormancy.
Collapse
Affiliation(s)
- Yongqiang Gao
- Department of Microbiology, Harvard Medical ScF(2hool, 77 Avenue Louis Pasteur, Boston MA 02115
| | - Jeremy D. Amon
- Department of Microbiology, Harvard Medical ScF(2hool, 77 Avenue Louis Pasteur, Boston MA 02115
- Present Address: Moderna Genomics, 200 Technology Square, Cambridge MA 02139
| | - Lior Artzi
- Department of Microbiology, Harvard Medical ScF(2hool, 77 Avenue Louis Pasteur, Boston MA 02115
- Present Address: Evolved By Nature, 196 Boston Ave, Medford MA 02155
| | | | - Kelly P. Brock
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston MA 02115
- Present Address: Kernal Biologics, 238 Main Street, Cambrdige MA 02142
| | - Joshua C. Cofsky
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston MA 02115
| | - Deborah S. Marks
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston MA 02115
| | - Andrew C. Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston MA 02115
| | - David Z. Rudner
- Department of Microbiology, Harvard Medical ScF(2hool, 77 Avenue Louis Pasteur, Boston MA 02115
| |
Collapse
|
4
|
Genetic suppression meets structure prediction: probing a spore germination receptor complex. J Bacteriol 2021; 204:e0057921. [PMID: 34871033 DOI: 10.1128/jb.00579-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the thousands of spore germinant receptor operons identified in genomes of Bacilli and Clostridia, understanding how the three essential receptor components act as a signal transduction machine in germination remains limited. The paper by Amon et al in this issue uses the classical genetic approach of suppression to define a region of likely interaction between the GerAA and GerAB proteins: it provides a first glimpse into potential events within the receptor complex.
Collapse
|
5
|
Artzi L, Alon A, Brock KP, Green AG, Tam A, Ramírez-Guadiana FH, Marks D, Kruse A, Rudner DZ. Dormant spores sense amino acids through the B subunits of their germination receptors. Nat Commun 2021; 12:6842. [PMID: 34824238 PMCID: PMC8617281 DOI: 10.1038/s41467-021-27235-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 11/01/2021] [Indexed: 01/19/2023] Open
Abstract
Bacteria from the orders Bacillales and Clostridiales differentiate into stress-resistant spores that can remain dormant for years, yet rapidly germinate upon nutrient sensing. How spores monitor nutrients is poorly understood but in most cases requires putative membrane receptors. The prototypical receptor from Bacillus subtilis consists of three proteins (GerAA, GerAB, GerAC) required for germination in response to L-alanine. GerAB belongs to the Amino Acid-Polyamine-Organocation superfamily of transporters. Using evolutionary co-variation analysis, we provide evidence that GerAB adopts a structure similar to an L-alanine transporter from this superfamily. We show that mutations in gerAB predicted to disrupt the ligand-binding pocket impair germination, while mutations predicted to function in L-alanine recognition enable spores to respond to L-leucine or L-serine. Finally, substitutions of bulkier residues at these positions cause constitutive germination. These data suggest that GerAB is the L-alanine sensor and that B subunits in this broadly conserved family function in nutrient detection.
Collapse
Affiliation(s)
- Lior Artzi
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Assaf Alon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Kelly P Brock
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA, 02115, USA
| | - Anna G Green
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA, 02115, USA
| | - Amy Tam
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA, 02115, USA
| | | | - Debora Marks
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA, 02115, USA
| | - Andrew Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Predicting the Structure and Dynamics of Membrane Protein GerAB from Bacillus subtilis. Int J Mol Sci 2021; 22:ijms22073793. [PMID: 33917581 PMCID: PMC8038838 DOI: 10.3390/ijms22073793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Bacillus subtilis forms dormant spores upon nutrient depletion. Germinant receptors (GRs) in spore’s inner membrane respond to ligands such as L-alanine, and trigger spore germination. In B. subtilis spores, GerA is the major GR, and has three subunits, GerAA, GerAB, and GerAC. L-Alanine activation of GerA requires all three subunits, but which binds L-alanine is unknown. To date, how GRs trigger germination is unknown, in particular due to lack of detailed structural information about B subunits. Using homology modelling with molecular dynamics (MD) simulations, we present structural predictions for the integral membrane protein GerAB. These predictions indicate that GerAB is an α-helical transmembrane protein containing a water channel. The MD simulations with free L-alanine show that alanine binds transiently to specific sites on GerAB. These results provide a starting point for unraveling the mechanism of L-alanine mediated signaling by GerAB, which may facilitate early events in spore germination.
Collapse
|
7
|
Beskrovnaya P, Sexton DL, Golmohammadzadeh M, Hashimi A, Tocheva EI. Structural, Metabolic and Evolutionary Comparison of Bacterial Endospore and Exospore Formation. Front Microbiol 2021; 12:630573. [PMID: 33767680 PMCID: PMC7985256 DOI: 10.3389/fmicb.2021.630573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
Sporulation is a specialized developmental program employed by a diverse set of bacteria which culminates in the formation of dormant cells displaying increased resilience to stressors. This represents a major survival strategy for bacteria facing harsh environmental conditions, including nutrient limitation, heat, desiccation, and exposure to antimicrobial compounds. Through dispersal to new environments via biotic or abiotic factors, sporulation provides a means for disseminating genetic material and promotes encounters with preferable environments thus promoting environmental selection. Several types of bacterial sporulation have been characterized, each involving numerous morphological changes regulated and performed by non-homologous pathways. Despite their likely independent evolutionary origins, all known modes of sporulation are typically triggered by limited nutrients and require extensive membrane and peptidoglycan remodeling. While distinct modes of sporulation have been observed in diverse species, two major types are at the forefront of understanding the role of sporulation in human health, and microbial population dynamics and survival. Here, we outline endospore and exospore formation by members of the phyla Firmicutes and Actinobacteria, respectively. Using recent advances in molecular and structural biology, we point to the regulatory, genetic, and morphological differences unique to endo- and exospore formation, discuss shared characteristics that contribute to the enhanced environmental survival of spores and, finally, cover the evolutionary aspects of sporulation that contribute to bacterial species diversification.
Collapse
Affiliation(s)
| | | | | | | | - Elitza I. Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Investigating Synthesis of the MalS Malic Enzyme during Bacillus subtilis Spore Germination and Outgrowth and the Influence of Spore Maturation and Sporulation Conditions. mSphere 2020; 5:5/4/e00464-20. [PMID: 32759333 PMCID: PMC7407067 DOI: 10.1128/msphere.00464-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The spores formed by Bacillus subtilis remain in a quiescent state for extended periods due to their dormancy and resistance features. Dormancy is linked to a very low level of core water content and a phase-bright state of spores. The present report, focusing on proteins MalS and PdhD (pyruvate dehydrogenase subunit D) and complementary to our companion report published in this issue, aims to shed light on a major dilemma in the field, i.e., whether protein synthesis, in particular that of MalS, takes place in phase-bright spores. Clustered MalS-GFP in dormant spores diffuses throughout the spore as germination proceeds. However, fluorescence intensity measurements, supported by Western blot analysis and SILAC proteomics, confirm that there is no new MalS protein synthesis in bright-phase dormant spores. Spore-forming bacteria of the orders Bacillales and Clostridiales play a major role in food spoilage and foodborne diseases. When environmental conditions become favorable, these spores can germinate as the germinant receptors located on the spore’s inner membrane are activated via germinant binding. This leads to the formation of vegetative cells via germination and subsequent outgrowth and potential deleterious effects on foods. The present report focuses on analysis of the synthesis of the MalS (malic enzyme) protein during Bacillus subtilis spore germination by investigating the dynamics of the presence and fluorescence level of a MalS-GFP (MalS-green fluorescent protein) fusion protein using time-lapse fluorescence microscopy. Our results show an initial increase in MalS-GFP fluorescence intensity within the first 15 min of germination, followed by a discernible drop and stabilization of the fluorescence throughout spore outgrowth as reported previously (L. Sinai, A. Rosenberg, Y. Smith, E. Segev, and S. Ben-Yehuda, Mol Cell 57:695–707, 2015, https://doi.org/10.1016/j.molcel.2014.12.019). However, in contrast to the earlier report, both Western blotting and SILAC (stable isotopic labeling of amino acids in cell culture) analysis showed there was no increase in MalS-GFP levels during the 15 min after the addition of germinants and that MalS synthesis did not begin until more than 90 min after germinant addition. Thus, the increase in MalS-GFP fluorescence early in germination is not due to new protein synthesis but is perhaps due to a change in the physical environment of the spore cores. Our findings also show that different sporulation conditions and spore maturation times affect expression of MalS-GFP and the germination behavior of the spores, albeit to a minor extent, but still result in no changes in MalS-GFP levels early in spore germination. IMPORTANCE The spores formed by Bacillus subtilis remain in a quiescent state for extended periods due to their dormancy and resistance features. Dormancy is linked to a very low level of core water content and a phase-bright state of spores. The present report, focusing on proteins MalS and PdhD (pyruvate dehydrogenase subunit D) and complementary to our companion report published in this issue, aims to shed light on a major dilemma in the field, i.e., whether protein synthesis, in particular that of MalS, takes place in phase-bright spores. Clustered MalS-GFP in dormant spores diffuses throughout the spore as germination proceeds. However, fluorescence intensity measurements, supported by Western blot analysis and SILAC proteomics, confirm that there is no new MalS protein synthesis in bright-phase dormant spores.
Collapse
|
9
|
Xing Y, Harper WF. Bacillus spore awakening: recent discoveries and technological developments. Curr Opin Biotechnol 2020; 64:110-115. [DOI: 10.1016/j.copbio.2019.12.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022]
|
10
|
Christie G, Setlow P. Bacillus spore germination: Knowns, unknowns and what we need to learn. Cell Signal 2020; 74:109729. [PMID: 32721540 DOI: 10.1016/j.cellsig.2020.109729] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 01/06/2023]
Abstract
How might a microbial cell that is entirely metabolically dormant - and which has the ability to remain so for extended periods of time - irreversibly commit itself to resuming vegetative growth within seconds of being exposed to certain amino acids or sugars? That this process takes place in the absence of any detectable ATP or de novo protein synthesis, and relies upon a pre-formed apparatus that is immobilised, respectively, in a semi-crystalline membrane or multi-layered proteinaceous coat, only exacerbates the challenge facing spores of Bacillales species when stimulated to germinate. Whereas the process by which spores are formed in response to nutrient starvation - sporulation - involves the orchestrated interplay between hundreds of distinct proteins, the process by which spores return to life - germination - is a much simpler affair, requiring a handful of receptor and channel proteins complemented with specialized peptidoglycan lysins. Despite this relative simplicity, and research effort spanning many decades, comprehensive understanding of key molecular and biochemical details and, in particular signal transduction mechanisms associated with spore germination, has remained elusive. In this review we provide an up to date overview of the field while identifying what we consider to be the key gaps in knowledge associated with germination of Bacillales spores, suggesting also technical approaches that may provide fresh insight to this unique biological process.
Collapse
Affiliation(s)
- Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 OAS, United Kingdom.
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA.
| |
Collapse
|
11
|
Visualization of Germination Proteins in Putative Bacillus cereus Germinosomes. Int J Mol Sci 2020; 21:ijms21155198. [PMID: 32707970 PMCID: PMC7432890 DOI: 10.3390/ijms21155198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/29/2022] Open
Abstract
Bacillus cereus can survive in the form of spores for prolonged periods posing a serious problem for the manufacture of safe shelf-stable foods of optimal quality. Our study aims at increasing knowledge of B. cereus spores focusing primarily on germination mechanisms to develop novel milder food preservation strategies. Major features of B. cereus spores are a core with the genetic material encased by multiple protective layers, an important one being the spores′ inner membrane (IM), the location of many important germination proteins. To study mechanisms involved in germination of B. cereus spores, we have examined the organization of germinant receptors (GRs) in spores′ IM. Previous studies have indicated that in spores of B.cereus ATCC 14579 the L-alanine responsive GR, GerR, plays a major role in the germination process. In our study, the location of the GerR GR subunit, GerRB, in spores was examined as a C-terminal SGFP2 fusion protein expressed under the control of the gerR operon′s promoter. Our results showed that: (i) the fluorescence maxima and integrated intensity in spores with plasmid-borne expression of GerRB-SGFP2 were significantly higher than in wild-type spores; (ii) western blot analysis confirmed the expression of the GerRB-SGFP2 fusion protein in spores; and (iii) fluorescence microscopy visualized GerRB-SGFP2 specific bright foci in ~30% of individual dormant spores if only GerRB-SGFP2 was expressed, but, noticeably, in ~85% of spores upon co-expression with GerRA and GerRC. Our data corroborates the notion that co-expression of GR subunits improves their stability. Finally, all spores displayed bright fluorescent foci upon expression of GerD-mScarlet-I under the control of the gerD promoter. We termed all fluorescent foci observed germinosomes, the term used for the IM foci of GRs in Bacillus subtilis spores. Our data are the first evidence for the existence of germinosomes in B. cereus spores.
Collapse
|
12
|
A live-cell super-resolution technique demonstrated by imaging germinosomes in wild-type bacterial spores. Sci Rep 2020; 10:5312. [PMID: 32210351 PMCID: PMC7093444 DOI: 10.1038/s41598-020-62377-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/12/2020] [Indexed: 01/10/2023] Open
Abstract
Time-lapse fluorescence imaging of live cells at super-resolution remains a challenge, especially when the photon budget is limited. Current super-resolution techniques require either the use of special exogenous probes, high illumination doses or multiple image acquisitions with post-processing or combinations of the aforementioned. Here, we describe a new approach by combining annular illumination with rescan confocal microscopy. This optics-only technique generates images in a single scan, thereby avoiding any potential risks of reconstruction related artifacts. The lateral resolution is comparable to that of linear structured illumination microscopy and the axial resolution is similar to that of a standard confocal microscope. As a case study, we present super-resolution time-lapse imaging of wild-type Bacillus subtilis spores, which contain low numbers of germination receptor proteins in a focus (a germinosome) surrounded by an autofluorescent coat layer. Here, we give the first evidence for the existence of germinosomes in wild-type spores, show their spatio-temporal dynamics upon germinant addition and visualize spores coming to life.
Collapse
|
13
|
Importance of Individual Germination Receptor Subunits in the Cooperative Function between GerA and Ynd. J Bacteriol 2019; 201:JB.00451-19. [PMID: 31427390 DOI: 10.1128/jb.00451-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/06/2019] [Indexed: 11/20/2022] Open
Abstract
Germination of Bacillus spores is triggered by the binding of specific nutrients to germinant receptors (GRs) located in the spore's inner membrane. The GRs typically consist of A, B, and C subunits, encoded by tricistronic ger operons. The Bacillus licheniformis genome contains the gerA family operons gerA, ynd, and gerK In contrast to the ABC(D) organization that characterizes gerA operons of many Bacillus species, B. licheniformis genomes contain a pentacistronic ynd operon comprising the yndD, yndE3 , yndE2 , yndF1 , and yndE1 genes encoding A, B, B, C, and B GR subunits, respectively (subscripts indicate paralogs). Here we show that B. licheniformis spores can germinate in the absence of the Ynd and GerK GRs, although cooperation between all three GRs is required for optimal germination with amino acids. Spores carrying an incomplete set of Ynd B subunits demonstrated reduced germination efficiencies, while depletion of all three Ynd B subunits restored germination of the spore population to levels only slightly lower than those of wild-type spores at high germinant concentrations. This suggests that the presence of an incomplete set of Ynd B subunits exhibits a dominant negative effect on germination and that the A and C subunits of the Ynd GR are sufficient for the cooperative functionality between Ynd and GerA. In contrast to the B subunits of Ynd, the B subunit of GerA was essential for amino acid-induced germination. This study provides novel insights into the role of individual GR subunits in the cooperative interaction between GRs in triggering spore germination.IMPORTANCE Spore-forming bacteria are problematic for the food industry, as spores can survive decontamination procedures and subsequently revive in food products, with the risk of food spoilage and foodborne disease. The Ynd and GerA germination receptors (GRs) cooperate in triggering efficient germination of Bacillus licheniformis spores when nutrients are present in the surrounding environment. This study shows that the single B subunit of GerA is essential for the cooperative function between Ynd and GerA, while the three B subunits of the Ynd GR are dispensable. The ability of GRs lacking individual subunits to stimulate germination together with other GRs could explain why ger operons lacking GR subunit genes are maintained in genomes of spore-forming species.
Collapse
|