1
|
Cha O, Blake R. Procedure for extracting temporal structure embedded within psychophysical data. Behav Res Methods 2024; 56:5482-5500. [PMID: 37993671 DOI: 10.3758/s13428-023-02282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 11/24/2023]
Abstract
The idea that mental events unfold over time with an intrinsically paced regularity has a long history within experimental psychology, and it has gained traction from the actual measurement of brain rhythms evident in EEG signals recorded from the human brain and from direct recordings of action potentials and local field potentials within the nervous systems of nonhumans. The weak link in this idea, however, is the challenge of extracting signatures of this temporal structure from behavioral measures. Because there is nothing in the seamless stream of conscious awareness that belies rhythmic modulations in sensitivity or mental acuity, one must deploy inferential strategies for extracting evidence for the existence of temporal regularities in neural activity. We have devised a parametric procedure for analysis of temporal structure embedded in behaviorally measured data comprising durations. We confirm that this procedure, dubbed PATS, achieves comparable results to those obtained using spectral analysis, and that it outperforms conventional spectral analysis when analyzing human response time data containing just a few hundred data points per condition. PATS offers an efficient, sensitive means for bridging the gap between oscillations identified neurophysiologically and estimates of rhythmicity embedded within durations measured behaviorally.
Collapse
Affiliation(s)
- Oakyoon Cha
- Department of Psychology, Vanderbilt University, Nashville, TN, 37240, USA.
- Department of Psychology, Sungshin Women's University, Seoul, 02844, Republic of Korea.
| | - Randolph Blake
- Department of Psychology, Vanderbilt University, Nashville, TN, 37240, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240, USA
| |
Collapse
|
2
|
Carlson BM, Mitchell BA, Dougherty K, Westerberg JA, Cox MA, Maier A. Does V1 response suppression initiate binocular rivalry? iScience 2023; 26:107359. [PMID: 37520732 PMCID: PMC10382945 DOI: 10.1016/j.isci.2023.107359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/02/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
During binocular rivalry (BR) only one eye's view is perceived. Neural underpinnings of BR are debated. Recent studies suggest that primary visual cortex (V1) initiates BR. One trigger might be response suppression across most V1 neurons at the onset of BR. Here, we utilize a variant of BR called binocular rivalry flash suppression (BRFS) to test this hypothesis. BRFS is identical to BR, except stimuli are shown with a ∼1s delay. If V1 response suppression was required to initiate BR, it should occur during BRFS as well. To test this, we compared V1 spiking in two macaques observing BRFS. We found that BRFS resulted in response facilitation rather than response suppression across V1 neurons. However, BRFS still reduces responses in a subset of V1 neurons due to the adaptive effects of asynchronous stimulus presentation. We argue that this selective response suppression could serve as an alternate initiator of BR.
Collapse
Affiliation(s)
- Brock M. Carlson
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
| | - Blake A. Mitchell
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
| | - Kacie Dougherty
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
- Department of Psychology, Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Jacob A. Westerberg
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, the Netherlands
| | - Michele A. Cox
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Alexander Maier
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
3
|
Ye Y, Zhang Z, Niu L, Shi W, Wang X, Yan L, Zhou X, Zhao J. Binocular imbalance in patients after implantable collamer lens V4c implantation or femtosecond laser-assisted in situ keratomileusis for myopia with presbyopia. Front Neurosci 2023; 17:1204792. [PMID: 37325042 PMCID: PMC10267309 DOI: 10.3389/fnins.2023.1204792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Aim To investigate the long-term safety, efficacy, and binocular balance of monovision surgery using Implantable Collamer Lens (ICL) V4c implantation and Femtosecond Laser-Assisted in situ Keratomileusis (FS-LASIK) for the treatment of myopic patients with presbyopia. Methods This case series study involved 90 eyes of 45 patients (male/female = 19/26; average age:46.27 ± 5.54 years; average follow-up time:48.73 ± 14.65 months) who underwent the aforementioned surgery to treat myopic presbyopes. Data on manifest refraction, corrected distance visual acuity, dominant eye, presbyopic addition, intraocular pressure, and anterior segment biometric parameters were collected. The visual outcomes and binocular balance at 0.4 m, 0.8 m, and 5 m were documented. Results The safety index for the ICL V4c and FS-LASIK groups were 1.24 ± 0.27 and 1.04 ± 0.20 (p = 0.125), respectively. Binocular visual acuity (logmar) for 0.4 m, 0.8 m, and 5 m were -0.03 ± 0.05, -0.03 ± 0.02, and 0.10 ± 0.03 for the ICL V4c group, and -0.02 ± 0.09, -0.01 ± 0.02, and 0.06 ± 0.04 for the FS-LASIK group, respectively. The proportions of all patients with imbalanced vision at 0.4 m, 0.8 m, and 5 m distances were 68.89, 71.11, and 82.22%, respectively (all p > 0.05 between the two groups). There were significant differences in refraction between the balanced and imbalanced vision for patients at 0.4 m distance (for non-dominant eye spherical equivalent [SE]: -1.14 ± 0.17D and -1.47 ± 0.13D, p < 0.001), 0.8 m distance (for preoperative ADD:0.90 ± 0.17D and 1.05 ± 0.11D, p = 0.041), and 5 m distance (for non-dominant SE: -1.13 ± 0.33D and -1.42 ± 0.11D, p < 0.001). Conclusion ICL V4c implantation and FS-LASIK monovision treatment demonstrated good long-term safety and binocular visual acuity at various distances. After the procedure, the imbalanced patients' vision is primarily related to the age-related presbyopia and anisometropia progression caused by the monovision design.
Collapse
Affiliation(s)
- Yuhao Ye
- Department of Ophthalmology and Optometry, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, China
| | - Zhe Zhang
- Department of Ophthalmology and Optometry, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, China
| | - Lingling Niu
- Department of Ophthalmology and Optometry, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, China
| | - Wanru Shi
- Department of Ophthalmology and Optometry, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, China
| | - Xiaoying Wang
- Department of Ophthalmology and Optometry, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, China
| | - Li Yan
- National Engineering Research Center for Healthcare Devices, Guangzhou, China
| | - Xingtao Zhou
- Department of Ophthalmology and Optometry, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, China
| | - Jing Zhao
- Department of Ophthalmology and Optometry, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, China
| |
Collapse
|
4
|
Quettier T, Di Lello N, Tsuchiya N, Sessa P. INs and OUTs of faces in consciousness: a study of the temporal evolution of consciousness of faces during binocular rivalry. Front Hum Neurosci 2023; 17:1145653. [PMID: 37284480 PMCID: PMC10241245 DOI: 10.3389/fnhum.2023.1145653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
Contents of consciousness change over time. However, the study of dynamics in consciousness has been largely neglected. Aru and Bachmann have recently brought to the attention of scientists dealing with consciousness the relevance of making inquiries about its temporal evolution. Importantly, they also pointed out several experimental questions as guidelines for researchers interested in studying the temporal evolution of consciousness, including the phases of formation and dissolution of content. They also suggested that these two phases could be characterized by asymmetric inertia. The main objective of the present investigation was to approximate the dynamics of these two phases in the context of conscious face perception. To this aim, we tested the time course of content transitions during a binocular rivalry task using face stimuli and asked participants to map their subjective experience of transitions from one content to the other through a joystick. We then computed metrics of joystick velocity linked to content transitions as proxies of the formation and dissolution phases. We found a general phase effect such that the formation phase was slower than the dissolution phase. Furthermore, we observed an effect specific to happy facial expressions, such that their contents were slower to form and dissolve than that of neutral expressions. We further propose to include a third phase of stabilization of conscious content between formation and dissolution.
Collapse
Affiliation(s)
- Thomas Quettier
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padua, Italy
| | - Nicolò Di Lello
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
| | - Naotsugu Tsuchiya
- Turner Institute for Brain and Mental Health & School of Psychological Sciences, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, VIC, Australia
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka, Japan
- Advanced Telecommunications Research Computational Neuroscience Laboratories, Kyoto, Japan
| | - Paola Sessa
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padua, Italy
| |
Collapse
|
5
|
Liu X, Zhu Q, Lu P, Gaucher D, Yao J. Most nonpathological eyes present a small area of hyperreflective Henle's fiber layer on pupil-centered optical coherence tomography. Int Ophthalmol 2022; 42:3941-3950. [PMID: 35776391 DOI: 10.1007/s10792-022-02378-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Henle's fiber layer (HFL) is hyporeflective and indistinct on pupil-centered optical coherence tomography (OCT). However, a small area of HFL is also found to be hyperreflective on pupil-centered OCT. This study characterized the hyperreflective HFL of healthy eyes on pupil-centered OCT and investigated the possible physiological and functional relationship of hyperreflective HFL. METHODS Subjects with different degrees of ametropia underwent a complete ophthalmologic examination, including binocular function by synoptophore and Titmus test, ocular axial length, refractions, and pupil-centered OCT angiography coupled with OCT. The area of hyperreflective HFL was manually plotted and calculated using the Optovue AngioVue system technology. The possible ocular physiological and functional relationship with the area of hyperreflective HFL was investigated. RESULTS A total of 111 subjects (222 eyes) without other ocular diseases were enrolled, of which 164 eyes (74%) presented hyperreflective HFL. The average area of hyperreflective HFL was 0.71 ± 0.07 mm2. The area of hyperreflective HFL was significantly related to spherical diopters (P = 0.032). The average binocular area of hyperreflective HFL was 1.38 ± 0.17 mm2. The binocular area of hyperreflective HFL was significantly related to the angle of superposition and far stereoacuity (P = 0.013 and 0.038, respectively). CONCLUSION Most healthy eyes present a small area of hyperreflective HFL, which might be due to alternation of the orientation of some Henle fibers by ametropia during the development of visual function postpartum. The small area of hyperreflective HFL may serve as a marker in identifying the boundary of HFL on OCT.
Collapse
Affiliation(s)
- Xuanli Liu
- Department of Ophthalmology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qin Zhu
- Department of Ophthalmology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Peirong Lu
- Department of Ophthalmology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - David Gaucher
- Hôpitaux Universitaires de Strasbourg, Service d'Ophtalmologie du Nouvel Hôpital Civil, Strasbourg Cedex, France
| | - Jingyan Yao
- Department of Ophthalmology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
6
|
Maier A, Tsuchiya N. Growing evidence for separate neural mechanisms for attention and consciousness. Atten Percept Psychophys 2021; 83:558-576. [PMID: 33034851 PMCID: PMC7886945 DOI: 10.3758/s13414-020-02146-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 11/08/2022]
Abstract
Our conscious experience of the world seems to go in lockstep with our attentional focus: We tend to see, hear, taste, and feel what we attend to, and vice versa. This tight coupling between attention and consciousness has given rise to the idea that these two phenomena are indivisible. In the late 1950s, the honoree of this special issue, Charles Eriksen, was among a small group of early pioneers that sought to investigate whether a transient increase in overall level of attention (alertness) in response to a noxious stimulus can be decoupled from conscious perception using experimental techniques. Recent years saw a similar debate regarding whether attention and consciousness are two dissociable processes. Initial evidence that attention and consciousness are two separate processes primarily rested on behavioral data. However, the past couple of years witnessed an explosion of studies aimed at testing this conjecture using neuroscientific techniques. Here we provide an overview of these and related empirical studies on the distinction between the neuronal correlates of attention and consciousness, and detail how advancements in theory and technology can bring about a more detailed understanding of the two. We argue that the most promising approach will combine ever-evolving neurophysiological and interventionist tools with quantitative, empirically testable theories of consciousness that are grounded in a mathematically formalized understanding of phenomenology.
Collapse
Affiliation(s)
- Alexander Maier
- Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| | - Naotsugu Tsuchiya
- Turner Institute for Brain and Mental Health & School of Psychological Sciences, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, VIC, Australia
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, 565-0871, Japan
- Advanced Telecommunications Research Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan
| |
Collapse
|
7
|
Miller SM. Fluctuations of consciousness, mood, and science: The interhemispheric switch and sticky switch models two decades on. J Comp Neurol 2020; 528:3171-3197. [DOI: 10.1002/cne.24943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Steven M. Miller
- Perceptual and Clinical Neuroscience Laboratory, Department of Physiology Monash Biomedicine Discovery Institute, School of Biomedical Sciences, Monash University Melbourne Victoria Australia
- Monash Alfred Psychiatry Research Centre Central Clinical School, Monash University and Alfred Health Melbourne Victoria Australia
| |
Collapse
|
8
|
Abstract
Evidence for perceptual periodicity emerges from studies showing periodic fluctuations in visual perception and decision making that are accompanied by neural oscillations in brain activity. We have uncovered signs of periodicity in the time course of binocular rivalry, a widely studied form of multistable perception. This was done by analyzing time series data contained in an unusually large dataset of rivalry state durations associated with states of exclusive monocular dominance and states of mixed perception during transitions between exclusive dominance. Identifiable within the varying durations of dynamic mixed perception are rhythmic clusters of durations whose incidence falls within the frequency band associated with oscillations in neural activity accompanying periodicity in perceptual judgments. Endogenous neural oscillations appear to be especially impactful when perception is unusually confounding.
Collapse
|