Ferroelectric phase-transition frustration near a tricritical composition point.
Nat Commun 2021;
12:5322. [PMID:
34493734 PMCID:
PMC8423788 DOI:
10.1038/s41467-021-25543-1]
[Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/18/2021] [Indexed: 12/02/2022] Open
Abstract
Phase transition describes a mutational behavior of matter states at a critical transition temperature or external field. Despite the phase-transition orders are well sorted by classic thermodynamic theory, ambiguous situations interposed between the first- and second-order transitions were exposed one after another. Here, we report discovery of phase-transition frustration near a tricritical composition point in ferroelectric Pb(Zr1-xTix)O3. Our multi-scale transmission electron microscopy characterization reveals a number of geometrically frustrated microstructure features such as self-assembled hierarchical domain structure, degeneracy of mesoscale domain tetragonality and decoupled polarization-strain relationship. Associated with deviation from the classic mean-field theory, dielectric critical exponent anomalies and temperature dependent birefringence data unveil that the frustrated transition order stems from intricate competition of short-range polar orders and their decoupling to long-range lattice deformation. With supports from effective Hamiltonian Monte Carlo simulations, our findings point out a potentially universal mechanism to comprehend the abnormal critical phenomena occurring in phase-transition materials.
Phase transition brings a plethora of exotic phenomena and intriguing effects such as spin and charge frustration. However, the phase transition order is not always explicit. Here, the authors discover phase transition frustration near a tricritical composition point in ferroelectric Pb(Zr,Ti)O3.
Collapse