1
|
Nakayama K, Tokuyama A, Yamauchi K, Moriya A, Kato T, Sugawara K, Souma S, Kitamura M, Horiba K, Kumigashira H, Oguchi T, Takahashi T, Segawa K, Sato T. Observation of edge states derived from topological helix chains. Nature 2024; 631:54-59. [PMID: 38839966 DOI: 10.1038/s41586-024-07484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/29/2024] [Indexed: 06/07/2024]
Abstract
Introducing the concept of topology has revolutionized materials classification, leading to the discovery of topological insulators and Dirac-Weyl semimetals1-3. One of the most fundamental theories underpinning topological materials is the Su-Schrieffer-Heeger (SSH) model4,5, which was developed in 1979-decades before the recognition of topological insulators-to describe conducting polymers. Distinct from the vast majority of known topological insulators with two and three dimensions1-3, the SSH model predicts a one-dimensional analogue of topological insulators, which hosts topological bound states at the endpoints of a chain4-8. To establish this unique and pivotal state, it is crucial to identify the low-energy excitations stemming from bound states, but this has remained unknown in solids because of the absence of suitable platforms. Here we report unusual electronic states that support the emergent bound states in elemental tellurium, the single helix of which was recently proposed to realize an extended version of the SSH chain9,10. Using spin- and angle-resolved photoemission spectroscopy with a micro-focused beam, we have shown spin-polarized in-gap states confined to the edges of the (0001) surface. Our density functional theory calculations indicate that these states are attributed to the interacting bound states originating from the one-dimensional array of SSH tellurium chains. Helices in solids offer a promising experimental platform for investigating exotic properties associated with the SSH chain and exploring topological phases through dimensionality control.
Collapse
Affiliation(s)
- K Nakayama
- Department of Physics, Tohoku University, Sendai, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Tokyo, Japan.
| | - A Tokuyama
- Department of Physics, Tohoku University, Sendai, Japan
| | - K Yamauchi
- Center for Spintronics Research Network (CSRN), Osaka University, Toyonaka, Osaka, Japan
| | - A Moriya
- Department of Physics, Tohoku University, Sendai, Japan
| | - T Kato
- Department of Physics, Tohoku University, Sendai, Japan
| | - K Sugawara
- Department of Physics, Tohoku University, Sendai, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Tokyo, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan
| | - S Souma
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan
- Center for Science and Innovation in Spintronics (CSIS), Tohoku University, Sendai, Japan
| | - M Kitamura
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
- National Institutes for Quantum Science and Technology (QST), Sendai, Japan
| | - K Horiba
- National Institutes for Quantum Science and Technology (QST), Sendai, Japan
| | - H Kumigashira
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, Japan
| | - T Oguchi
- Center for Spintronics Research Network (CSRN), Osaka University, Toyonaka, Osaka, Japan
| | - T Takahashi
- Department of Physics, Tohoku University, Sendai, Japan
| | - K Segawa
- Department of Physics, Kyoto Sangyo University, Kyoto, Japan
| | - T Sato
- Department of Physics, Tohoku University, Sendai, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan
- Center for Science and Innovation in Spintronics (CSIS), Tohoku University, Sendai, Japan
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, Sendai, Japan
- Mathematical Science Center for Co-creative Society (MathCCS), Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
Kumar R, Singh M. Topological phase transition and tunable surface states in YBi. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:345601. [PMID: 38740046 DOI: 10.1088/1361-648x/ad4aae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
A unique co-existence of extremely large magnetoresistance (XMR) and topological characteristics in non-magnetic rare-earth monopnictides has stimulated intensive research on these materials. Yttrium monobismuthide (YBi) has been reported to exhibit XMR up to 105% but its topological properties still need clarification. Here we use the hybrid density functional theory to probe the structural, electronic, and topological properties of YBi in detail. We observe that YBi is topologically trivial semimetal at ambient pressure which is in accordance with reported experimental results. The topological phase transitions i.e. trivial to non-trivial are obtained with volumetric pressure of 6.5 GPa and 3% of epitaxial strain. These topological phase transitions are well within the structural phase transition of YBi (24.5 GPa). The topological non-trivial state is characterized by band inversions amongY-dband andBi-pband atΓ-andX-pointwhich is further verified with the help of surface band structure along (001) plane. The Z2topological invariants are calculated with the help of product of parities and evolution of Wannier charge centers. The occurrence of non-trivial phase in YBi with a relatively small epitaxial strain, which a thin film geometry can naturally have, make it an ideal candidate to probe inter-relationship between XMR and non-trivial topology.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Applied Physics, Delhi Technological University, New Delhi 110042, India
| | - Mukhtiyar Singh
- Department of Applied Physics, Delhi Technological University, New Delhi 110042, India
| |
Collapse
|
3
|
Wu H, Chen L, Malinowski P, Jang BG, Deng Q, Scott K, Huang J, Ruff JPC, He Y, Chen X, Hu C, Yue Z, Oh JS, Teng X, Guo Y, Klemm M, Shi C, Shi Y, Setty C, Werner T, Hashimoto M, Lu D, Yilmaz T, Vescovo E, Mo SK, Fedorov A, Denlinger JD, Xie Y, Gao B, Kono J, Dai P, Han Y, Xu X, Birgeneau RJ, Zhu JX, da Silva Neto EH, Wu L, Chu JH, Si Q, Yi M. Reversible non-volatile electronic switching in a near-room-temperature van der Waals ferromagnet. Nat Commun 2024; 15:2739. [PMID: 38548765 PMCID: PMC10978849 DOI: 10.1038/s41467-024-46862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Non-volatile phase-change memory devices utilize local heating to toggle between crystalline and amorphous states with distinct electrical properties. Expanding on this kind of switching to two topologically distinct phases requires controlled non-volatile switching between two crystalline phases with distinct symmetries. Here, we report the observation of reversible and non-volatile switching between two stable and closely related crystal structures, with remarkably distinct electronic structures, in the near-room-temperature van der Waals ferromagnet Fe5-δGeTe2. We show that the switching is enabled by the ordering and disordering of Fe site vacancies that results in distinct crystalline symmetries of the two phases, which can be controlled by a thermal annealing and quenching method. The two phases are distinguished by the presence of topological nodal lines due to the preserved global inversion symmetry in the site-disordered phase, flat bands resulting from quantum destructive interference on a bipartite lattice, and broken inversion symmetry in the site-ordered phase.
Collapse
Affiliation(s)
- Han Wu
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
| | - Lei Chen
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
| | - Paul Malinowski
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Bo Gyu Jang
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin, Republic of Korea
| | - Qinwen Deng
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Kirsty Scott
- Department of Physics, Yale University, New Haven, CT, USA
- Energy Sciences Institute, Yale University, West Haven, CT, USA
- Department of Physics and Astronomy, University of California, Davis, CA, USA
- Department of Applied Physics, Yale University, New Haven, CT, USA
| | - Jianwei Huang
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
| | - Jacob P C Ruff
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY, USA
| | - Yu He
- Department of Physics, University of California, Berkeley, CA, USA
| | - Xiang Chen
- Department of Physics, University of California, Berkeley, CA, USA
| | - Chaowei Hu
- Department of Physics, University of Washington, Seattle, WA, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - Ziqin Yue
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
| | - Ji Seop Oh
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - Xiaokun Teng
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
| | - Yucheng Guo
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
| | - Mason Klemm
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
| | - Chuqiao Shi
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
| | - Yue Shi
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Chandan Setty
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
| | - Tyler Werner
- Department of Applied Physics, Yale University, New Haven, CT, USA
| | - Makoto Hashimoto
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Donghui Lu
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Turgut Yilmaz
- National Synchrotron Light Source II, Brookhaven National Lab, Upton, NY, USA
| | - Elio Vescovo
- National Synchrotron Light Source II, Brookhaven National Lab, Upton, NY, USA
| | - Sung-Kwan Mo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alexei Fedorov
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Yaofeng Xie
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
| | - Bin Gao
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
| | - Junichiro Kono
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
- Departments of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Pengcheng Dai
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
| | - Yimo Han
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
| | - Xiaodong Xu
- Department of Physics, University of Washington, Seattle, WA, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - Robert J Birgeneau
- Department of Physics, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Jian-Xin Zhu
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Eduardo H da Silva Neto
- Department of Physics, Yale University, New Haven, CT, USA
- Energy Sciences Institute, Yale University, West Haven, CT, USA
- Department of Physics and Astronomy, University of California, Davis, CA, USA
- Department of Applied Physics, Yale University, New Haven, CT, USA
| | - Liang Wu
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiun-Haw Chu
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Qimiao Si
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA
| | - Ming Yi
- Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA.
| |
Collapse
|
4
|
Bhattarai R, Minch P, Liang Y, Zhang S, Rhone TD. Strain-induced topological phase transition in ferromagnetic Janus monolayer MnSbBiS 2Te 2. Phys Chem Chem Phys 2024; 26:10111-10119. [PMID: 38483272 DOI: 10.1039/d3cp05578g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
We investigate a strain-induced topological phase transition in the ferromagnetic Janus monolayer MnSbBiS2Te2 using first-principles calculations. The electronic, magnetic, and topological properties are studied under biaxial strain within the range of -8 to +8%. The ground state of monolayer MnSbBiS2Te2 is metallic with an out-of-plane magnetic easy axis. A band gap is opened when a compressive strain between -4% and -7% is applied. We observe a topological phase transition at a biaxial strain of -5%, where the material becomes a Chern insulator exhibiting a quantum anomalous hall (QAH) effect. We find that biaxial strain and spin-orbit coupling (SOC) are responsible for the topological phase transition in MnSbBiS2Te2. In addition, we find that biaxial strain can alter the direction of the magnetic easy axis of MnSbBiS2Te2. The Curie temperature is calculated using the Heisenberg model and is found to be 24 K. This study could pave the way to the design of topological materials with potential applications in spintronics, quantum computing, and dissipationless electronics.
Collapse
Affiliation(s)
- Romakanta Bhattarai
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Peter Minch
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Yunfan Liang
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Shengbai Zhang
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Trevor David Rhone
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
5
|
Qiu G, Yang HY, Chong SK, Cheng Y, Tai L, Wang KL. Manipulating Topological Phases in Magnetic Topological Insulators. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2655. [PMID: 37836296 PMCID: PMC10574534 DOI: 10.3390/nano13192655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Magnetic topological insulators (MTIs) are a group of materials that feature topological band structures with concurrent magnetism, which can offer new opportunities for technological advancements in various applications, such as spintronics and quantum computing. The combination of topology and magnetism introduces a rich spectrum of topological phases in MTIs, which can be controllably manipulated by tuning material parameters such as doping profiles, interfacial proximity effect, or external conditions such as pressure and electric field. In this paper, we first review the mainstream MTI material platforms where the quantum anomalous Hall effect can be achieved, along with other exotic topological phases in MTIs. We then focus on highlighting recent developments in modulating topological properties in MTI with finite-size limit, pressure, electric field, and magnetic proximity effect. The manipulation of topological phases in MTIs provides an exciting avenue for advancing both fundamental research and practical applications. As this field continues to develop, further investigations into the interplay between topology and magnetism in MTIs will undoubtedly pave the way for innovative breakthroughs in the fundamental understanding of topological physics as well as practical applications.
Collapse
Affiliation(s)
- Gang Qiu
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA; (H.-Y.Y.); (S.K.C.); (Y.C.); (L.T.)
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hung-Yu Yang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA; (H.-Y.Y.); (S.K.C.); (Y.C.); (L.T.)
| | - Su Kong Chong
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA; (H.-Y.Y.); (S.K.C.); (Y.C.); (L.T.)
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Yang Cheng
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA; (H.-Y.Y.); (S.K.C.); (Y.C.); (L.T.)
| | - Lixuan Tai
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA; (H.-Y.Y.); (S.K.C.); (Y.C.); (L.T.)
| | - Kang L. Wang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA; (H.-Y.Y.); (S.K.C.); (Y.C.); (L.T.)
| |
Collapse
|
6
|
Matteo D, Tochitsky SY, Joshi C. Tellurium crystal pumped with ultrafast 10 µm pulses demonstrates a giant nonlinear optical response. OPTICS EXPRESS 2023; 31:27239-27254. [PMID: 37710803 DOI: 10.1364/oe.497186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/20/2023] [Indexed: 09/16/2023]
Abstract
The nonresonant nonlinear optical response of bulk tellurium (Te) is studied using 220 fs 10 µm laser pulses with photon energy roughly three times smaller than the band gap energy. The Kerr nonlinearity is found to be extremely large (n2,eff = 3.0-6.0 × 10-12 cm2/W), nearly 100 times larger than that of GaAs, depending on crystal orientation. Multiphoton absorption is observed at intensities >109 W/cm2 indicating the importance of free carriers to the overall nonlinear optical response. The large values of the nonlinear susceptibilities of Te open up possibilities of designing thin film elements for mid- and long-wavelength infrared nonlinear photonics.
Collapse
|
7
|
Zhang SJ, Chen L, Li SS, Zhang Y, Yan JM, Tang F, Fang Y, Fei LF, Zhao W, Karel J, Chai Y, Zheng RK. Coexistence of logarithmic and SdH quantum oscillations in ferromagnetic Cr-doped tellurium single crystals. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:245701. [PMID: 36940480 DOI: 10.1088/1361-648x/acc5ca] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
We report the synthesis of transition-metal-doped ferromagnetic elemental single-crystal semiconductors with quantum oscillations using the physical vapor transport method. The 7.7 atom% Cr-doped Te crystals (Cr:Te) show ferromagnetism, butterfly-like negative magnetoresistance in the low temperature (<3.8 K) and low field (<0.15 T) region, and high Hall mobility, e.g. 1320 cm2V-1s-1at 30 K and 350 cm2V-1s-1at 300 K, implying that Cr:Te crystals are ferromagnetic elemental semiconductors. WhenB// [001] // I, the maximum negative MR is ∼-27% atT= 20 K andB= 8 T. In the low temperature semiconducting region, Cr:Te crystals show strong discrete scale invariance dominated logarithmic quantum oscillations when the direction of the magnetic fieldBis parallel to the [100] crystallographic direction (B// [100]) and show Landau quantization dominated Shubnikov-de Haas oscillations forB// [210] direction, which suggests the broken rotation symmetry of the Fermi pockets in the Cr:Te crystals. The findings of coexistence of multiple quantum oscillations and ferromagnetism in such an elemental quantum material may inspire more study of narrow bandgap semiconductors with ferromagnetism and quantum phenomena.
Collapse
Affiliation(s)
- Shu-Juan Zhang
- School of Materials and Mechanic & Electrical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330038, People's Republic of China
| | - Lei Chen
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Shuang-Shuang Li
- School of Materials Science and Engineering and Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Nanchang University, Nanchang 330031, People's Republic of China
| | - Ying Zhang
- School of Materials Science and Engineering and Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Nanchang University, Nanchang 330031, People's Republic of China
| | - Jian-Min Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, People's Republic of China
| | - Fang Tang
- Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500, People's Republic of China
| | - Yong Fang
- Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500, People's Republic of China
| | - Lin-Feng Fei
- School of Materials Science and Engineering and Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Nanchang University, Nanchang 330031, People's Republic of China
| | - Weiyao Zhao
- Department of Materials Science & Engineering, & ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, VIC 3800, Australia
| | - Julie Karel
- Department of Materials Science & Engineering, & ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, VIC 3800, Australia
| | - Yang Chai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, People's Republic of China
| | - Ren-Kui Zheng
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
8
|
Ishito K, Mao H, Kobayashi K, Kousaka Y, Togawa Y, Kusunose H, Kishine JI, Satoh T. Chiral phonons: circularly polarized Raman spectroscopy and ab initio calculations in a chiral crystal tellurium. Chirality 2023; 35:338-345. [PMID: 36891931 DOI: 10.1002/chir.23544] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 03/10/2023]
Abstract
Recently, phonons with chirality (chiral phonons) have attracted significant attention. Chiral phonons exhibit angular and pseudoangular momenta. In circularly polarized Raman spectroscopy, the peak split of the Γ 3 $$ {\Gamma}_3 $$ mode is detectable along the principal axis of the chiral crystal in the backscattering configuration. In addition, peak splitting occurs when the pseudoangular momenta of the incident and scattered circularly polarized light are reversed. Until now, chiral phonons in binary crystals have been observed, whereas those in unary crystals have not been observed. Here, we observe chiral phonons in a chiral unary crystal Te. The pseudoangular momentum of the phonon is obtained in Te by an ab initio calculation. From this calculation, we verified the conservation law of pseudoangular momentum in Raman scattering. From this conservation law, we determined the handedness of the chiral crystals. We also evaluated the true chirality of the phonons using a measure with symmetry similar to that of an electric toroidal monopole.
Collapse
Affiliation(s)
- Kyosuke Ishito
- Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
| | - Huiling Mao
- Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
| | - Kaya Kobayashi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
| | - Yusuke Kousaka
- Department of Physics and Electronics, Osaka Metropolitan University, Osaka, Japan
| | - Yoshihiko Togawa
- Department of Physics and Electronics, Osaka Metropolitan University, Osaka, Japan
| | | | - Jun-Ichiro Kishine
- Division of Natural and Environmental Sciences, The Open University of Japan, Chiba, Japan
| | - Takuya Satoh
- Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
9
|
Araki Y, Ieda J. Intrinsic Torques Emerging from Anomalous Velocity in Magnetic Textures. PHYSICAL REVIEW LETTERS 2021; 127:277205. [PMID: 35061430 DOI: 10.1103/physrevlett.127.277205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Momentum-space topology of electrons under strong spin-orbit coupling contributes to the electrically induced torques exerting on magnetic textures insensitively to disorder or thermal fluctuation. We present a direct connection between band topology and the torques by classifying the whole torques phenomenologically. As well as the intrinsic anomalous Hall effect, the torques also emerge intrinsically from the anomalous velocity of electrons regardless of a nonequilibrium transport current. We especially point out the intrinsic contribution arising exclusively in magnetic textures, which we call the "topological Hall torque (THT)." The THT emerges in bulk crystals without any interface or surface structures. We numerically demonstrate the enhancement of the THT in comparison with the conventional spin-transfer torque in the bulk metallic ferromagnet, which accounts for the giant current-induced torque measured in ferromagnetic SrRuO_{3}.
Collapse
Affiliation(s)
- Yasufumi Araki
- Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195, Japan
| | - Jun'ichi Ieda
- Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195, Japan
| |
Collapse
|
10
|
van Thiel TC, Brzezicki W, Autieri C, Hortensius JR, Afanasiev D, Gauquelin N, Jannis D, Janssen N, Groenendijk DJ, Fatermans J, Van Aert S, Verbeeck J, Cuoco M, Caviglia AD. Coupling Charge and Topological Reconstructions at Polar Oxide Interfaces. PHYSICAL REVIEW LETTERS 2021; 127:127202. [PMID: 34597094 DOI: 10.1103/physrevlett.127.127202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
In oxide heterostructures, different materials are integrated into a single artificial crystal, resulting in a breaking of inversion symmetry across the heterointerfaces. A notable example is the interface between polar and nonpolar materials, where valence discontinuities lead to otherwise inaccessible charge and spin states. This approach paved the way for the discovery of numerous unconventional properties absent in the bulk constituents. However, control of the geometric structure of the electronic wave functions in correlated oxides remains an open challenge. Here, we create heterostructures consisting of ultrathin SrRuO_{3}, an itinerant ferromagnet hosting momentum-space sources of Berry curvature, and LaAlO_{3}, a polar wide-band-gap insulator. Transmission electron microscopy reveals an atomically sharp LaO/RuO_{2}/SrO interface configuration, leading to excess charge being pinned near the LaAlO_{3}/SrRuO_{3} interface. We demonstrate through magneto-optical characterization, theoretical calculations and transport measurements that the real-space charge reconstruction drives a reorganization of the topological charges in the band structure, thereby modifying the momentum-space Berry curvature in SrRuO_{3}. Our results illustrate how the topological and magnetic features of oxides can be manipulated by engineering charge discontinuities at oxide interfaces.
Collapse
Affiliation(s)
- T C van Thiel
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628CJ Delft, Netherlands
| | - W Brzezicki
- International Research Centre Magtop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland
- Institute of Theoretical Physics, Jagiellonian University, ulica S. Łojasiewicza 11, PL-30348 Kraków, Poland
| | - C Autieri
- International Research Centre Magtop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland
| | - J R Hortensius
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628CJ Delft, Netherlands
| | - D Afanasiev
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628CJ Delft, Netherlands
| | - N Gauquelin
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - D Jannis
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - N Janssen
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628CJ Delft, Netherlands
| | - D J Groenendijk
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628CJ Delft, Netherlands
| | - J Fatermans
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- Imec-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - S Van Aert
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - J Verbeeck
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - M Cuoco
- SPIN-CNR, IT-84084 Fisciano (SA), Italy
- Dipartimento di Fisica "E. R. Caianiello", Università di Salerno, IT-84084 Fisciano (SA), Italy
| | - A D Caviglia
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628CJ Delft, Netherlands
| |
Collapse
|
11
|
Gatti G, Gosálbez-Martínez D, Tsirkin SS, Fanciulli M, Puppin M, Polishchuk S, Moser S, Testa L, Martino E, Roth S, Bugnon P, Moreschini L, Bostwick A, Jozwiak C, Rotenberg E, Di Santo G, Petaccia L, Vobornik I, Fujii J, Wong J, Jariwala D, Atwater HA, Rønnow HM, Chergui M, Yazyev OV, Grioni M, Crepaldi A. Radial Spin Texture of the Weyl Fermions in Chiral Tellurium. PHYSICAL REVIEW LETTERS 2020; 125:216402. [PMID: 33274982 DOI: 10.1103/physrevlett.125.216402] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/15/2020] [Accepted: 10/02/2020] [Indexed: 06/12/2023]
Abstract
Trigonal tellurium, a small-gap semiconductor with pronounced magneto-electric and magneto-optical responses, is among the simplest realizations of a chiral crystal. We have studied by spin- and angle-resolved photoelectron spectroscopy its unconventional electronic structure and unique spin texture. We identify Kramers-Weyl, composite, and accordionlike Weyl fermions, so far only predicted by theory, and show that the spin polarization is parallel to the wave vector along the lines in k space connecting high-symmetry points. Our results clarify the symmetries that enforce such spin texture in a chiral crystal, thus bringing new insight in the formation of a spin vectorial field more complex than the previously proposed hedgehog configuration. Our findings thus pave the way to a classification scheme for these exotic spin textures and their search in chiral crystals.
Collapse
Affiliation(s)
- G Gatti
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - D Gosálbez-Martínez
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - S S Tsirkin
- Department of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - M Fanciulli
- Laboratoire de Physique des Matériaux et Surfaces, CY Cergy Paris Université, 95031 Cergy-Pontoise, France
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
| | - M Puppin
- Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Laboratory of Ultrafast Spectroscopy, ISIC, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - S Polishchuk
- Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Laboratory of Ultrafast Spectroscopy, ISIC, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - S Moser
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Physikalisches Institut and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, 97074 Würzburg, Germany
| | - L Testa
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - E Martino
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - S Roth
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ph Bugnon
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - L Moreschini
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - A Bostwick
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - C Jozwiak
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - E Rotenberg
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - G Di Santo
- Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5, 34149 Trieste, Italy
| | - L Petaccia
- Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5, 34149 Trieste, Italy
| | - I Vobornik
- CNR-IOM, TASC Laboratory, Area Science Park-Basovizza, 34139 Trieste, Italy
| | - J Fujii
- CNR-IOM, TASC Laboratory, Area Science Park-Basovizza, 34139 Trieste, Italy
| | - J Wong
- Department of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA
| | - D Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - H A Atwater
- Department of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA
| | - H M Rønnow
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - M Chergui
- Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Laboratory of Ultrafast Spectroscopy, ISIC, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - O V Yazyev
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - M Grioni
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - A Crepaldi
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Zhang N, Zhao G, Li L, Wang P, Xie L, Cheng B, Li H, Lin Z, Xi C, Ke J, Yang M, He J, Sun Z, Wang Z, Zhang Z, Zeng C. Magnetotransport signatures of Weyl physics and discrete scale invariance in the elemental semiconductor tellurium. Proc Natl Acad Sci U S A 2020; 117:11337-11343. [PMID: 32398373 PMCID: PMC7260958 DOI: 10.1073/pnas.2002913117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The study of topological materials possessing nontrivial band structures enables exploitation of relativistic physics and development of a spectrum of intriguing physical phenomena. However, previous studies of Weyl physics have been limited exclusively to semimetals. Here, via systematic magnetotransport measurements, two representative topological transport signatures of Weyl physics, the negative longitudinal magnetoresistance and the planar Hall effect, are observed in the elemental semiconductor tellurium. More strikingly, logarithmically periodic oscillations in both the magnetoresistance and Hall data are revealed beyond the quantum limit and found to share similar characteristics with those observed in ZrTe5 and HfTe5 The log-periodic oscillations originate from the formation of two-body quasi-bound states formed between Weyl fermions and opposite charge centers, the energies of which constitute a geometric series that matches the general feature of discrete scale invariance (DSI). Our discovery reveals the topological nature of tellurium and further confirms the universality of DSI in topological materials. Moreover, introduction of Weyl physics into semiconductors to develop "Weyl semiconductors" provides an ideal platform for manipulating fundamental Weyl fermionic behaviors and for designing future topological devices.
Collapse
Affiliation(s)
- Nan Zhang
- International Center for Quantum Design of Functional Materials, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026 Hefei, Anhui, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, 230026 Hefei, Anhui, China
- Chinese Academy of Sciences Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, 230026 Hefei, Anhui, China
| | - Gan Zhao
- International Center for Quantum Design of Functional Materials, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026 Hefei, Anhui, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, 230026 Hefei, Anhui, China
| | - Lin Li
- International Center for Quantum Design of Functional Materials, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026 Hefei, Anhui, China;
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, 230026 Hefei, Anhui, China
- Chinese Academy of Sciences Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, 230026 Hefei, Anhui, China
| | - Pengdong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029 Hefei, Anhui, China
| | - Lin Xie
- Department of Physics, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Bin Cheng
- International Center for Quantum Design of Functional Materials, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026 Hefei, Anhui, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, 230026 Hefei, Anhui, China
- Chinese Academy of Sciences Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, 230026 Hefei, Anhui, China
| | - Hui Li
- Institutes of Physical Science and Information Technology, Anhui University, 230601 Hefei, Anhui, China
| | - Zhiyong Lin
- International Center for Quantum Design of Functional Materials, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026 Hefei, Anhui, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, 230026 Hefei, Anhui, China
- Chinese Academy of Sciences Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, 230026 Hefei, Anhui, China
| | - Chuanying Xi
- High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031 Hefei, Anhui, China
| | - Jiezun Ke
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Ming Yang
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Jiaqing He
- Department of Physics, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Zhe Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029 Hefei, Anhui, China
| | - Zhengfei Wang
- International Center for Quantum Design of Functional Materials, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026 Hefei, Anhui, China;
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, 230026 Hefei, Anhui, China
| | - Zhenyu Zhang
- International Center for Quantum Design of Functional Materials, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026 Hefei, Anhui, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, 230026 Hefei, Anhui, China
| | - Changgan Zeng
- International Center for Quantum Design of Functional Materials, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026 Hefei, Anhui, China;
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, 230026 Hefei, Anhui, China
- Chinese Academy of Sciences Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, 230026 Hefei, Anhui, China
| |
Collapse
|
13
|
Sakano M, Hirayama M, Takahashi T, Akebi S, Nakayama M, Kuroda K, Taguchi K, Yoshikawa T, Miyamoto K, Okuda T, Ono K, Kumigashira H, Ideue T, Iwasa Y, Mitsuishi N, Ishizaka K, Shin S, Miyake T, Murakami S, Sasagawa T, Kondo T. Radial Spin Texture in Elemental Tellurium with Chiral Crystal Structure. PHYSICAL REVIEW LETTERS 2020; 124:136404. [PMID: 32302163 DOI: 10.1103/physrevlett.124.136404] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/10/2020] [Indexed: 06/11/2023]
Abstract
The chiral crystal is characterized by a lack of mirror symmetry and inversion center, resulting in the inequivalent right- and left-handed structures. In the noncentrosymmetric crystal structure, the spin and momentum of electrons are expected to be locked in the reciprocal space with the help of the spin-orbit interaction. To reveal the spin textures of chiral crystals, we investigate the spin and electronic structure in a p-type semiconductor, elemental tellurium, with the simplest chiral structure by using spin- and angle-resolved photoemission spectroscopy. Our data demonstrate that the highest valence band crossing the Fermi level has a spin component parallel to the electron momentum around the Brillouin zone corners. Significantly, we have also confirmed that the spin polarization is reversed in the crystal with the opposite chirality. The results indicate that the spin textures of the right- and left-handed chiral crystals are hedgehoglike, leading to unconventional magnetoelectric effects and nonreciprocal phenomena.
Collapse
Affiliation(s)
- M Sakano
- Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwa 277-8581, Japan
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - M Hirayama
- Department of Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
- Tokodai Institute for Element Strategy (TIES), Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - T Takahashi
- Materials and Structures Laboratory (MSL), Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - S Akebi
- Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwa 277-8581, Japan
| | - M Nakayama
- Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwa 277-8581, Japan
| | - K Kuroda
- Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwa 277-8581, Japan
| | - K Taguchi
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - T Yoshikawa
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - K Miyamoto
- Hiroshima Synchrotron Radiation Center (HiSOR), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - T Okuda
- Hiroshima Synchrotron Radiation Center (HiSOR), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - K Ono
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - H Kumigashira
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| | - T Ideue
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Y Iwasa
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - N Mitsuishi
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - K Ishizaka
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - S Shin
- Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwa 277-8581, Japan
| | - T Miyake
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), AIST, Tsukuba, Ibaraki 305-8568, Japan
| | - S Murakami
- Department of Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
- Tokodai Institute for Element Strategy (TIES), Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - T Sasagawa
- Materials and Structures Laboratory (MSL), Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Takeshi Kondo
- Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwa 277-8581, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), Kashiwa, Chiba 277-8581, Japan
- Trans-scale Quantum Science Institute, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|