1
|
Hahnke S, Berger M, Schlingloff A, Athale I, Wolf J, Neumann-Schaal M, Adenaya A, Poehlein A, Daniel R, Petersen J, Brinkhoff T. Roseobacter fucihabitans sp. nov., isolated from the brown alga Fucus spiralis. Int J Syst Evol Microbiol 2024; 74. [PMID: 38861315 DOI: 10.1099/ijsem.0.006403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
A Gram-negative, aerobic, pink-pigmented, and bacteriochlorophyll a-containing bacterial strain, designated B14T, was isolated from the macroalga Fucus spiralis sampled from the southern North Sea, Germany. Based on 16S rRNA gene sequences, species of the genera Roseobacter and Sulfitobacter were most closely related to strain B14T with sequence identities ranging from 98.15 % (Roseobacter denitrificans Och 114T) to 99.11 % (Roseobacter litoralis Och 149T), whereas Sulfitobacter mediterraneus CH-B427T exhibited 98.52 % sequence identity. Digital DNA-DNA hybridization and average nucleotide identity values between the genome of the novel strain and that of closely related Roseobacter and Sulfitobacter type strains were <20 % and <77 %, respectively. The novel strain contained ubiquinone-10 as the only respiratory quinone and C18 : 1 ω7c, C16 : 0, C18 : 0, C12 : 1 ω7c, C18 : 2 ω7,13c, and C10 : 0 3-OH as the major cellular fatty acids. The predominant polar lipids of strain B14T were phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol. The genome of strain B14T comprises a chromosome with a size of 4.5 Mbp, one chromid, and four plasmids. The genome contains the complete gene cluster for aerobic anoxygenic photosynthesis required for a photoheterotrophic lifestyle. The results of this study indicate that strain B14T (=DSM 116946T=LMG 33352T) represents a novel species of the genus Roseobacter for which the name Roseobacter fucihabitans sp. nov. is proposed.
Collapse
Affiliation(s)
- Sarah Hahnke
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
- Present address: Department of Human Medicine, University of Oldenburg, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Martine Berger
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Andrea Schlingloff
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Isha Athale
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Jacqueline Wolf
- Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstr. 7B, 38124 Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstr. 7B, 38124 Braunschweig, Germany
| | - Adenike Adenaya
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Jörn Petersen
- Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstr. 7B, 38124 Braunschweig, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
2
|
Mara P, Geller-McGrath D, Suter E, Taylor GT, Pachiadaki MG, Edgcomb VP. Plasmid-Borne Biosynthetic Gene Clusters within a Permanently Stratified Marine Water Column. Microorganisms 2024; 12:929. [PMID: 38792759 PMCID: PMC11123730 DOI: 10.3390/microorganisms12050929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Plasmids are mobile genetic elements known to carry secondary metabolic genes that affect the fitness and survival of microbes in the environment. Well-studied cases of plasmid-encoded secondary metabolic genes in marine habitats include toxin/antitoxin and antibiotic biosynthesis/resistance genes. Here, we examine metagenome-assembled genomes (MAGs) from the permanently-stratified water column of the Cariaco Basin for integrated plasmids that encode biosynthetic gene clusters of secondary metabolites (smBGCs). We identify 16 plasmid-borne smBGCs in MAGs associated primarily with Planctomycetota and Pseudomonadota that encode terpene-synthesizing genes, and genes for production of ribosomal and non-ribosomal peptides. These identified genes encode for secondary metabolites that are mainly antimicrobial agents, and hence, their uptake via plasmids may increase the competitive advantage of those host taxa that acquire them. The ecological and evolutionary significance of smBGCs carried by prokaryotes in oxygen-depleted water columns is yet to be fully elucidated.
Collapse
Affiliation(s)
- Paraskevi Mara
- Geology & Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA;
| | - David Geller-McGrath
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; (D.G.-M.); (M.G.P.)
| | - Elizabeth Suter
- Biology, Chemistry and Environmental Science Department, Molloy University, New York, NY 11570, USA;
| | - Gordon T. Taylor
- School of Marine, Atmospheric and Sustainability Sciences, Stony Brook University, New York, NY 11794, USA;
| | - Maria G. Pachiadaki
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; (D.G.-M.); (M.G.P.)
| | - Virginia P. Edgcomb
- Geology & Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA;
| |
Collapse
|
3
|
Tamayo-Leiva J, Alcorta J, Sepúlveda F, Fuentes-Alburquenque S, Arroyo JI, González-Pastor JE, Díez B. Structure and dispersion of the conjugative mobilome in surface ocean bacterioplankton. ISME COMMUNICATIONS 2024; 4:ycae059. [PMID: 38770060 PMCID: PMC11104534 DOI: 10.1093/ismeco/ycae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
Mobile genetic elements (MGEs), collectively referred to as the "mobilome", can have a significant impact on the fitness of microbial communities and therefore on ecological processes. Marine MGEs have mainly been associated with wide geographical and phylogenetic dispersal of adaptative traits. However, whether the structure of this mobilome exhibits deterministic patterns in the natural community is still an open question. The aim of this study was to characterize the structure of the conjugative mobilome in the ocean surface bacterioplankton by searching the publicly available marine metagenomes from the TARA Oceans survey, together with molecular markers, such as relaxases and type IV coupling proteins of the type IV secretion system (T4SS). The T4SS machinery was retrieved in more abundance than relaxases in the surface marine bacterioplankton. Moreover, among the identified MGEs, mobilizable elements were the most abundant, outnumbering self-conjugative sequences. Detection of a high number of incomplete T4SSs provides insight into possible strategies related to trans-acting activity between MGEs, and accessory functions of the T4SS (e.g. protein secretion), allowing the host to maintain a lower metabolic burden in the highly dynamic marine system. Additionally, the results demonstrate a wide geographical dispersion of MGEs throughout oceanic regions, while the Southern Ocean appears segregated from other regions. The marine mobilome also showed a high similarity of functions present in known plasmid databases. Moreover, cargo genes were mostly related to DNA processing, but scarcely associated with antibiotic resistance. Finally, within the MGEs, integrative and conjugative elements showed wider marine geographic dispersion than plasmids.
Collapse
Affiliation(s)
- Javier Tamayo-Leiva
- Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Center for Climate and Resilience Research (CR2), University of Chile, Santiago, Chile
| | - Jaime Alcorta
- Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CRG) , Santiago, Chile
| | - Felipe Sepúlveda
- Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CRG) , Santiago, Chile
| | - Sebastián Fuentes-Alburquenque
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O’Higgins, Santiago, Chile
- Departamento de Matemáticas y Ciencias de la Ingeniería, Facultad de Ingeniería, Ciencia y Tecnología, Universidad Bernardo O’Higgins, Santiago, Chile
| | - José Ignacio Arroyo
- Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- The Santa Fe Institute, Santa Fe, NM 87131, United States
- Centro de Modelamiento Matemático, Universidad de Chile, IRL 2807 CNRS Beauchef 851, Santiago, Chile
| | - José Eduardo González-Pastor
- Department of Molecular Evolution, Centro de Astrobiología (CAB), CSIC-INTA. Carretera de Ajalvir km 4, Torrejón de Ardoz 28850 Madrid, Spain
| | - Beatriz Díez
- Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Center for Climate and Resilience Research (CR2), University of Chile, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG) , Santiago, Chile
| |
Collapse
|
4
|
Yang L, Mai G, Hu Z, Zhou H, Dai L, Deng Z, Ma Y. Global transmission of broad-host-range plasmids derived from the human gut microbiome. Nucleic Acids Res 2023; 51:8005-8019. [PMID: 37283060 PMCID: PMC10450197 DOI: 10.1093/nar/gkad498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
Broad-host-range (BHR) plasmids in human gut bacteria are of considerable interest for their ability to mediate horizontal gene transfer (HGT) across large phylogenetic distance. However, the human gut plasmids, especially the BHR plasmids, remain largely unknown. Here, we identified the plasmids in the draft genomes of gut bacterial isolates from Chinese and American donors, resulting in 5372 plasmid-like clusters (PLCs), of which, 820 PLCs (comPLCs) were estimated with > 60% completeness genomes and only 155 (18.9%) were classified to known replicon types (n = 37). We observed that 175 comPLCs had a broad host range across distinct bacterial genera, of which, 71 were detected in at least two human populations of Chinese, American, Spanish, and Danish, and 13 were highly prevalent (>10%) in at least one human population. Haplotype analyses of two widespread PLCs demonstrated their spreading and evolutionary trajectory, suggesting frequent and recent exchanges of the BHR plasmids in environments. In conclusion, we obtained a large collection of plasmid sequences in human gut bacteria and demonstrated that a subset of the BHR plasmids can be transmitted globally, thus facilitating extensive HGT (e.g. antibiotic resistance genes) events. This study highlights the potential implications of the plasmids for global human health.
Collapse
Affiliation(s)
- Lili Yang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guoqin Mai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zheng Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Haokui Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ziqing Deng
- BGI-Shenzhen, Shenzhen 518083, China
- BGI-Beijing, Beijing 102600, China
| | - Yingfei Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
5
|
Androsiuk L, Shay T, Tal S. Characterization of the Environmental Plasmidome of the Red Sea. Microbiol Spectr 2023; 11:e0040023. [PMID: 37395658 PMCID: PMC10434023 DOI: 10.1128/spectrum.00400-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023] Open
Abstract
Plasmids contribute to microbial diversity and adaptation, providing microorganisms with the ability to thrive in a wide range of conditions in extreme environments. However, while the number of marine microbiome studies is constantly increasing, very little is known about marine plasmids, and they are very poorly represented in public databases. To extend the repertoire of environmental marine plasmids, we established a pipeline for the de novo assembly of plasmids in the marine environment by analyzing available microbiome metagenomic sequencing data. By applying the pipeline to data from the Red Sea, we identified 362 plasmid candidates. We showed that the distribution of plasmids corresponds to environmental conditions, particularly, depth, temperature, and physical location. At least 7 of the 362 candidates are most probably real plasmids, based on a functional analysis of their open reading frames (ORFs). Only one of the seven has been described previously. Three plasmids were identified in other public marine metagenomic data from different locations all over the world; these plasmids contained different cassettes of functional genes at each location. Analysis of antibiotic and metal resistance genes revealed that the same positions that were enriched with genes encoding resistance to antibiotics were also enriched with resistance to metals, suggesting that plasmids contribute site-dependent phenotypic modules to their ecological niches. Finally, half of the ORFs (50.8%) could not be assigned to a function, emphasizing the untapped potential of the unique marine plasmids to provide proteins with multiple novel functions. IMPORTANCE Marine plasmids are understudied and hence underrepresented in databases. Plasmid functional annotation and characterization is complicated but, if successful, may provide a pool of novel genes and unknown functions. Newly discovered plasmids and their functional repertoire are potentially valuable tools for predicting the dissemination of antimicrobial resistance, providing vectors for molecular cloning and an understanding of plasmid-bacterial interactions in various environments.
Collapse
Affiliation(s)
- Lucy Androsiuk
- Israel Oceanographic & Limnological Research Ltd., National Center for Mariculture, Eilat, Israel
- Marine Biology and Biotechnology Program, Department of Life Sciences, Ben-Gurion University of the Negev, Eilat, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tal Shay
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shay Tal
- Israel Oceanographic & Limnological Research Ltd., National Center for Mariculture, Eilat, Israel
| |
Collapse
|
6
|
Shan X, Szabo RE, Cordero OX. Mutation-induced infections of phage-plasmids. Nat Commun 2023; 14:2049. [PMID: 37041135 PMCID: PMC10090143 DOI: 10.1038/s41467-023-37512-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/17/2023] [Indexed: 04/13/2023] Open
Abstract
Phage-plasmids are extra-chromosomal elements that act both as plasmids and as phages, whose eco-evolutionary dynamics remain poorly constrained. Here, we show that segregational drift and loss-of-function mutations play key roles in the infection dynamics of a cosmopolitan phage-plasmid, allowing it to create continuous productive infections in a population of marine Roseobacter. Recurrent loss-of-function mutations in the phage repressor that controls prophage induction leads to constitutively lytic phage-plasmids that spread rapidly throughout the population. The entire phage-plasmid genome is packaged into virions, which were horizontally transferred by re-infecting lysogenized cells, leading to an increase in phage-plasmid copy number and to heterozygosity in a phage repressor locus in re-infected cells. However, the uneven distribution of phage-plasmids after cell division (i.e., segregational drift) leads to the production of offspring carrying only the constitutively lytic phage-plasmid, thus restarting the lysis-reinfection-segregation life cycle. Mathematical models and experiments show that these dynamics lead to a continuous productive infection of the bacterial population, in which lytic and lysogenic phage-plasmids coexist. Furthermore, analyses of marine bacterial genome sequences indicate that the plasmid backbone here can carry different phages and disseminates trans-continentally. Our study highlights how the interplay between phage infection and plasmid genetics provides a unique eco-evolutionary strategy for phage-plasmids.
Collapse
Affiliation(s)
- Xiaoyu Shan
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rachel E Szabo
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Otto X Cordero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Beyond the ABCs—Discovery of Three New Plasmid Types in Rhodobacterales (RepQ, RepY, RepW). Microorganisms 2022; 10:microorganisms10040738. [PMID: 35456790 PMCID: PMC9025767 DOI: 10.3390/microorganisms10040738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Copiotrophic marine bacteria of the Roseobacter group (Rhodobacterales, Alphaproteobacteria) are characterized by a multipartite genome organization. We sequenced the genomes of Sulfitobacter indolifex DSM 14862T and four related plasmid-rich isolates in order to investigate the composition, distribution, and evolution of their extrachromosomal replicons (ECRs). A combination of long-read PacBio and short-read Illumina sequencing was required to establish complete closed genomes that comprised up to twelve ECRs. The ECRs were differentiated in stably evolving chromids and genuine plasmids. Among the chromids, a diagnostic RepABC-8 replicon was detected in four Sulfitobacter species that likely reflects an evolutionary innovation that originated in their common ancestor. Classification of the ECRs showed that the most abundant plasmid system is RepABC, followed by RepA, DnaA-like, and RepB. However, the strains also contained three novel plasmid types that were designated RepQ, RepY, and RepW. We confirmed the functionality of their replicases, investigated the genetic inventory of the mostly cryptic plasmids, and retraced their evolutionary origin. Remarkably, the RepY plasmid of S. pontiacus DSM 110277 is the first high copy-number plasmid discovered in Rhodobacterales.
Collapse
|
8
|
Tomasch J, Ringel V, Wang H, Freese HM, Bartling P, Brinkmann H, Vollmers J, Jarek M, Wagner-Döbler I, Petersen J. Fatal affairs - conjugational transfer of a dinoflagellate-killing plasmid between marine Rhodobacterales. Microb Genom 2022; 8:000787. [PMID: 35254236 PMCID: PMC9176285 DOI: 10.1099/mgen.0.000787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The roseobacter group of marine bacteria is characterized by a mosaic distribution of ecologically important phenotypes. These are often encoded on mobile extrachromosomal replicons. So far, conjugation had only been experimentally proven between the two model organisms Phaeobacter inhibens and Dinoroseobacter shibae. Here, we show that two large natural RepABC-type plasmids from D. shibae can be transferred into representatives of all known major Rhodobacterales lineages. Complete genome sequencing of the newly established Phaeobacter inhibens transconjugants confirmed their genomic integrity. The conjugated plasmids were stably maintained as single copy number replicons in the genuine as well as the new host. Co-cultivation of Phaeobacter inhibens and the transconjugants with the dinoflagellate Prorocentrum minimum demonstrated that Phaeobacter inhibens is a probiotic strain that improves the yield and stability of the dinoflagellate culture. The transconjugant carrying the 191 kb plasmid, but not the 126 kb sister plasmid, killed the dinoflagellate in co-culture.
Collapse
Affiliation(s)
- Jürgen Tomasch
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Science – Centre Algatech, Třeboň, Czech Republic
- *Correspondence: Jürgen Tomasch,
| | - Victoria Ringel
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hui Wang
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Heike M. Freese
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Pascal Bartling
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Present address: Schülke & Mayr GmbH, Norderstedt, Germany
| | - Henner Brinkmann
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - John Vollmers
- Institute for Biological Interfaces 5: Biotechnology and Microbial Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Michael Jarek
- Group Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Irene Wagner-Döbler
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Jörn Petersen
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- *Correspondence: Jörn Petersen,
| |
Collapse
|
9
|
Qin QL, Wang ZB, Cha QQ, Liu SS, Ren XB, Fu HH, Sun ML, Zhao DL, McMinn A, Chen Y, Chen XL, Zhang YZ, Li PY. Biogeography of culturable marine bacteria from both poles reveals that 'everything is not everywhere' at the genomic level. Environ Microbiol 2021; 24:98-109. [PMID: 34913576 DOI: 10.1111/1462-2920.15870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/06/2021] [Indexed: 01/27/2023]
Abstract
Based on 16S rRNA gene analyses, the same bacterial operational taxonomic units (OTUs) are common to both the Arctic and Antarctic oceans, supporting the concept 'everything is everywhere'. However, whether the same OTUs from both poles have identical genomes, i.e. whether 'everything is still everywhere' at the genomic level has not yet been examined systematically. Here, we isolated, sequenced and compared the genomes of 45 culturable marine bacteria belonging to three genera of Salinibacterium, Psychrobacter and Pseudoalteromonas from both polar oceans. The bacterial strains with identical 16S rRNA genes were common to both poles in every genus, and four identical genomes were detected in the genus Salinibacterium from the Arctic region. However, no identical genomes were observed from opposite poles in this study. Our data, therefore, suggest that 'everything is not everywhere' at the genomic level. The divergence time between bacteria is hypothesized to exert a strong impact on the bacterial biogeography at the genomic level. The geographical isolation between poles was observed for recently diverged, highly similar genomes, but not for moderately similar genomes. This study thus improves our understanding of the factors affecting the genomic-level biogeography of marine microorganisms isolated from distant locations.
Collapse
Affiliation(s)
- Qi-Long Qin
- State Key Laboratory of Microbial Technology, School of Environmental Science and Engineering, Shandong University, Qingdao, China.,College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Zhi-Bin Wang
- State Key Laboratory of Microbial Technology, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Qian-Qian Cha
- State Key Laboratory of Microbial Technology, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Sha-Sha Liu
- State Key Laboratory of Microbial Technology, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Xue-Bing Ren
- State Key Laboratory of Microbial Technology, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Hui-Hui Fu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Mei-Ling Sun
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Dian-Li Zhao
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.,Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
| | - Yin Chen
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.,School of Life Sciences, University of Warwick, Coventry, UK
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Sun C, Fang YC, Li H, Chen J, Ye YL, Ni LF, Xu L, Han BN, Wu M, Wang CS, Xu XW. Complete genome sequence of marine Roseobacter lineage member Monaibacterium sp. ALG8 with six plasmids isolated from seawater around brown algae. Mar Genomics 2021; 60:100878. [PMID: 34006489 DOI: 10.1016/j.margen.2021.100878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022]
Abstract
Monaibacterium sp. ALG8 (=MCCC 1 K04733) was isolated from seawater around brown algae. The genome of Monaibacterium sp. ALG8 was sequenced, one circular 3,036,380 bp chromosome and six circular plasmids ranging from 12,229 to 151,263 bp were found after assembly. The results of genomic annotation showed that Monaibacterium sp. ALG8 lacks the ability to degrade alginate, indicating its ecological role may not be directly related to the degradation of brown algae. The comparison of genomic features in the plasmids showed that almost all of these plasmids, except pALG4, were horizontally recruited from donors, not ancestors. Based on predicted functions, the existence of plasmids may provide strain ALG8 with advantages including nitrate reduction, tolerance of osmotic stress via glycine betaine, resistance to heavy metal stress such as mercury and cobalt, degradation of benzoate metabolites such as p-cumate, transformation of the swim-or-stick lifestyle and improvement of the immune system with two CRISPR-Cas systems. This study provides evidence for the carbon metabolic patterns of Monaibacterium sp. ALG8 and predicts the functions and donors of six plasmids in this strain, broadening our understanding of the ecological roles of bacteria in the environment around brown algae and the functions and evolutionary patterns of plasmids in marine Roseobacter lineage members.
Collapse
Affiliation(s)
- Cong Sun
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yuan-Chun Fang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Hao Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jie Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yong-Lian Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ling-Fang Ni
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Lin Xu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Bing-Nan Han
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Min Wu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Chun-Sheng Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
| | - Xue-Wei Xu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China.
| |
Collapse
|
11
|
Garoña A, Hülter NF, Romero Picazo D, Dagan T. Segregational drift constrains the evolutionary rate of prokaryotic plasmids. Mol Biol Evol 2021; 38:5610-5624. [PMID: 34550379 PMCID: PMC8662611 DOI: 10.1093/molbev/msab283] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plasmids are extrachromosomal genetic elements in prokaryotes that have been recognized as important drivers of microbial ecology and evolution. Plasmids are found in multiple copies inside their host cell where independent emergence of mutations may lead to intracellular genetic heterogeneity. The intracellular plasmid diversity is thus subject to changes upon cell division. However, the effect of plasmid segregation on plasmid evolution remains understudied. Here, we show that genetic drift during cell division—segregational drift—leads to the rapid extinction of novel plasmid alleles. We established a novel experimental approach to control plasmid allele frequency at the levels of a single cell and the whole population. Following the dynamics of plasmid alleles in an evolution experiment, we find that the mode of plasmid inheritance—random or clustered—is an important determinant of plasmid allele dynamics. Phylogenetic reconstruction of our model plasmid in clinical isolates furthermore reveals a slow evolutionary rate of plasmid-encoded genes in comparison to chromosomal genes. Our study provides empirical evidence that genetic drift in plasmid evolution occurs at multiple levels: the host cell and the population of hosts. Segregational drift has implications for the evolutionary rate heterogeneity of extrachromosomal genetic elements.
Collapse
Affiliation(s)
- Ana Garoña
- Institute of General Microbiology, Kiel University, Kiel, 24118, Germany
| | - Nils F Hülter
- Institute of General Microbiology, Kiel University, Kiel, 24118, Germany
| | | | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel, 24118, Germany
| |
Collapse
|
12
|
Li Z, Cai Z, Cai Z, Zhang Y, Fu T, Jin Y, Cheng Z, Jin S, Wu W, Yang L, Bai F. Molecular genetic analysis of an XDR Pseudomonas aeruginosa ST664 clone carrying multiple conjugal plasmids. J Antimicrob Chemother 2021; 75:1443-1452. [PMID: 32129854 DOI: 10.1093/jac/dkaa063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES A group of ST664 XDR Pseudomonas aeruginosa strains have been isolated from a burn clinic. Here we decipher their resistomes and likely mechanisms of resistance acquisition. METHODS The complete nucleotide sequences of representative isolates were determined, by PacBio and Illumina MiSeq sequencing, and analysed for antimicrobial resistance (AMR) genes as well as sequence variations. S1-PFGE was used to determine the sizes and numbers of plasmids harboured by the isolates. Purified plasmid DNA was further sequenced by PacBio technology, closed manually and annotated by RAST. The mobility of plasmids was determined by conjugation assays. RESULTS The XDR P. aeruginosa ST664 clone carries 11 AMR genes, including a blaKPC-2 gene that confers resistance to carbapenems. Most of the ST664 isolates carry three coexisting plasmids. blaKPC-2 and a cluster of three AMR genes (aadB-cmlA1-sul1) are encoded on a 475 kb megaplasmid pNK546a, which codes for an IncP-3-like replication and partitioning mechanism, but has lost the conjugative transfer system. Interestingly, however, pNK546a is mobilizable and can be transferred to P. aeruginosa PAO1 with the help of a co-residing IncP-7 conjugative plasmid. The blaKPC-2 gene is carried by an IS6100-ISKpn27-blaKPC-2-ΔISKpn6-Tn1403 mobile element, which might be brought into the ST664 clone by another co-resident IncP-1α plasmid, which is inclined to be lost. Moreover, pNK546a harbours multiple heavy metal (mercury, tellurite and silver) resistance modules. CONCLUSIONS To the best of our knowledge, pNK546a is the first fully sequenced blaKPC-2-carrying megaplasmid from P. aeruginosa. These results give new insights into bacterial adaptation and evolution during nosocomial infections.
Collapse
Affiliation(s)
- Zhenpeng Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhao Cai
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | - Zeqiong Cai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yanhong Zhang
- Affiliated Hospital of Nankai University, Tianjin, China
| | - Tongtong Fu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
13
|
Law A, Solano O, Brown CJ, Hunter SS, Fagnan M, Top EM, Stalder T. Biosolids as a Source of Antibiotic Resistance Plasmids for Commensal and Pathogenic Bacteria. Front Microbiol 2021; 12:606409. [PMID: 33967971 PMCID: PMC8098119 DOI: 10.3389/fmicb.2021.606409] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/09/2021] [Indexed: 12/05/2022] Open
Abstract
Antibiotic resistance (AR) is a threat to modern medicine, and plasmids are driving the global spread of AR by horizontal gene transfer across microbiomes and environments. Determining the mobile resistome responsible for this spread of AR among environments is essential in our efforts to attenuate the current crisis. Biosolids are a wastewater treatment plant (WWTP) byproduct used globally as fertilizer in agriculture. Here, we investigated the mobile resistome of biosolids that are used as fertilizer. This was done by capturing resistance plasmids that can transfer to human pathogens and commensal bacteria. We used a higher-throughput version of the exogenous plasmid isolation approach by mixing several ESKAPE pathogens and a commensal Escherichia coli with biosolids and screening for newly acquired resistance to about 10 antibiotics in these strains. Six unique resistance plasmids transferred to Salmonella typhimurium, Klebsiella aerogenes, and E. coli. All the plasmids were self-transferable and carried 3-6 antibiotic resistance genes (ARG) conferring resistance to 2-4 antibiotic classes. These plasmids-borne resistance genes were further embedded in genetic elements promoting intracellular recombination (i.e., transposons or class 1 integrons). The plasmids belonged to the broad-host-range plasmid (BHR) groups IncP-1 or PromA. Several of them were persistent in their new hosts when grown in the absence of antibiotics, suggesting that the newly acquired drug resistance traits would be sustained over time. This study highlights the role of BHRs in the spread of ARG between environmental bacteria and human pathogens and commensals, where they may persist. The work further emphasizes biosolids as potential vehicles of highly mobile plasmid-borne antibiotic resistance genes.
Collapse
Affiliation(s)
- Aaron Law
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Olubunmi Solano
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Celeste J. Brown
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - Samuel S. Hunter
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
- UC-Davis Genome Center, Davis, CA, United States
| | - Matt Fagnan
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - Eva M. Top
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| |
Collapse
|
14
|
Cha QQ, Wang XJ, Ren XB, Li D, Wang P, Li PY, Fu HH, Zhang XY, Chen XL, Zhang YZ, Xu F, Qin QL. Comparison of Alginate Utilization Pathways in Culturable Bacteria Isolated From Arctic and Antarctic Marine Environments. Front Microbiol 2021; 12:609393. [PMID: 33584613 PMCID: PMC7874173 DOI: 10.3389/fmicb.2021.609393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Alginate, mainly derived from brown algae, is an important carbon source that can support the growth of marine microorganisms in the Arctic and Antarctic regions. However, there is a lack of systematic investigation and comparison of alginate utilization pathways in culturable bacteria from both polar regions. In this study, 88 strains were isolated from the Arctic and Antarctic regions, of which 60 strains could grow in the medium with alginate as the sole carbon source. These alginate-utilizing strains belong to 9 genera of the phyla Proteobacteria and Bacteroidetes. The genomes of 26 alginate-utilizing strains were sequenced and genomic analyses showed that they all contain the gene clusters related to alginate utilization. The alginate transport systems of Proteobacteria differ from those of Bacteroidetes and there may be unique transport systems among different genera of Proteobacteria. The biogeographic distribution pattern of alginate utilization genes was further investigated. The alginate utilization genes are found to cluster according to bacterial taxonomy rather than geographic location, indicating that the alginate utilization genes do not evolve independently in both polar regions. This study systematically illustrates the alginate utilization pathways in culturable bacteria from the Arctic and Antarctic regions, shedding light into the distribution and evolution of alginate utilization pathways in polar bacteria.
Collapse
Affiliation(s)
- Qian-Qian Cha
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiu-Juan Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xue-Bing Ren
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Dong Li
- Department of Molecular Biology, Qingdao Vland Biotech Group Inc., Qingdao, China
| | - Peng Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hui-Hui Fu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fei Xu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
15
|
Birmes L, Freese HM, Petersen J. RepC_soli: a novel promiscuous plasmid type of Rhodobacteraceae mediates horizontal transfer of antibiotic resistances in the ocean. Environ Microbiol 2021; 23:5395-5411. [PMID: 33393148 DOI: 10.1111/1462-2920.15380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/28/2020] [Indexed: 11/29/2022]
Abstract
Alphaproteobacteria are typically characterized by a multipartite genome organization with a chromosome, stable chromids and accessory plasmids. Extrachromosomal elements determine the lifestyle of roseobacters and their horizontal transfer was previously correlated with rapid adaptations to novel ecological niches. We characterized the distribution and biology of a novel Rhodobacteraceae-specific plasmid type that was designated RepC_soli according to its diagnostic solitary replicase. This low copy number replicon exhibits an exceptional stability, which is likely ensured by non-canonical separate parA and parB partitioning genes. RepC_soli plasmids occur frequently in the surface-associated marine genus Phaeobacter and comparative genome analyses revealed the emergence of four compatibility groups. The universal presence of conserved type IV secretion systems in RepC_soli plasmids is indicative of their recurrent mobilization, a prediction that was experimentally validated by conjugation of the 57 kb Phaeobacter inhibens P72 plasmid (pP72_e) over genus borders. RepC_soli plasmids harbour a diverse collection of beneficial genes including transporters for heavy metal detoxification, prokaryotic defence systems and a conspicuous abundance of antibiotic resistance genes. The pP72_e-encoded efflux pump FloR conferred an about 50-fold increase of resistance against chloramphenicol. Its specific occurrence in Phaeobacter likely reflects a genetic footprint of (former) antimicrobial use in marine aquaculture.
Collapse
Affiliation(s)
- Lukas Birmes
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Inhoffenstraße 7 B, D-38124, Germany
| | - Heike M Freese
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Inhoffenstraße 7 B, D-38124, Germany
| | - Jörn Petersen
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Inhoffenstraße 7 B, D-38124, Germany
| |
Collapse
|
16
|
Wee BA, Muloi DM, van Bunnik BAD. Quantifying the transmission of antimicrobial resistance at the human and livestock interface with genomics. Clin Microbiol Infect 2020; 26:1612-1616. [PMID: 32979568 PMCID: PMC7721588 DOI: 10.1016/j.cmi.2020.09.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/05/2020] [Accepted: 09/11/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Livestock have been implicated as a reservoir for antimicrobial resistance (AMR) that can spread to humans. Close proximity and ecological interfaces involving livestock have been posited as risk factors for the transmission of AMR. In spite of this, there are sparse data and limited agreement on the transmission dynamics that occur. OBJECTIVES To identify how genome sequencing approaches can be used to quantify the dynamics of AMR transmission at the human-livestock interface, and where current knowledge can be improved to better understand the impact of transmission on the spread of AMR. SOURCES Key articles investigating various aspects of AMR transmission at the human-livestock interface are discussed, with a focus on Escherichia coli. CONTENT We recapitulate the current understanding of the transmission of AMR between humans and livestock based on current genomic and epidemiological approaches. We discuss how the use of well-designed, high-resolution genome sequencing studies can improve our understanding of the human-livestock interface. IMPLICATIONS A better understanding of the human-livestock interface will aid in the development of evidence-based and effective One Health interventions that can ultimately reduce the burden of AMR in humans.
Collapse
Affiliation(s)
- Bryan A Wee
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | - Dishon M Muloi
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom; Centre for Immunity, Infection & Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom; International Livestock Research Institute, Nairobi, Kenya
| | - Bram A D van Bunnik
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom; Centre for Immunity, Infection & Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
17
|
Adelowo OO, Ikhimiukor OO, Knecht C, Vollmers J, Bhatia M, Kaster AK, Müller JA. A survey of extended-spectrum beta-lactamase-producing Enterobacteriaceae in urban wetlands in southwestern Nigeria as a step towards generating prevalence maps of antimicrobial resistance. PLoS One 2020; 15:e0229451. [PMID: 32130234 PMCID: PMC7055906 DOI: 10.1371/journal.pone.0229451] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/06/2020] [Indexed: 01/30/2023] Open
Abstract
In many countries, emission of insufficiently treated wastewater into water bodies appears to be an important factor in spreading clinically relevant antimicrobial resistant bacteria. In this study, we looked for the presence of Enterobacteriaceae strains with resistance to 3rd generation cephalosporin antibiotics in four urban wetlands in southwestern Nigeria by isolation, whole genome sequencing and qPCR enumeration of marker genes. Genome analysis of multi-drug resistant and potentially pathogenic Escherichia coli isolates (members of the widely distributed ST10 complex) revealed the presence of the extended spectrum beta-lactamase gene blaCTX-M-15 on self-transmissible IncF plasmids. The gene was also present together with a blaTEM-1B gene on self-transmissible IncH plasmids in multi-drug resistant Enterobacter cloacae isolates. A Citrobacter freundii isolate carried blaTEM-1B on an IncR-type plasmid without discernable conjugation apparatus. All strains were isolated from a wetland for which previous qPCR enumeration of marker genes, in particular the ratio of intI1 to 16S rRNA gene copy numbers, had indicated a strong anthropogenic impact. Consistent with the isolation origin, qPCR analysis in this study showed that the blaCTX-M gene was present at an abundance of 1x10-4 relative to bacterial 16S rRNA gene copy numbers. The results indicate that contamination of these urban aquatic ecosystems with clinically relevant antibiotic resistant bacteria is substantial in some areas. Measures should therefore be put in place to mitigate the propagation of clinically relevant antimicrobial resistance within the Nigerian aquatic ecosystems.
Collapse
Affiliation(s)
- Olawale Olufemi Adelowo
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
- * E-mail: , (OOA); (JAM)
| | - Odion Osebhahiemen Ikhimiukor
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Camila Knecht
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Otto-von-Guericke-Universität Magdeburg—Institute of Apparatus and Environmental Technology, Magdeburg, Germany
| | - John Vollmers
- Institute for Biological Interfaces (IBG5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Mudit Bhatia
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | - Anne-Kirstin Kaster
- Institute for Biological Interfaces (IBG5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Jochen A. Müller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- * E-mail: , (OOA); (JAM)
| |
Collapse
|
18
|
Conde-Pueyo N, Vidiella B, Sardanyés J, Berdugo M, Maestre FT, de Lorenzo V, Solé R. Synthetic Biology for Terraformation Lessons from Mars, Earth, and the Microbiome. Life (Basel) 2020; 10:E14. [PMID: 32050455 PMCID: PMC7175242 DOI: 10.3390/life10020014] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022] Open
Abstract
What is the potential for synthetic biology as a way of engineering, on a large scale, complex ecosystems? Can it be used to change endangered ecological communities and rescue them to prevent their collapse? What are the best strategies for such ecological engineering paths to succeed? Is it possible to create stable, diverse synthetic ecosystems capable of persisting in closed environments? Can synthetic communities be created to thrive on planets different from ours? These and other questions pervade major future developments within synthetic biology. The goal of engineering ecosystems is plagued with all kinds of technological, scientific and ethic problems. In this paper, we consider the requirements for terraformation, i.e., for changing a given environment to make it hospitable to some given class of life forms. Although the standard use of this term involved strategies for planetary terraformation, it has been recently suggested that this approach could be applied to a very different context: ecological communities within our own planet. As discussed here, this includes multiple scales, from the gut microbiome to the entire biosphere.
Collapse
Affiliation(s)
- Nuria Conde-Pueyo
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Plaça de la Mercè, 10, 08002 Barcelona, Spain; (B.V.); (M.B.)
- Institut de Biologia Evolutiva, UPF-CSIC, 08003 Barcelona, Spain
| | - Blai Vidiella
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Plaça de la Mercè, 10, 08002 Barcelona, Spain; (B.V.); (M.B.)
- Institut de Biologia Evolutiva, UPF-CSIC, 08003 Barcelona, Spain
| | - Josep Sardanyés
- Centre de Recerca Matemàtica, Campus UAB Edifici C, 08193 Bellaterra, Barcelona, Spain;
- Barcelona Graduate School of Mathematics (BGSMath), Campus UAB Edifici C, 08193 Bellaterra, Barcelona, Spain
| | - Miguel Berdugo
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Plaça de la Mercè, 10, 08002 Barcelona, Spain; (B.V.); (M.B.)
- Institut de Biologia Evolutiva, UPF-CSIC, 08003 Barcelona, Spain
- Departamento de Ecología and Instituto Multidisciplinar para el Estudio del Medio “Ramon Margalef”, Universidad de Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain;
| | - Fernando T. Maestre
- Departamento de Ecología and Instituto Multidisciplinar para el Estudio del Medio “Ramon Margalef”, Universidad de Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain;
| | - Victor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
| | - Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Plaça de la Mercè, 10, 08002 Barcelona, Spain; (B.V.); (M.B.)
- Institut de Biologia Evolutiva, UPF-CSIC, 08003 Barcelona, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|