1
|
Barajas Barbosa MP, Craven D, Weigelt P, Denelle P, Otto R, Díaz S, Price J, Fernández-Palacios JM, Kreft H. Assembly of functional diversity in an oceanic island flora. Nature 2023; 619:545-550. [PMID: 37438518 DOI: 10.1038/s41586-023-06305-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/09/2023] [Indexed: 07/14/2023]
Abstract
Oceanic island floras are well known for their morphological peculiarities and exhibit striking examples of trait evolution1-3. These morphological shifts are commonly attributed to insularity and are thought to be shaped by the biogeographical processes and evolutionary histories of oceanic islands2,4. However, the mechanisms through which biogeography and evolution have shaped the distribution and diversity of plant functional traits remain unclear5. Here we describe the functional trait space of the native flora of an oceanic island (Tenerife, Canary Islands, Spain) using extensive field and laboratory measurements, and relate it to global trade-offs in ecological strategies. We find that the island trait space exhibits a remarkable functional richness but that most plants are concentrated around a functional hotspot dominated by shrubs with a conservative life-history strategy. By dividing the island flora into species groups associated with distinct biogeographical distributions and diversification histories, our results also suggest that colonization via long-distance dispersal and the interplay between inter-island dispersal and archipelago-level speciation processes drive functional divergence and trait space expansion. Contrary to our expectations, speciation via cladogenesis has led to functional convergence, and therefore only contributes marginally to functional diversity by densely packing trait space around shrubs. By combining biogeography, ecology and evolution, our approach opens new avenues for trait-based insights into how dispersal, speciation and persistence shape the assembly of entire native island floras.
Collapse
Affiliation(s)
- Martha Paola Barajas Barbosa
- Biodiversity, Macroecology & Biogeography, University of Göttingen, Göttingen, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Dylan Craven
- Centro de Modelación y Monitoreo de Ecosistemas, Universidad Mayor, Santiago, Chile
- Data Observatory Foundation, Santiago, Chile
| | - Patrick Weigelt
- Biodiversity, Macroecology & Biogeography, University of Göttingen, Göttingen, Germany
- Campus-Institute Data Science, University of Göttingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany
| | - Pierre Denelle
- Biodiversity, Macroecology & Biogeography, University of Göttingen, Göttingen, Germany
| | - Rüdiger Otto
- Island Ecology and Biogeography Research Group, Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna, Canary Islands, Spain
| | - Sandra Díaz
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jonathan Price
- Department of Geography and Environmental Science, University of Hawai'i at Hilo, Hilo, HI, USA
| | - José María Fernández-Palacios
- Island Ecology and Biogeography Research Group, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | - Holger Kreft
- Biodiversity, Macroecology & Biogeography, University of Göttingen, Göttingen, Germany
- Campus-Institute Data Science, University of Göttingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Lorrain‐Soligon L, Robin F, Jankovic M, Lelong V, Baudouin S, Brischoux F. When Rensch meets Foster: insular gigantism may reduce sexual dimorphism in anurans. OIKOS 2023. [DOI: 10.1111/oik.09947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Pasta S, Gristina AS, Scuderi L, Fazan L, Marcenò C, Guarino R, Perraudin V, Kozlowski G, Garfì G. Conservation of Ptilostemon greuteri (Asteraceae), an endemic climate relict from Sicily (Italy): State of knowledge after the discovery of a second population. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
4
|
Trethowan LA, Arvidsson C, Bramley GLC. Environmental stress influences Malesian Lamiaceae distributions. Ecol Evol 2022; 12:e9467. [PMID: 36340815 PMCID: PMC9627225 DOI: 10.1002/ece3.9467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/20/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
Dual effects of spatial distance and environment shape archipelagic floras. In Malesia, there are multiple environmental stressors associated with increasing uplands, drought, and metal-rich ultramafic soils. Here, we examine the contrasting impacts of multifactorial environmental stress and spatial distance upon Lamiaceae species distributions. We used a phylogenetic generalized mixed effects model of species occurrence across Malesia's taxonomic database working group areas from Peninsular Malaysia to New Guinea. Predictor variables were environmental stress, spatial distance between areas and two trait principal component axes responsible for increasing fruit and leaf size and a negative correlation between flower size and plant height. We found that Lamiaceae species with smaller fruits and leaves are more likely to tolerate environmental stress and become widely distributed across megadiverse Malesian islands. How global species distribution and diversification are shaped by multifactorial environmental stress requires further examination.
Collapse
Affiliation(s)
| | - Camilla Arvidsson
- Herbarium KewRoyal Botanic Gardens KewLondonUK
- Department of BiosciencesUniversity of ExeterExeterUK
| | | |
Collapse
|
5
|
Wu Q, Aubret F, Wu L, Ding P. Sex‐specific shifts in morphology and diet in a frog after 50 years of anthropogenic habitat fragmentation. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Qiang Wu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou China
| | - Fabien Aubret
- School of Agricultural, Environmental and Veterinary Sciences (SAEVS), Faculty of Science and Health Charles Sturt University Port Macquarie New South Wales Australia
| | - Lingbing Wu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry Hainan University Haikou China
| | - Ping Ding
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences Zhejiang University Hangzhou China
| |
Collapse
|
6
|
Ottaviani G, Méndez‐Castro FE, Conti L, Zelený D, Chytrý M, Doležal J, Jandová V, Altman J, Klimešová J. Sticking around: Plant persistence strategies on edaphic islands. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Gianluigi Ottaviani
- Institute of Botany The Czech Academy of Sciences Třeboň Czech Republic
- Department of Botany and Zoology Faculty of Science, Masaryk University Brno Czech Republic
| | | | - Luisa Conti
- Institute of Botany The Czech Academy of Sciences Třeboň Czech Republic
- Faculty of Environmental Sciences Czech University of Life Sciences Prague Czech Republic
| | - David Zelený
- Institute of Ecology and Evolutionary Biology National Taiwan University Taipei Taiwan
| | - Milan Chytrý
- Department of Botany and Zoology Faculty of Science, Masaryk University Brno Czech Republic
| | - Jiři Doležal
- Institute of Botany The Czech Academy of Sciences Třeboň Czech Republic
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Veronika Jandová
- Institute of Botany The Czech Academy of Sciences Třeboň Czech Republic
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Jan Altman
- Institute of Botany The Czech Academy of Sciences Třeboň Czech Republic
- Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Czech Republic
| | - Jitka Klimešová
- Institute of Botany The Czech Academy of Sciences Třeboň Czech Republic
- Department of Botany Charles University Prague Faculty of Science, Charles University Prague Czech Republic
| |
Collapse
|
7
|
Yan Z, Yang MY, Zhao BG, Li G, Chao Q, Tian F, Gao G, Wang BC. OsAPL controls the nutrient transport systems in the leaf of rice (Oryza sativa L.). PLANTA 2022; 256:11. [PMID: 35699777 DOI: 10.1007/s00425-022-03913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
OsAPL positively controls the seedling growth and grain size in rice by targeting the plasma membrane H+-ATPase-encoding gene, OsRHA1, as well as drastically affects genes encoding H+-coupled secondary active transporters. Nutrient transport is a key component of both plant growth and environmental adaptation. Photosynthates and nutrients produced in the source organs (e.g., leaves) need to be transported to the sink organs (e.g., seeds). In rice, the unloading of nutrients occurs through apoplastic transport (i.e., across the membrane via transporters) and is dependent on the efficiency and number of transporters embedded in the cell membrane. However, the genetic mechanisms underlying the regulation of these transporters remain to be determined. Here we show that rice (Oryza sativa L., Kitaake) ALTERED PHLOEM DEVELOPMENT (OsAPL), homologous to a MYB family transcription factor promoting phloem development in Arabidopsis thaliana, regulates the number of transporters in rice. Overexpression of OsAPL leads to a 10% increase in grain yield at the heading stage. OsAPL acts as a transcriptional activator of OsRHA1, which encodes a subunit of the plasma membrane H+-ATPase (primary transporter). In addition, OsAPL strongly affects the expression of genes encoding H+-coupled secondary active transporters. Decreased expression of OsAPL leads to a decreased expression level of nutrient transporter genes. Taken together, our findings suggest the involvement of OsAPL in nutrients transport and crop yield accumulation in rice.
Collapse
Affiliation(s)
- Zhen Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Life Sciences, National Demonstration Center for Experimental Biology Education, Sichuan University, Chengdu, 610064, China
| | - Man-Yu Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Biligen-Gaowa Zhao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guo Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100039, China
| | - Feng Tian
- Peking-Tsinghua Center for Life Sciences (CLS), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG) and Biomedical Pioneering Innovation Center (BIOPIC), Center for Bioinformatics (CBI), and State Key Laboratory of Protein and Plant Gene Research at School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ge Gao
- Peking-Tsinghua Center for Life Sciences (CLS), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
8
|
Ashokan A, Xavier A, Suksathan P, Ardiyani M, Leong-Škorničková J, Newman M, Kress WJ, Gowda V. Himalayan orogeny and monsoon intensification explain species diversification in an endemic ginger (Hedychium: Zingiberaceae) from the Indo-Malayan Realm. Mol Phylogenet Evol 2022; 170:107440. [PMID: 35192919 DOI: 10.1016/j.ympev.2022.107440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/26/2022]
Abstract
The Indo-Malayan Realm is a biogeographic realm that extends from the Indian Subcontinent to the islands of Southeast Asia (Malay Archipelago). Despite being megadiverse, evolutionary hypotheses explaining taxonomic diversity in this region have been rare. Here, we investigate the role of geoclimatic events such as Himalayan orogeny and monsoon intensification in the diversification of the ginger-lilies (Hedychium J.Koenig: Zingiberaceae). We first built a comprehensive, time-calibrated phylogeny of Hedychium with 75% taxonomic and geographic sampling. We found that Hedychium is a very young lineage that originated in Northern Indo-Burma, in the Late Miocene (c. 10.6 Ma). This was followed by a late Neogene and early Quaternary diversification, with multiple dispersal events to Southern Indo-Burma, Himalayas, Peninsular India, and the Malay Archipelago. The most speciose clade IV i.e., the predominantly Indo-Burmese clade also showed a higher diversification rate, suggesting its recent rapid radiation. Our divergence dating and GeoHiSSE results demonstrate that the diversification of Hedychium was shaped by both the intensifications in the Himalayan uplift as well as the Asian monsoon. Ancestral character-state reconstructions identified the occurrence of vegetative dormancy in both clades I and II, whereas the strictly epiphytic growth behavior, island dwarfism, lack of dormancy, and a distinct environmental niche were observed only in the predominantly island clade i.e., clade III. Finally, we show that the occurrence of epiphytism in clade III corresponds with submergence due to sea-level changes, suggesting it to be an adaptive trait. Our study highlights the role of recent geoclimatic events and environmental factors in the diversification of plants within the Indo-Malayan Realm and the need for collaborative work to understand biogeographic patterns within this understudied region. This study opens new perspectives for future biogeographic studies in this region and provides a framework to explain the taxonomic hyperdiversity of the Indo-Malayan Realm.
Collapse
Affiliation(s)
- Ajith Ashokan
- Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh 462066, India.
| | - Aleena Xavier
- Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh 462066, India
| | - Piyakaset Suksathan
- Herbarium (QBG), Queen Sirikit Botanic Garden, P.O. Box 7, Mae Rim, Chiang Mai 50180, Thailand
| | - Marlina Ardiyani
- Herbarium Bogoriense, Research Center for Biology, Indonesian Institute of Sciences/Lembaga Ilmu Pengetahuan Indonesia (LIPI), Cibinong Science Center, Jl Raya Bogor Km. 46, Cibinong 16912, Indonesia
| | - Jana Leong-Škorničková
- Research & Conservation Branch, Singapore Botanic Gardens, 1 Cluny Road, 259569, Singapore
| | - Mark Newman
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, United Kingdom
| | - W John Kress
- Department of Botany, MRC-166, National Museum of Natural History, Smithsonian Institution, P. O. Box 37012, Washington, DC 20013-7012, United States
| | - Vinita Gowda
- Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh 462066, India.
| |
Collapse
|
9
|
Köhler M, Herridge V, Nacarino-Meneses C, Fortuny J, Moncunill-Solé B, Rosso A, Sanfilippo R, Palombo MR, Moyà-Solà S. Palaeohistology reveals a slow pace of life for the dwarfed Sicilian elephant. Sci Rep 2021; 11:22862. [PMID: 34819557 PMCID: PMC8613187 DOI: 10.1038/s41598-021-02192-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
The 1-m-tall dwarf elephant Palaeoloxodon falconeri from the Pleistocene of Sicily (Italy) is an extreme example of insular dwarfism and epitomizes the Island Rule. Based on scaling of life-history (LH) traits with body mass, P. falconeri is widely considered to be ‘r-selected’ by truncation of the growth period, associated with an early onset of reproduction and an abbreviated lifespan. These conjectures are, however, at odds with predictions from LH models for adaptive shifts in body size on islands. To settle the LH strategy of P. falconeri, we used bone, molar, and tusk histology to infer growth rates, age at first reproduction, and longevity. Our results from all approaches are congruent and provide evidence that the insular dwarf elephant grew at very slow rates over an extended period; attained maturity at the age of 15 years; and had a minimum lifespan of 68 years. This surpasses not only the values predicted from body mass but even those of both its giant sister taxon (P. antiquus) and its large mainland cousin (L. africana). The suite of LH traits of P. falconeri is consistent with the LH data hitherto inferred for other dwarfed insular mammals. P. falconeri, thus, not only epitomizes the Island Rule but it can also be viewed as a paradigm of evolutionary change towards a slow LH that accompanies the process of dwarfing in insular mammals.
Collapse
Affiliation(s)
- Meike Köhler
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | | | - Carmen Nacarino-Meneses
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.,Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Josep Fortuny
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Blanca Moncunill-Solé
- Dipartimento di Scienze, Università degli Studi Roma Tre, Roma, Italy.,Centro de Investigacións Científicas Avanzadas, Universidade da Coruña, A Coruña, Spain
| | - Antonietta Rosso
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Catania, Catania, Italy
| | - Rossana Sanfilippo
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Catania, Catania, Italy
| | - Maria Rita Palombo
- c7o Earth Science Department, IGAG-CNR, Sapienza University of Rome, Rome, Italy
| | - Salvador Moyà-Solà
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
10
|
Li J, Dirzo R, Wang Y, Zeng D, Liu J, Ren P, Zhong L, Ding P. Rapid morphological change in a small mammal species after habitat fragmentation over the past half‐century. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Jiaqi Li
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| | - Rodolfo Dirzo
- Department of Biology and Woods Institute for the Environment Stanford University Stanford California USA
| | - Yanping Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing China
| | - Di Zeng
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| | - Juan Liu
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| | - Peng Ren
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| | - Lei Zhong
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| | - Ping Ding
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| |
Collapse
|
11
|
Di Santo LN, Polgar M, Nies S, Hodgkiss P, Canning CA, Wright JW, Hamilton JA. Seed morphological traits as a tool to quantify variation maintained in ex situ collections: a case study in Pinus torreyana. AOB PLANTS 2021; 13:plab058. [PMID: 34594485 PMCID: PMC8477307 DOI: 10.1093/aobpla/plab058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/07/2021] [Indexed: 05/30/2023]
Abstract
Understanding the within- and among-population distribution of trait variation within seed collections may provide a means to approximate standing genetic variation and inform plant conservation. This study aimed to estimate population- and family-level seed trait variability for existing seed collections of Torrey pine (Pinus torreyana), and to use these data to guide sampling of future collections. We quantified variation in 14 seed morphological traits and seedling emergence within and among Torrey pine populations. Using a simulation-based approach, we used estimates of within-population variance to assess the number of maternal families required to capture 95 % of trait variation within each existing seed collection. Substantial structure was observed both within and among Torrey pine populations, with island and mainland seeds varying in seed size and seed coat thickness. Despite morphological differences, seedling emergence was similar across populations. Simulations revealed that 83 % and 71 % of all maternal families within island and mainland seed collections respectively needed to be resampled to capture 95 % of seed trait variation within existing collections. From a conservation perspective, our results indicate that to optimize genetic diversity captured in Torrey pine seed collections, maximizing the number of maternal families sampled within each population will be necessary.
Collapse
Affiliation(s)
- Lionel N Di Santo
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Monica Polgar
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Storm Nies
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Paul Hodgkiss
- USDA Forest Service, Pacific Southwest Research Station, Davis, CA, USA
| | - Courtney A Canning
- USDA Forest Service, Pacific Southwest Research Station, Placerville, CA, USA
| | - Jessica W Wright
- USDA Forest Service, Pacific Southwest Research Station, Davis, CA, USA
| | - Jill A Hamilton
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
12
|
Schrader J, Wright IJ, Kreft H, Westoby M. A roadmap to plant functional island biogeography. Biol Rev Camb Philos Soc 2021; 96:2851-2870. [PMID: 34423523 DOI: 10.1111/brv.12782] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 01/05/2023]
Abstract
Island biogeography is the study of the spatio-temporal distribution of species, communities, assemblages or ecosystems on islands and other isolated habitats. Island diversity is structured by five classes of process: dispersal, establishment, biotic interactions, extinction and evolution. Classical approaches in island biogeography focused on species richness as the deterministic outcome of these processes. This has proved fruitful, but species traits can potentially offer new biological insights into the processes by which island life assembles and why some species perform better at colonising and persisting on islands. Functional traits refer to morphological and phenological characteristics of an organism or species that can be linked to its ecological strategy and that scale up from individual plants to properties of communities and ecosystems. A baseline hypothesis is for traits and ecological strategies of island species to show similar patterns as a matched mainland environment. However, strong dispersal, environmental and biotic-interaction filters as well as stochasticity associated with insularity modify this baseline. Clades that do colonise often embark on distinct ecological and evolutionary pathways, some because of distinctive evolutionary forces on islands, and some because of the opportunities offered by freedom from competitors or herbivores or the absence of mutualists. Functional traits are expected to be shaped by these processes. Here, we review and discuss the potential for integrating functional traits into island biogeography. While we focus on plants, the general considerations and concepts may be extended to other groups of organisms. We evaluate how functional traits on islands relate to core principles of species dispersal, establishment, extinction, reproduction, biotic interactions, evolution and conservation. We formulate existing knowledge as 33 working hypotheses. Some of these are grounded on firm empirical evidence, others provide opportunities for future research. We organise our hypotheses under five overarching sections. Section A focuses on plant functional traits enabling species dispersal to islands. Section B discusses how traits help to predict species establishment, successional trajectories and natural extinctions on islands. Section C reviews how traits indicate species biotic interactions and reproduction strategies and which traits promote intra-island dispersal. Section D discusses how evolution on islands leads to predictable changes in trait values and which traits are most susceptible to change. Section E debates how functional ecology can be used to study multiple drivers of global change on islands and to formulate effective conservation measures. Islands have a justified reputation as research models. They illuminate the forces operating within mainland communities by showing what happens when those forces are released or changed. We believe that the lens of functional ecology can shed more light on these forces than research approaches that do not consider functional differences among species.
Collapse
Affiliation(s)
- Julian Schrader
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,Department of Biodiversity, Macroecology and Biogeography, University of Goettingen, Büsgenweg 1, 37077, Goettingen, Germany
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Holger Kreft
- Department of Biodiversity, Macroecology and Biogeography, University of Goettingen, Büsgenweg 1, 37077, Goettingen, Germany.,Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Büsgenweg 1, 37077, Goettingen, Germany
| | - Mark Westoby
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
13
|
Benítez-López A, Santini L, Gallego-Zamorano J, Milá B, Walkden P, Huijbregts MAJ, Tobias JA. The island rule explains consistent patterns of body size evolution in terrestrial vertebrates. Nat Ecol Evol 2021; 5:768-786. [PMID: 33859376 DOI: 10.1038/s41559-021-01426-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 02/22/2021] [Indexed: 02/01/2023]
Abstract
Island faunas can be characterized by gigantism in small animals and dwarfism in large animals, but the extent to which this so-called 'island rule' provides a general explanation for evolutionary trajectories on islands remains contentious. Here we use a phylogenetic meta-analysis to assess patterns and drivers of body size evolution across a global sample of paired island-mainland populations of terrestrial vertebrates. We show that 'island rule' effects are widespread in mammals, birds and reptiles, but less evident in amphibians, which mostly tend towards gigantism. We also found that the magnitude of insular dwarfism and gigantism is mediated by climate as well as island size and isolation, with more pronounced effects in smaller, more remote islands for mammals and reptiles. We conclude that the island rule is pervasive across vertebrates, but that the implications for body size evolution are nuanced and depend on an array of context-dependent ecological pressures and environmental conditions.
Collapse
Affiliation(s)
- Ana Benítez-López
- Department of Environmental Science, Institute for Wetland and Water Research, Radboud University, Nijmegen, The Netherlands. .,Integrative Ecology Group, Estación Biológica de Doñana, Spanish National Research Council (CSIC), Sevilla, Spain.
| | - Luca Santini
- Department of Environmental Science, Institute for Wetland and Water Research, Radboud University, Nijmegen, The Netherlands.,Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy.,Institute of Research on Terrestrial Ecosystems (CNR-IRET), National Research Council, Monterotondo (Rome), Italy
| | - Juan Gallego-Zamorano
- Department of Environmental Science, Institute for Wetland and Water Research, Radboud University, Nijmegen, The Netherlands
| | - Borja Milá
- Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| | - Patrick Walkden
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Mark A J Huijbregts
- Department of Environmental Science, Institute for Wetland and Water Research, Radboud University, Nijmegen, The Netherlands
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Ascot, UK
| |
Collapse
|
14
|
Biddick M, Burns KC. A simple null model predicts the island rule. Ecol Lett 2021; 24:1646-1654. [PMID: 34010500 DOI: 10.1111/ele.13781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 04/25/2021] [Indexed: 11/29/2022]
Abstract
The island rule is a putative pattern in island evolution, where small species become larger on islands and large species become smaller. Despite decades of study, a mechanistic explanation for why some taxonomic groups obey the island rule, while others do not, has yet to be identified. Here, we explore whether the island rule might result from evolutionary drift. We derived a simulation model that predicts evolutionary size changes on islands based on random evolutionary trajectories along bounded trait domains. The model consistently predicted the island rule and could account for its occurrence in plants inhabiting islands in the Southwest Pacific. When support for the island rule was not detected, insular gigantism was often observed, suggesting that natural selection was at work. Overall results indicate that evolutionary drift can provide a parsimonious explanation for the island rule, suggesting future work should focus on circumstances where it does not occur.
Collapse
Affiliation(s)
- Matt Biddick
- Terestrial Ecology Research Group, Technical University of Munich, Freising, Germany
| | - Kevin C Burns
- Te Kura Mātauranga Koiora, School of Biological Sciences, Te Herenga Waka, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
15
|
Majure LC, Barrios D, Díaz E, Zumwalde BA, Testo W, Negrón-Ortíz V. Pleistocene aridification underlies the evolutionary history of the Caribbean endemic, insular, giant Consolea (Opuntioideae). AMERICAN JOURNAL OF BOTANY 2021; 108:200-215. [PMID: 33598914 DOI: 10.1002/ajb2.1610] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
PREMISE The Caribbean islands are in the top five biodiversity hotspots on the planet; however, the biogeographic history of the seasonally dry tropical forest (SDTF) there is poorly studied. Consolea consists of nine species of dioecious, hummingbird-pollinated tree cacti endemic to the West Indies, which form a conspicuous element of the SDTF. Several species are threatened by anthropogenic disturbance, disease, sea-level rise, and invasive species and are of conservation concern. However, no comprehensive phylogeny yet exists for the clade. METHODS We reconstructed the phylogeny of Consolea, sampling all species using plastomic data to determine relationships, understand the evolution of key morphological characters, and test their biogeographic history. We estimated divergence times to determine the role climate change may have played in shaping the current diversity of the clade. RESULTS Consolea appears to have evolved very recently during the latter part of the Pleistocene on Cuba/Hispaniola likely from a South American ancestor and, from there, moved into the Bahamas, Jamaica, Puerto Rico, Florida, and the Lesser Antilles. The tree growth form is a synapomorphy of Consolea and likely aided in the establishment and diversification of the clade. CONCLUSIONS Pleistocene aridification associated with glaciation likely played a role in shaping the current diversity of Consolea, and insular gigantism may have been a key innovation leading to the success of these species to invade the often-dense SDTF. This in-situ Caribbean radiation provides a window into the generation of species diversity and the complexity of the SDTF community within the Antilles.
Collapse
Affiliation(s)
- Lucas C Majure
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, 85008, USA
| | - Duniel Barrios
- Grupo de Ecología y Conservación, Jardín Botánico Nacional, Universidad de La Habana, Cuba
| | - Edgardo Díaz
- Planta! - Plantlife Conservation Society, Vancouver, BC, Canada
| | - Bethany A Zumwalde
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Weston Testo
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Vivian Negrón-Ortíz
- U.S. Fish and Wildlife Service, 1601 Balboa Ave., Panama City, FL, 32405, USA
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| |
Collapse
|
16
|
Dobson-Waitere A, MacIntosh R, Ellison MF, Smallfield BM, van Klink JW. Taramea, a treasured Māori perfume of Ngāi Tahu from Aciphylla species of Aotearoa New Zealand: a review of Mātauranga Māori and scientific research. J R Soc N Z 2021; 52:1-17. [PMID: 39440012 PMCID: PMC11407513 DOI: 10.1080/03036758.2020.1856147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Taramea is the prized resinous exudate obtained from native Aciphylla plants (speargrass) identified as a taonga by Ngāi Tahu Māori in their Treaty of Waitangi tribunal claim Settlement. Ngāi Tahu recognised two types of Aciphylla, the larger was known as taramea and used as a fragrance, while the tap root of the smaller type, called papaī, was eaten but not used as kakara (fragrance). The gum of the taramea is called 'ware' or 'wai-whenua', and was often spoken as 'ware-o-te-taramea'. Plants were traditionally tapped in the evening by cutting or using fire. In the morning the exuded resin was gathered and processed. To preserve the aroma it was saturated in hinu-weka (woodhen fat) or the fat of other native bird or animal species (tui, kiore) and worn in a pouch (hei-taramea) close to the body. Taramea was used to dress the hair and rub on the body and became a sought after trade item with northern tribes. Scientific studies on taramea plants include those relating to plant morphology, taxonomy, genetics, ecology and phytochemistry. A resurgence of interest in taramea is supporting further scientific studies to define the chemical composition of this taonga plant.
Collapse
Affiliation(s)
- Aaria Dobson-Waitere
- The New Zealand Institute for Plant and Food Research Limited (PFR), Department of Chemistry, Otago University, Dunedin, New Zealand
| | - Robin MacIntosh
- Te Rūnanga o Ngāi Tahu, Te Whare o Te Waipounamu, Christchurch, New Zealand
| | | | - Bruce M. Smallfield
- The New Zealand Institute for Plant and Food Research Limited (PFR), Department of Chemistry, Otago University, Dunedin, New Zealand
| | - John W. van Klink
- The New Zealand Institute for Plant and Food Research Limited (PFR), Department of Chemistry, Otago University, Dunedin, New Zealand
| |
Collapse
|
17
|
Bellot S, Bayton RP, Couvreur TLP, Dodsworth S, Eiserhardt WL, Guignard MS, Pritchard HW, Roberts L, Toorop PE, Baker WJ. On the origin of giant seeds: the macroevolution of the double coconut (Lodoicea maldivica) and its relatives (Borasseae, Arecaceae). THE NEW PHYTOLOGIST 2020; 228:1134-1148. [PMID: 32544251 PMCID: PMC7590125 DOI: 10.1111/nph.16750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/29/2020] [Indexed: 05/25/2023]
Abstract
Seed size shapes plant evolution and ecosystems, and may be driven by plant size and architecture, dispersers, habitat and insularity. How these factors influence the evolution of giant seeds is unclear, as are the rate of evolution and the biogeographical consequences of giant seeds. We generated DNA and seed size data for the palm tribe Borasseae (Arecaceae) and its relatives, which show a wide diversity in seed size and include the double coconut (Lodoicea maldivica), the largest seed in the world. We inferred their phylogeny, dispersal history and rates of change in seed size, and evaluated the possible influence of plant size, inflorescence branching, habitat and insularity on these changes. Large seeds were involved in 10 oceanic dispersals. Following theoretical predictions, we found that: taller plants with fewer-branched inflorescences produced larger seeds; seed size tended to evolve faster on islands (except Madagascar); and seeds of shade-loving Borasseae tended to be larger. Plant size and inflorescence branching may constrain seed size in Borasseae and their relatives. The possible roles of insularity, habitat and dispersers are difficult to disentangle. Evolutionary contingencies better explain the gigantism of the double coconut than unusually high rates of seed size increase.
Collapse
Affiliation(s)
| | - Ross P. Bayton
- Royal Botanic Gardens, KewRichmond, SurreyTW9 3AEUK
- Department of Biological SciencesUniversity of ReadingWhiteknightsPO Box 217Reading, BerkshireRG6 6AHUK
| | | | - Steven Dodsworth
- Royal Botanic Gardens, KewRichmond, SurreyTW9 3AEUK
- School of Life SciencesUniversity of BedfordshireLutonLU1 3JUUK
| | - Wolf L. Eiserhardt
- Royal Botanic Gardens, KewRichmond, SurreyTW9 3AEUK
- Department of BiologyAarhus UniversityNy Munkegade 116Aarhus C8000Denmark
| | | | - Hugh W. Pritchard
- Royal Botanic Gardens, KewWakehurst Place, Wellcome Trust Millennium BuildingArdinglyWest SussexRH17 6TNUK
| | - Lucy Roberts
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUK
| | - Peter E. Toorop
- Royal Botanic Gardens, KewWakehurst Place, Wellcome Trust Millennium BuildingArdinglyWest SussexRH17 6TNUK
| | | |
Collapse
|
18
|
A Synopsis of Sardinian Studies: Why Is it Important to Work on Island Orchids? PLANTS 2020; 9:plants9070853. [PMID: 32640731 PMCID: PMC7411895 DOI: 10.3390/plants9070853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/17/2022]
Abstract
Biological and ecological investigations of islands are crucial to explain ecosystem functioning. Many studies on island biodiversity are carried out on oceanic islands. In contrast, information on continental islands, such as those in the Mediterranean Sea, is very often fragmented in space and time. Here, a synopsis of the Orchidaceae of Sardinia is presented based on literature surveys and recent botanical field studies. Our final list comprises of 64 species and 14 genera: thirteen species and subspecies were recognized as endemic and four new species were recorded for the flora of the island: Anacamptis palustris (Jacq.) R.M. Bateman, Pridgeon & M.W. Chase; Himantoglossum hircinum (L.) Spreng; Orchis italica Poir.; and Platanthera kuenkelei subsp. kuenkelei var. sardoa R.Lorenz, Akhalk., H.Baumann, Cortis, Cogoni & Scrugli. This orchid richness reflects the geological history of the island that was linked to the mainland several times, facing long periods of isolation. We also discuss a critical point-of-view of the biodiversity shortfalls still problematic for insular orchids. Indeed, within the Mediterranean Basin, the greatest amount of endemism occurs mainly on large islands, and, despite a long history of botanical exploration in European countries, many of them are scarcely investigated. This annotated synopsis shows the potential of continental islands to understand trends in ecology and evolution. Further studies are required to complete our knowledge of the orchid diversity on continental islands in order to propose scientific-based conservation programs to preserve these unique taxa.
Collapse
|
19
|
Ottaviani G, Keppel G, Götzenberger L, Harrison S, Opedal ØH, Conti L, Liancourt P, Klimešová J, Silveira FAO, Jiménez-Alfaro B, Negoita L, Doležal J, Hájek M, Ibanez T, Méndez-Castro FE, Chytrý M. Linking Plant Functional Ecology to Island Biogeography. TRENDS IN PLANT SCIENCE 2020; 25:329-339. [PMID: 31953170 DOI: 10.1016/j.tplants.2019.12.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
The study of insular systems has a long history in ecology and biogeography. Island plants often differ remarkably from their noninsular counterparts, constituting excellent models for exploring eco-evolutionary processes. Trait-based approaches can help to answer important questions in island biogeography, yet plant trait patterns on islands remain understudied. We discuss three key hypotheses linking functional ecology to island biogeography: (i) plants in insular systems are characterized by distinct functional trait syndromes (compared with noninsular environments); (ii) these syndromes differ between true islands and terrestrial habitat islands; and (iii) island characteristics influence trait syndromes in a predictable manner. We are convinced that implementing trait-based comparative approaches would considerably further our understanding of plant ecology and evolution in insular systems.
Collapse
Affiliation(s)
| | - Gunnar Keppel
- School of Natural and Built Environments, Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Lars Götzenberger
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic
| | - Susan Harrison
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA
| | - Øystein H Opedal
- Faculty of Biological and Environmental Sciences, Research Centre for Ecological Change, University of Helsinki, Helsinki, Finland
| | - Luisa Conti
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic; Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Pierre Liancourt
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic; Plant Ecology Group, University of Tübingen, Tübingen, Germany
| | - Jitka Klimešová
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic; Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fernando A O Silveira
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Luka Negoita
- Charles Darwin Research Station, Charles Darwin Foundation, Galápagos Islands, Ecuador
| | - Jiří Doležal
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic; Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic; Laboratory of Tree Ring Research, University of Arizona, Tucson, AZ, USA
| | - Michal Hájek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Thomas Ibanez
- Department of Biology, University of Hawai'i at Hilo, Hilo, HI, USA
| | | | - Milan Chytrý
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
20
|
Reply to Brian and Walker-Hale: Support for the island rule does not hide morphological disparity in insular plants. Proc Natl Acad Sci U S A 2019; 116:24931-24932. [PMID: 31772004 PMCID: PMC6911171 DOI: 10.1073/pnas.1917767116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
21
|
Focus on an island rule may hide morphological disparity in insular plants. Proc Natl Acad Sci U S A 2019; 116:24929-24930. [PMID: 31772005 DOI: 10.1073/pnas.1916554116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|