1
|
Li C, Merkel M, Sussman DM. Connecting Anomalous Elasticity and Sub-Arrhenius Structural Dynamics in a Cell-Based Model. PHYSICAL REVIEW LETTERS 2025; 134:048203. [PMID: 39951612 DOI: 10.1103/physrevlett.134.048203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 01/03/2025] [Indexed: 02/16/2025]
Abstract
Understanding the structural dynamics of many-particle glassy systems remains a key challenge in statistical physics. Over the last decade, glassy dynamics has also been reported in biological tissues, but is far from being understood. It was recently shown that vertex models of dense biological tissue exhibit very atypical, sub-Arrhenius dynamics, and here we ask whether such atypical structural dynamics of vertex models are related to unusual elastic properties. It is known that at zero temperature these models have an elasticity controlled by their underconstrained or isostatic nature, but little is known about how their elasticity varies with temperature. To address this question we investigate the 2D Voronoi model and measure the temperature dependence of the intermediate-time plateau shear modulus and the bulk modulus. We find that unlike in conventional glass formers, these moduli increase monotonically with temperature until the system fluidizes. We further show that the structural relaxation time can be quantitatively linked to the plateau shear modulus G_{p}, i.e. G_{p} modulates the typical energy barrier scale for cell rearrangements. This suggests that the anomalous, structural dynamics of the 2D Voronoi model originates in its unusual elastic properties. Based on our results, we hypothesize that underconstrained systems might more generally give rise to a new class of "ultrastrong" glass formers.
Collapse
Affiliation(s)
- Chengling Li
- Emory University, Department of Physics, Atlanta, Georgia 30322, USA
| | - Matthias Merkel
- Aix Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), Turing Centre for Living Systems, 13009 Marseille, France
| | - Daniel M Sussman
- Emory University, Department of Physics, Atlanta, Georgia 30322, USA
| |
Collapse
|
2
|
Dirindin M, Coslovich D. Glassy Dynamics and Local Crystalline Order in Two-Dimensional Amorphous Silica. J Phys Chem B 2025; 129:1095-1108. [PMID: 39784545 DOI: 10.1021/acs.jpcb.4c06881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
We reassess the modeling of amorphous silica bilayers as a 2D classical system whose particles interact with an effective pairwise potential. We show that it is possible to reparametrize the potential developed by Roy, Heyde, and Heuer to quantitatively match the structural details of the experimental samples. We then study the glassy dynamics of the reparametrized model at low temperatures. Using appropriate cage-relative correlation functions, which suppress the effect of Mermin-Wagner fluctuations, we highlight the presence of two well-defined Arrhenius regimes separated by a narrow crossover region, which we connect to the thermodynamic anomalies and changes in the local structure. We find that the bond-orientational order grows steadily below the crossover temperature and is associated with transient crystalline domains of nanometric size. These findings raise fundamental questions about the nature of the glass structure in two dimensions and provide guidelines to interpret the experimental data.
Collapse
Affiliation(s)
- Marco Dirindin
- Dipartimento di Fisica, Università di Trieste, Strada Costiera 11, 34151 Trieste, Italy
| | - Daniele Coslovich
- Dipartimento di Fisica, Università di Trieste, Strada Costiera 11, 34151 Trieste, Italy
| |
Collapse
|
3
|
Shiraishi K, Berthier L. Characterizing the Slow Dynamics of the Swap Monte Carlo Algorithm. J Phys Chem B 2024; 128:12279-12291. [PMID: 39616495 DOI: 10.1021/acs.jpcb.4c06702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The swap Monte Carlo algorithm introduces nonphysical dynamic rules to accelerate the exploration of the configuration space of supercooled liquids. Its success raises deep questions regarding the nature and physical origin of the slow dynamics of dense liquids and how it is affected by swap moves. We provide a detailed analysis of the slow dynamics generated by the swap Monte Carlo algorithm at very low temperatures in two glass-forming models. We find that the slowing down of the swap dynamics is qualitatively distinct from its local Monte Carlo counterpart, with considerably suppressed dynamic heterogeneity at both single-particle and collective levels. Our results suggest that local kinetic constraints are drastically reduced by swap moves, leading to nearly Gaussian and diffusive dynamics and weakly growing dynamic correlation length scales. The comparison between static and dynamic fluctuations shows that swap Monte Carlo is a nearly optimal local equilibrium algorithm, suggesting that further progress should necessarily involve collective or driven algorithms.
Collapse
Affiliation(s)
- Kumpei Shiraishi
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
- Gulliver, UMR CNRS 7083, ESPCI Paris, PSL Research University, 75005 Paris, France
| |
Collapse
|
4
|
Barbhuiya NH, Yodh AG, Mishra CK. Direction-dependent dynamics of colloidal particle pairs and the Stokes-Einstein relation in quasi-two-dimensional fluids. Nat Commun 2023; 14:5109. [PMID: 37607926 PMCID: PMC10444761 DOI: 10.1038/s41467-023-40772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
Hydrodynamic interactions are important for diverse fluids, especially those with low Reynolds number such as microbial and particle-laden suspensions, and proteins diffusing in membranes. Unfortunately, while far-field (asymptotic) hydrodynamic interactions are fully understood in two- and three-dimensions, near-field interactions are not, and thus our understanding of motions in dense fluid suspensions is still lacking. In this contribution, we experimentally explore the hydrodynamic correlations between particles in quasi-two-dimensional colloidal fluids in the near-field. Surprisingly, the measured displacement and relaxation of particle pairs in the body frame exhibit direction-dependent dynamics that can be connected quantitatively to the measured near-field hydrodynamic interactions. These findings, in turn, suggest a mechanism for how and when hydrodynamics can lead to a breakdown of the ubiquitous Stokes-Einstein relation (SER). We observe this breakdown, and we show that the direction-dependent breakdown of the SER is ameliorated along directions where hydrodynamic correlations are smallest. In total, the work uncovers significant ramifications of near-field hydrodynamics on transport and dynamic restructuring of fluids in two-dimensions.
Collapse
Affiliation(s)
- Noman Hanif Barbhuiya
- Department of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, 382055, Gujarat, India
| | - A G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Chandan K Mishra
- Department of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, 382055, Gujarat, India.
| |
Collapse
|
5
|
Roberts RC, Palmer JC, Conrad JC. Long-Wavelength Fluctuations in Quasi-2D Supercooled Liquids. J Phys Chem B 2023; 127:961-969. [PMID: 36656297 DOI: 10.1021/acs.jpcb.2c07417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We use molecular simulation to characterize the dynamics of supercooled liquids confined in quasi-2D slit geometries. Similar to bulk supercooled liquids, the confined systems exhibit subdiffusive dynamics on intermediate time scales arising from particle localization inside their neighbor cages, followed by an eventual crossover to diffusive behavior as cage rearrangement occurs. The quasi-2D confined liquids also exhibit signatures of long-wavelength fluctuations (LWFs) in the lateral directions parallel to the confining walls, reminiscent of the collective displacements observed in 2D but not 3D systems. The magnitude of the LWFs increases with the lateral dimensions of systems with the same particle volume fraction and confinement length scale, consistent with the logarithmic scaling predicted for 2D Mermin-Wagner fluctuations. The amplitude of the fluctuations is a nonmonotonic function of the confinement length scale because of a competition between caging and strengthening LWFs upon approaching the 2D limit. Our findings suggest that LWFs may play an important role in understanding the behavior of confined supercooled liquids due to their prevalence over a surprisingly broad range of particle densities and confinement length scales.
Collapse
Affiliation(s)
- Ryan C Roberts
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204-4004, United States
| | - Jeremy C Palmer
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204-4004, United States
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204-4004, United States
| |
Collapse
|
6
|
Li YW, Yao Y, Ciamarra MP. Local Plastic Response and Slow Heterogeneous Dynamics of Supercooled Liquids. PHYSICAL REVIEW LETTERS 2022; 128:258001. [PMID: 35802437 DOI: 10.1103/physrevlett.128.258001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/26/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
We demonstrate, via numerical simulations, that the relaxation dynamics of supercooled liquids correlates well with a plastic length scale measuring a particle's response to impulsive localized perturbations and weakly to measures of local elasticity. We find that the particle averaged plastic length scale vanishes linearly in temperature and controls the super-Arrhenius temperature dependence of the relaxation time. Furthermore, we show that the plastic length scale of individual particles correlates with their typical displacement at the relaxation time. In contrast, the local elastic response only correlates with the dynamics on the vibrational timescale.
Collapse
Affiliation(s)
- Yan-Wei Li
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yugui Yao
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Massimo Pica Ciamarra
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore, CNR-SPIN, Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126, Napoli, Italy and CNRS@CREATE LTD, 1 Create Way, No. 08-01 CREATE Tower, Singapore 138602, Singapore
| |
Collapse
|
7
|
Reichert J, Voigtmann T. Tracer dynamics in crowded active-particle suspensions. SOFT MATTER 2021; 17:10492-10504. [PMID: 34751290 DOI: 10.1039/d1sm01092a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We discuss the dynamics of active Brownian particles (ABPs) in crowded environments through the mean-squared displacement (MSD) of active and passive tracer particles in both active and passive host systems. Exact equations for the MSD are derived using a projection operator technique, extending to dense systems the known solution for a single ABP. The interaction of the tracer particle with the host particles gives rise to strong memory effects. Evaluating these approximately in the framework of a recently developed mode-coupling theory for active Brownian particles (ABP-MCT), we discuss the various dynamical regimes that emerge: While self-propelled motion gives rise to super-diffusive MSD, at high densities, this competes with an interaction-induced sub-diffusive regime. The predictions of the theory are shown to be in good agreement with results obtained from an event-driven Brownian dynamics (ED-BD) simulation scheme for the dynamics of two-dimensional active Brownian hard disks.
Collapse
Affiliation(s)
- Julian Reichert
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany.
| | - Thomas Voigtmann
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany.
- Department of Physics, Heinrich-Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
8
|
Reichert J, Mandal S, Voigtmann T. Mode-coupling theory for tagged-particle motion of active Brownian particles. Phys Rev E 2021; 104:044608. [PMID: 34781467 DOI: 10.1103/physreve.104.044608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/05/2021] [Indexed: 11/07/2022]
Abstract
We derive a mode-coupling theory (MCT) to describe the dynamics of a tracer particle that is embedded in a dense system of active Brownian particles (ABPs) in two spatial dimensions. The ABP undergo translational and rotational Brownian motion and are equipped with a fixed self-propulsion speed along their orientational vector that describes their active motility. The resulting equations of motion for the tagged-particle density-correlation functions describe the various cases of tracer dynamics close to the glass transition: that of a single active particle in a glass-forming passive host suspensions, that of a passive colloidal particle in a suspension of ABP, and that of active tracers in a bath of active particles. Numerical results are presented for these cases assuming hard-sphere interactions among the particles. The qualitative and quantitative accuracy of the theory is tested against event-driven Brownian dynamics (ED-BD) simulations of active and passive hard disks. Simulation and theory are found in quantitative agreement, provided one adjusts the overall density (as known from the passive description of glassy dynamics), and allows for a rescaling of self-propulsion velocities in the active host system. These adjustments account for the fact that ABP-MCT generally overestimates the tendency for kinetic arrest. We confirm in the simulations a peculiar feature of the transient and stationary dynamical density-correlation functions regarding their lack of symmetry under time reversal, demonstrating the nonequilibrium nature of the system and how it manifests itself in the theory.
Collapse
Affiliation(s)
- Julian Reichert
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| | - Suvendu Mandal
- Department of Physics, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Thomas Voigtmann
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany.,Department of Physics, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Pastore R, Kikutsuji T, Rusciano F, Matubayasi N, Kim K, Greco F. Breakdown of the Stokes-Einstein relation in supercooled liquids: A cage-jump perspective. J Chem Phys 2021; 155:114503. [PMID: 34551555 DOI: 10.1063/5.0059622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The breakdown of the Stokes-Einstein relation in supercooled liquids, which is the increase in the ratio τατD between the two macroscopic times for structural relaxation and diffusion on decreasing the temperature, is commonly ascribed to dynamic heterogeneities, but a clear-cut microscopic interpretation is still lacking. Here, we tackle this issue exploiting the single-particle cage-jump framework to analyze molecular dynamics simulations of soft disk assemblies and supercooled water. We find that τατD∝⟨tp⟩⟨tc⟩, where ⟨tp⟩ and ⟨tc⟩ are the cage-jump times characterizing slow and fast particles, respectively. We further clarify that this scaling does not arise from a simple term-by-term proportionality; rather, the relations τα∝⟨tp⟩⟨ΔrJ 2⟩ and τD∝⟨tc⟩⟨ΔrJ 2⟩ effectively connect the macroscopic and microscopic timescales, with the mean square jump length ⟨ΔrJ 2⟩ shrinking on cooling. Our work provides a microscopic perspective on the Stokes-Einstein breakdown and generalizes previous results on lattice models to the case of more realistic glass-formers.
Collapse
Affiliation(s)
- Raffaele Pastore
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Napoli 80125, Italy
| | - Takuma Kikutsuji
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Francesco Rusciano
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Napoli 80125, Italy
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kang Kim
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Francesco Greco
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Napoli 80125, Italy
| |
Collapse
|
10
|
Piscitelli A, Ciamarra MP. Liquid to supercooled-liquid crossover from a Boltzmann transport approach to escape and diffusion. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:104007. [PMID: 33264762 DOI: 10.1088/1361-648x/abcff7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We develop a model describing the motion of a non-Brownian particle in a periodic potential, which we then use to predict the temperature dependence of the diffusivity of a glass-former. In the model, the velocity of the particle is drawn for the equilibrium distribution at rate 1/t c, where t c is the intercollision time in the relaxation time approximation. Solutions within a Boltzmann transport approach show that the diffusivity crossovers from a low-t c regime in which the particle at most crosses a single barrier in between two successive collisions, to a high-t c regime in which the particle may cross several barriers. We then use our model to predict the temperature dependence of the diffusion coefficient of a system of harmonic-spheres, whose energy landscape has features resembling those of the potential considered in our model. We successfully recover a crossover in the temperature dependence of the diffusion coefficient observed through numerical dynamics simulations, as well as the relationship of the diffusivity on the temperature in the high-temperature limit.
Collapse
Affiliation(s)
- A Piscitelli
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore
| | - M Pica Ciamarra
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore
- CRN-SPIN, Dipartimento di Scienze Fisiche, University of Naples Federico II, Italy
| |
Collapse
|
11
|
Li YW, Wei LLY, Paoluzzi M, Ciamarra MP. Softness, anomalous dynamics, and fractal-like energy landscape in model cell tissues. Phys Rev E 2021; 103:022607. [PMID: 33736043 DOI: 10.1103/physreve.103.022607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/21/2021] [Indexed: 01/18/2023]
Abstract
Epithelial cell tissues have a slow relaxation dynamics resembling that of supercooled liquids. Yet, they also have distinguishing features. These include an extended short-time subdiffusive transient, as observed in some experiments and recent studies of model systems, and a sub-Arrhenius dependence of the relaxation time on temperature, as reported in numerical studies. Here we demonstrate that the anomalous glassy dynamics of epithelial tissues originates from the emergence of a fractal-like energy landscape, particles becoming virtually free to diffuse in specific phase space directions up to a small distance. Furthermore, we clarify that the stiffness of the cells tunes this anomalous behavior, tissues of stiff cells having conventional glassy relaxation dynamics.
Collapse
Affiliation(s)
- Yan-Wei Li
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Leon Loh Yeong Wei
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Matteo Paoluzzi
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, C. Martí Franquès 1, 08028 Barcelona, Spain
| | - Massimo Pica Ciamarra
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- CNR-SPIN, Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126, Napoli, Italy
| |
Collapse
|
12
|
Singh J, Jose PP. Violation of Stokes-Einstein and Stokes-Einstein-Debye relations in polymers at the gas-supercooled liquid coexistence. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 33:055401. [PMID: 32977320 DOI: 10.1088/1361-648x/abbbc4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Molecular dynamics simulations are performed on a system of model linear polymers to look at the violations of Stokes-Einstein (SE) and Stokes-Einstein-Debye (SED) relations near the mode coupling theory transition temperatureTcat three (one higher and two lower) densities. At low temperatures, both lower density systems show stable gas-supercooled-liquid coexistence whereas the higher density system is homogeneous. We show that monomer density relaxation exhibits SE violation for all three densities, whereas molecular density relaxation shows a weak violation of the SE relation nearTcin both lower density systems. This study identifies disparity in monomer mobility and observation of jumplike motion in the typical monomer trajectories resulting in the SE violations. In addition to the SE violation, a weak SED violation is observed in the gas-supercooled-liquid coexisting domains of the lower densities. Both lower density systems also show a decoupling of translational and rotational dynamics in this polymer system.
Collapse
Affiliation(s)
- Jalim Singh
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India
| | - Prasanth P Jose
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India
| |
Collapse
|
13
|
Cooperatively rearranging regions change shape near the mode-coupling crossover for colloidal liquids on a sphere. Nat Commun 2020; 11:4967. [PMID: 33009399 PMCID: PMC7532192 DOI: 10.1038/s41467-020-18760-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022] Open
Abstract
The structure and dynamics of liquids on curved surfaces are often studied through the lens of frustration-based approaches to the glass transition. Competing glass transition theories, however, remain largely untested on such surfaces and moreover, studies hitherto have been entirely theoretical/numerical. Here we carry out single particle-resolved imaging of dynamics of bi-disperse colloidal liquids confined to the surface of a sphere. We find that mode-coupling theory well captures the slowing down of dynamics in the moderate to deeply supercooled regime. Strikingly, the morphology of cooperatively rearranging regions changed from string-like to compact near the mode-coupling crossover—a prediction unique to the random first-order theory of glasses. Further, we find that in the limit of strong curvature, Mermin–Wagner long-wavelength fluctuations are irrelevant and liquids on a sphere behave like three-dimensional liquids. A comparative evaluation of competing mechanisms is thus an essential step towards uncovering the true nature of the glass transition. The static and dynamic behavior of condensed phases residing on curved surfaces can be fundamentally different from their counterparts in Euclidean space. Singh et al. test several competing glass theories on colloidal liquids confined to the surface of a sphere and show they behave like 3D bulk liquids.
Collapse
|
14
|
Shiba H, Kawasaki T, Kim K. Local Density Fluctuation Governs the Divergence of Viscosity Underlying Elastic and Hydrodynamic Anomalies in a 2D Glass-Forming Liquid. PHYSICAL REVIEW LETTERS 2019; 123:265501. [PMID: 31951456 DOI: 10.1103/physrevlett.123.265501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 06/10/2023]
Abstract
If a liquid is cooled rapidly to form a glass, its structural relaxation becomes retarded, producing a drastic increase in viscosity. In two dimensions, strong long-wavelength fluctuations persist, even at low temperature, making it difficult to evaluate the microscopic structural relaxation time. This Letter shows that, in a 2D glass-forming liquid, relative displacement between neighbor particles yields a relaxation time that grows in proportion to the viscosity. In addition to thermal elastic vibrations, hydrodynamic fluctuations are found to affect the long-wavelength dynamics, yielding a logarithmically diverging diffusivity in the long-time limit.
Collapse
Affiliation(s)
- Hayato Shiba
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Takeshi Kawasaki
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan
| | - Kang Kim
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
| |
Collapse
|