1
|
Kang J, Zhang S, Niu Y, Zhong F, Wang X. Intraspecific predator interference promotes biodiversity in ecosystems. eLife 2024; 13:RP93115. [PMID: 39476367 PMCID: PMC11524584 DOI: 10.7554/elife.93115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Explaining biodiversity is a fundamental issue in ecology. A long-standing puzzle lies in the paradox of the plankton: many species of plankton feeding on a limited variety of resources coexist, apparently flouting the competitive exclusion principle (CEP), which holds that the number of predator (consumer) species cannot exceed that of the resources at a steady state. Here, we present a mechanistic model and demonstrate that intraspecific interference among the consumers enables a plethora of consumer species to coexist at constant population densities with only one or a handful of resource species. This facilitated biodiversity is resistant to stochasticity, either with the stochastic simulation algorithm or individual-based modeling. Our model naturally explains the classical experiments that invalidate the CEP, quantitatively illustrates the universal S-shaped pattern of the rank-abundance curves across a wide range of ecological communities, and can be broadly used to resolve the mystery of biodiversity in many natural ecosystems.
Collapse
Affiliation(s)
- Ju Kang
- School of Physics, Sun Yat-sen UniversityGuangzhouChina
| | - Shijie Zhang
- School of Mathematics, Sun Yat-sen UniversityGuangzhouChina
- Department of Mechanical Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Yiyuan Niu
- School of Physics, Sun Yat-sen UniversityGuangzhouChina
| | - Fan Zhong
- School of Physics, Sun Yat-sen UniversityGuangzhouChina
| | - Xin Wang
- School of Physics, Sun Yat-sen UniversityGuangzhouChina
| |
Collapse
|
2
|
Devadhasan A, Kolodny O, Carja O. Competition for resources can reshape the evolutionary properties of spatial structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.13.589370. [PMID: 38659847 PMCID: PMC11042312 DOI: 10.1101/2024.04.13.589370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Many evolving ecosystems have spatial structures that can be conceptualized as networks, with nodes representing individuals or homogeneous subpopulations and links the patterns of interaction and replacement between them. Prior models of evolution on networks do not take ecological niche differences and eco-evolutionary interplay into account. Here, we combine a resource competition model with evolutionary graph theory to study how heterogeneous topological structure shapes evolutionary dynamics under global frequency-dependent ecological interactions. We find that the addition of ecological competition for resources can produce a reversal of roles between amplifier and suppressor networks for deleterious mutants entering the population. Moreover, we show that this effect is a non-linear function of ecological niche overlap and discuss intuition for the observed dynamics using simulations and analytical approximations.
Collapse
Affiliation(s)
- Anush Devadhasan
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Oren Kolodny
- Department of Ecology, Evolution, and Behavior, E. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem
| | - Oana Carja
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Rothschild J, Ma T, Milstein JN, Zilman A. Spatial exclusion leads to "tug-of-war" ecological dynamics between competing species within microchannels. PLoS Comput Biol 2023; 19:e1010868. [PMID: 38039342 PMCID: PMC10718426 DOI: 10.1371/journal.pcbi.1010868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 12/13/2023] [Accepted: 11/07/2023] [Indexed: 12/03/2023] Open
Abstract
Competition is ubiquitous in microbial communities, shaping both their spatial and temporal structure and composition. Classical minimal models of competition, such as the Moran model, have been employed in ecology and evolutionary biology to understand the role of fixation and invasion in the maintenance of population diversity. Informed by recent experimental studies of cellular competition in confined spaces, we extend the Moran model to incorporate mechanical interactions between cells that divide within the limited space of a one-dimensional open microchannel. The model characterizes the skewed collective growth of the cells dividing within the channel, causing cells to be expelled at the channel ends. The results of this spatial exclusion model differ significantly from those of its classical well-mixed counterpart. The mean time to fixation of a species is greatly accelerated, scaling logarithmically, rather than algebraically, with the system size, and fixation/extinction probability sharply depends on the species' initial fractional abundance. By contrast, successful takeovers by invasive species, whether through mutation or immigration, are substantially less likely than in the Moran model. We also find that the spatial exclusion tends to attenuate the effects of fitness differences on the fixation times and probabilities. We find that these effects arise from the combination of the quasi-neutral "tug-of-war" diffusion dynamics of the inter-species boundary around an unstable equipoise point and the quasi-deterministic avalanche dynamics away from the fixed point. These results, which can be tested in microfluidic monolayer devices, have implications for the maintenance of species diversity in dense bacterial and cellular ecosystems where spatial exclusion is central to the competition, such as in organized biofilms or intestinal crypts.
Collapse
Affiliation(s)
| | - Tianyi Ma
- Department of Physics, University of Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Ontario, Canada
| | - Joshua N. Milstein
- Department of Physics, University of Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Ontario, Canada
| | - Anton Zilman
- Department of Physics, University of Toronto, Ontario, Canada
- Institute for Biomedical Engineering, University of Toronto, Ontario, Canada
| |
Collapse
|
4
|
Kuhn T, Mamin M, Bindschedler S, Bshary R, Estoppey A, Gonzalez D, Palmieri F, Junier P, Richter XYL. Spatial scales of competition and a growth-motility trade-off interact to determine bacterial coexistence. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211592. [PMID: 36483758 PMCID: PMC9727664 DOI: 10.1098/rsos.211592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The coexistence of competing species is a long-lasting puzzle in evolutionary ecology research. Despite abundant experimental evidence showing that the opportunity for coexistence decreases as niche overlap increases between species, bacterial species and strains competing for the same resources are commonly found across diverse spatially heterogeneous habitats. We thus hypothesized that the spatial scale of competition may play a key role in determining bacterial coexistence, and interact with other mechanisms that promote coexistence, including a growth-motility trade-off. To test this hypothesis, we let two Pseudomonas putida strains compete at local and regional scales by inoculating them either in a mixed droplet or in separate droplets in the same Petri dish, respectively. We also created conditions that allow the bacterial strains to disperse across abiotic or fungal hyphae networks. We found that competition at the local scale led to competitive exclusion while regional competition promoted coexistence. When competing in the presence of dispersal networks, the growth-motility trade-off promoted coexistence only when the strains were inoculated in separate droplets. Our results provide a mechanism by which existing laboratory data suggesting competitive exclusion at a local scale is reconciled with the widespread coexistence of competing bacterial strains in complex natural environments with dispersal.
Collapse
Affiliation(s)
- Thierry Kuhn
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
- Laboratory of Eco-Ethology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Marine Mamin
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Redouan Bshary
- Laboratory of Eco-Ethology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Aislinn Estoppey
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Diego Gonzalez
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Fabio Palmieri
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Xiang-Yi Li Richter
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
- Laboratory of Eco-Ethology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
5
|
Fast growth can counteract antibiotic susceptibility in shaping microbial community resilience to antibiotics. Proc Natl Acad Sci U S A 2022; 119:e2116954119. [PMID: 35394868 PMCID: PMC9169654 DOI: 10.1073/pnas.2116954119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceAntibiotic exposure stands among the most used interventions to drive microbial communities away from undesired states. How the ecology of microbial communities shapes their recovery-e.g., posttreatment shifts toward Clostridioides difficile infections in the gut-after antibiotic exposure is poorly understood. We study community response to antibiotics using a model community that can reach two alternative states. Guided by theory, our experiments show that microbial growth following antibiotic exposure can counteract antibiotic susceptibility in driving transitions between alternative community states. This makes it possible to reverse the outcome of antibiotic exposure through modifying growth dynamics, including cooperative growth, of community members. Our research highlights the relevance of simple ecological models to better understand the long-term effects of antibiotic treatment.
Collapse
|
6
|
Erez A, Lopez JG, Meir Y, Wingreen NS. Enzyme regulation and mutation in a model serial-dilution ecosystem. Phys Rev E 2021; 104:044412. [PMID: 34781576 DOI: 10.1103/physreve.104.044412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/20/2021] [Indexed: 11/07/2022]
Abstract
Microbial communities are ubiquitous in nature and come in a multitude of forms, ranging from communities dominated by a handful of species to communities containing a wide variety of metabolically distinct organisms. This huge range in diversity is not a curiosity-microbial diversity has been linked to outcomes of substantial ecological and medical importance. However, the mechanisms underlying microbial diversity are still under debate, as simple mathematical models only permit as many species to coexist as there are resources. A plethora of mechanisms have been proposed to explain the origins of microbial diversity, but many of these analyses omit a key property of real microbial ecosystems: the propensity of the microbes themselves to change their growth properties within and across generations. In order to explore the impact of this key property on microbial diversity, we expand upon a recently developed model of microbial diversity in fluctuating environments. We implement changes in growth strategy in two distinct ways. First, we consider the regulation of a cell's enzyme levels within short, ecological times, and second we consider evolutionary changes driven by mutations across generations. Interestingly, we find that these two types of microbial responses to the environment can have drastically different outcomes. Enzyme regulation may collapse diversity over long enough times while, conversely, strategy-randomizing mutations can produce a "rich-get-poorer" effect that promotes diversity. This paper makes explicit, using a simple serial-dilutions framework, the conflicting ways that microbial adaptation and evolution can affect community diversity.
Collapse
Affiliation(s)
- Amir Erez
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.,Racah Institute of Physics, The Hebrew University, Jerusalem 9190401, Israel
| | - Jaime G Lopez
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Yigal Meir
- Department of Physics, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
7
|
Schlomann BH, Parthasarathy R. Gut bacterial aggregates as living gels. eLife 2021; 10:71105. [PMID: 34490846 PMCID: PMC8514234 DOI: 10.7554/elife.71105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022] Open
Abstract
The spatial organization of gut microbiota influences both microbial abundances and host-microbe interactions, but the underlying rules relating bacterial dynamics to large-scale structure remain unclear. To this end, we studied experimentally and theoretically the formation of three-dimensional bacterial clusters, a key parameter controlling susceptibility to intestinal transport and access to the epithelium. Inspired by models of structure formation in soft materials, we sought to understand how the distribution of gut bacterial cluster sizes emerges from bacterial-scale kinetics. Analyzing imaging-derived data on cluster sizes for eight different bacterial strains in the larval zebrafish gut, we find a common family of size distributions that decay approximately as power laws with exponents close to −2, becoming shallower for large clusters in a strain-dependent manner. We show that this type of distribution arises naturally from a Yule-Simons-type process in which bacteria grow within clusters and can escape from them, coupled to an aggregation process that tends to condense the system toward a single massive cluster, reminiscent of gel formation. Together, these results point to the existence of general, biophysical principles governing the spatial organization of the gut microbiome that may be useful for inferring fast-timescale dynamics that are experimentally inaccessible. The human gut is home to vast numbers of bacteria that grow, compete and cooperate in a dynamic, densely packed space. The spatial arrangement of organisms – for example, if they are clumped together or broadly dispersed – plays a major role in all ecosystems; but how bacteria are organized in the human gut remains mysterious and difficult to investigate. Zebrafish larvae provide a powerful tool for studying microbes in the gut, as they are optically transparent and anatomically similar to other vertebrates, including humans. Furthermore, zebrafish can be easily manipulated so that one species of bacteria can be studied at a time. To investigate whether individual bacterial species are arranged in similar ways, Scholmann and Parthasarathy exposed zebrafish with no gut bacteria to one of eight different strains. Each species was then monitored using three-dimensional microscopy to see how the population shaped itself into clusters (or colonies). Schlomann and Parthasarathy used this data to build a mathematical model that can predict the size of the clusters formed by different gut bacteria. This revealed that the spatial arrangement of each species depended on the same biological processes: bacterial growth, aggregation and fragmentation of clusters, and expulsion from the gut. These new details about how bacteria are organized in zebrafish may help scientists learn more about gut health in humans. Although it is not possible to peer into the human gut and watch how bacteria behave, scientists could use the same analysis method to study the size of bacterial colonies in fecal samples. This may provide further clues about how microbes are spatially arranged in the human gut and the biological processes underlying this formation.
Collapse
Affiliation(s)
- Brandon H Schlomann
- Department of Physics, Institute of Molecular Biology, and Materials Science Institute, University of Oregon, Eugene, United States.,Department of Physics and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Raghuveer Parthasarathy
- Department of Physics, Institute of Molecular Biology, and Materials Science Institute, University of Oregon, Eugene, United States
| |
Collapse
|
8
|
Ursell T. Structured environments foster competitor coexistence by manipulating interspecies interfaces. PLoS Comput Biol 2021; 17:e1007762. [PMID: 33412560 PMCID: PMC7790539 DOI: 10.1371/journal.pcbi.1007762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/19/2020] [Indexed: 01/12/2023] Open
Abstract
Natural environments, like soils or the mammalian gut, frequently contain microbial consortia competing within a niche, wherein many species contain genetically encoded mechanisms of interspecies competition. Recent computational work suggests that physical structures in the environment can stabilize local competition between species that would otherwise be subject to competitive exclusion under isotropic conditions. Here we employ Lotka-Volterra models to show that interfacial competition localizes to physical structures, stabilizing competitive ecological networks of many species, even with significant differences in the strength of competitive interactions between species. Within a limited range of parameter space, we show that for stable communities the length-scale of physical structure inversely correlates with the width of the distribution of competitive fitness, such that physical environments with finer structure can sustain a broader spectrum of interspecific competition. These results highlight the potentially stabilizing effects of physical structure on microbial communities and lay groundwork for engineering structures that stabilize and/or select for diverse communities of ecological, medical, or industrial utility.
Collapse
Affiliation(s)
- Tristan Ursell
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
- Materials Science Institute, University of Oregon, Eugene, Oregon, United States of America
- Department of Physics, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
9
|
Steinbach G, Crisan C, Ng SL, Hammer BK, Yunker PJ. Accumulation of dead cells from contact killing facilitates coexistence in bacterial biofilms. J R Soc Interface 2020; 17:20200486. [PMID: 33292099 PMCID: PMC7811593 DOI: 10.1098/rsif.2020.0486] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial communities are governed by a wide variety of social interactions, some of which are antagonistic with potential significance for bacterial warfare. Several antagonistic mechanisms, such as killing via the type VI secretion system (T6SS), require killer cells to directly contact target cells. The T6SS is hypothesized to be a highly potent weapon, capable of facilitating the invasion and defence of bacterial populations. However, we find that the efficacy of contact killing is severely limited by the material consequences of cell death. Through experiments with Vibrio cholerae strains that kill via the T6SS, we show that dead cell debris quickly accumulates at the interface that forms between competing strains, preventing physical contact and thus preventing killing. While previous experiments have shown that T6SS killing can reduce a population of target cells by as much as 106-fold, we find that, as a result of the formation of dead cell debris barriers, the impact of contact killing depends sensitively on the initial concentration of killer cells. Killer cells are incapable of invading or eliminating competitors on a community level. Instead, bacterial warfare itself can facilitate coexistence between nominally antagonistic strains. While a variety of defensive strategies against microbial warfare exist, the material consequences of cell death provide target cells with their first line of defence.
Collapse
Affiliation(s)
- Gabi Steinbach
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Cristian Crisan
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Siu Lung Ng
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brian K. Hammer
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter J. Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
10
|
Li Z, Liu B, Li SHJ, King CG, Gitai Z, Wingreen NS. Modeling microbial metabolic trade-offs in a chemostat. PLoS Comput Biol 2020; 16:e1008156. [PMID: 32857772 PMCID: PMC7482850 DOI: 10.1371/journal.pcbi.1008156] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 09/10/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
Microbes face intense competition in the natural world, and so need to wisely allocate their resources to multiple functions, in particular to metabolism. Understanding competition among metabolic strategies that are subject to trade-offs is therefore crucial for deeper insight into the competition, cooperation, and community assembly of microorganisms. In this work, we evaluate competing metabolic strategies within an ecological context by considering not only how the environment influences cell growth, but also how microbes shape their chemical environment. Utilizing chemostat-based resource-competition models, we exhibit a set of intuitive and general procedures for assessing metabolic strategies. Using this framework, we are able to relate and unify multiple metabolic models, and to demonstrate how the fitness landscape of strategies becomes intrinsically dynamic due to species-environment feedback. Such dynamic fitness landscapes produce rich behaviors, and prove to be crucial for ecological and evolutionarily stable coexistence in all the models we examined.
Collapse
Affiliation(s)
- Zhiyuan Li
- Center for Quantitative Biology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Center for the Physics of Biological Function, Princeton University, Princeton, New Jersey, United States of America
- Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey, United States of America
| | - Bo Liu
- Yuanpei College, Peking University, Beijing, China
| | - Sophia Hsin-Jung Li
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Christopher G. King
- Department of Physics, Princeton University, Princeton, New Jersey, United States of America
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Ned S. Wingreen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
11
|
|