1
|
Elder JJH, Papadopoulos R, Hayne CK, Stanley RE. The making and breaking of tRNAs by ribonucleases. Trends Genet 2024; 40:511-525. [PMID: 38641471 PMCID: PMC11152995 DOI: 10.1016/j.tig.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/21/2024]
Abstract
Ribonucleases (RNases) play important roles in supporting canonical and non-canonical roles of tRNAs by catalyzing the cleavage of the tRNA phosphodiester backbone. Here, we highlight how recent advances in cryo-electron microscopy (cryo-EM), protein structure prediction, reconstitution experiments, tRNA sequencing, and other studies have revealed new insight into the nucleases that process tRNA. This represents a very diverse group of nucleases that utilize distinct mechanisms to recognize and cleave tRNA during different stages of a tRNA's life cycle including biogenesis, fragmentation, surveillance, and decay. In this review, we provide a synthesis of the structure, mechanism, regulation, and modes of tRNA recognition by tRNA nucleases, along with open questions for future investigation.
Collapse
Affiliation(s)
- Jessica J H Elder
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Ry Papadopoulos
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA; Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Cassandra K Hayne
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
2
|
Meze K, Axhemi A, Thomas DR, Doymaz A, Joshua-Tor L. A shape-shifting nuclease unravels structured RNA. Nat Struct Mol Biol 2023; 30:339-347. [PMID: 36823385 PMCID: PMC10023572 DOI: 10.1038/s41594-023-00923-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/11/2023] [Indexed: 02/25/2023]
Abstract
RNA turnover pathways ensure appropriate gene expression levels by eliminating unwanted transcripts. Dis3-like 2 (Dis3L2) is a 3'-5' exoribonuclease that plays a critical role in human development. Dis3L2 independently degrades structured substrates, including coding and noncoding 3' uridylated RNAs. While the basis for Dis3L2's substrate recognition has been well characterized, the mechanism of structured RNA degradation by this family of enzymes is unknown. We characterized the discrete steps of the degradation cycle by determining cryogenic electron microscopy structures representing snapshots along the RNA turnover pathway and measuring kinetic parameters for RNA processing. We discovered a dramatic conformational change that is triggered by double-stranded RNA (dsRNA), repositioning two cold shock domains by 70 Å. This movement exposes a trihelix linker region, which acts as a wedge to separate the two RNA strands. Furthermore, we show that the trihelix linker is critical for dsRNA, but not single-stranded RNA, degradation. These findings reveal the conformational plasticity of Dis3L2 and detail a mechanism of structured RNA degradation.
Collapse
Affiliation(s)
- Katarina Meze
- W.M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, New York, NY, USA
- School of Biological Sciences, Cold Spring Harbor Laboratory, New York, NY, USA
- Cold Spring Harbor Laboratory, New York, NY, USA
| | - Armend Axhemi
- W.M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, New York, NY, USA
- Cold Spring Harbor Laboratory, New York, NY, USA
| | - Dennis R Thomas
- W.M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, New York, NY, USA
- Cold Spring Harbor Laboratory, New York, NY, USA
| | - Ahmet Doymaz
- School of Biological Sciences, Cold Spring Harbor Laboratory, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Leemor Joshua-Tor
- W.M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, New York, NY, USA.
- School of Biological Sciences, Cold Spring Harbor Laboratory, New York, NY, USA.
- Cold Spring Harbor Laboratory, New York, NY, USA.
| |
Collapse
|
3
|
Lange H, Gagliardi D. Catalytic activities, molecular connections, and biological functions of plant RNA exosome complexes. THE PLANT CELL 2022; 34:967-988. [PMID: 34954803 PMCID: PMC8894942 DOI: 10.1093/plcell/koab310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/16/2021] [Indexed: 05/08/2023]
Abstract
RNA exosome complexes provide the main 3'-5'-exoribonuclease activities in eukaryotic cells and contribute to the maturation and degradation of virtually all types of RNA. RNA exosomes consist of a conserved core complex that associates with exoribonucleases and with multimeric cofactors that recruit the enzyme to its RNA targets. Despite an overall high level of structural and functional conservation, the enzymatic activities and compositions of exosome complexes and their cofactor modules differ among eukaryotes. This review highlights unique features of plant exosome complexes, such as the phosphorolytic activity of the core complex, and discusses the exosome cofactors that operate in plants and are dedicated to the maturation of ribosomal RNA, the elimination of spurious, misprocessed, and superfluous transcripts, or the removal of mRNAs cleaved by the RNA-induced silencing complex and other mRNAs prone to undergo silencing.
Collapse
Affiliation(s)
- Heike Lange
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
- Author for correspondence:
| | - Dominique Gagliardi
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Das M, Zattas D, Zinder JC, Wasmuth EV, Henri J, Lima CD. Substrate discrimination and quality control require each catalytic activity of TRAMP and the nuclear RNA exosome. Proc Natl Acad Sci U S A 2021; 118:e2024846118. [PMID: 33782132 PMCID: PMC8040639 DOI: 10.1073/pnas.2024846118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quality control requires discrimination between functional and aberrant species to selectively target aberrant substrates for destruction. Nuclear RNA quality control in Saccharomyces cerevisiae includes the TRAMP complex that marks RNA for decay via polyadenylation followed by helicase-dependent 3' to 5' degradation by the RNA exosome. Using reconstitution biochemistry, we show that polyadenylation and helicase activities of TRAMP cooperate with processive and distributive exoribonuclease activities of the nuclear RNA exosome to protect stable RNA from degradation while selectively targeting and degrading less stable RNA. Substrate discrimination is lost when the distributive exoribonuclease activity of Rrp6 is inactivated, leading to degradation of stable and unstable RNA species. These data support a proofreading mechanism in which deadenylation by Rrp6 competes with Mtr4-dependent degradation to protect stable RNA while selectively targeting and degrading unstable RNA.
Collapse
Affiliation(s)
- Mom Das
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Dimitrios Zattas
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - John C Zinder
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Tri-Institutional Training Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Elizabeth V Wasmuth
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Julien Henri
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
- HHMI, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
5
|
Ye X, Axhemi A, Jankowsky E. Alternative RNA degradation pathways by the exonuclease Pop2p from Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2021; 27:465-476. [PMID: 33408095 PMCID: PMC7962489 DOI: 10.1261/rna.078006.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
The 3' to 5' exonuclease Pop2p (Caf1p) is part of the CCR4-NOT deadenylation complex that removes poly(A) tails from mRNAs in cells. Pop2p is structurally conserved in eukaryotes, but Saccharomyces cerevisiae Pop2p harbors noncanonical amino acids in its catalytic center. The enzymatic properties of S. cerevisiae Pop2p are not well defined. Here we characterize the RNA exonuclease activity of recombinant S. cerevisiae Pop2p. We find that S. cerevisiae Pop2p degrades RNAs via two alternative reactions pathways, one generating nucleotides with 5'-phosphates and RNA intermediates with 3'-hydroxyls, and the other generating nucleotides with 3'-phosphates and RNA intermediates with 3'-phosphates. The enzyme is not able to initiate the reaction on RNAs with a 3'-phosphate, which leads to accumulation of RNAs with 3'-phosphates that can exceed 10 nt and are resistant to further degradation by S. cerevisiae Pop2p. We further demonstrate that S. cerevisiae Pop2p degrades RNAs in three reaction phases: an initial distributive phase, a second processive phase and a third phase during which processivity gradually declines. We also show that mutations of subsets of amino acids in the catalytic center, including those previously thought to inactivate the enzyme, moderately reduce, but not eliminate activity. Only mutation of all five amino acids in the catalytic center diminishes activity of Pop2p to background levels. Collectively, our results reveal robust exonuclease activity of S. cerevisiae Pop2p with unusual enzymatic properties, characterized by alternative degradation pathways, multiple reaction phases and functional redundancy of amino acids in the catalytic core.
Collapse
Affiliation(s)
- Xuan Ye
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Armend Axhemi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
6
|
Stuparević I, Novačić A, Rahmouni AR, Fernandez A, Lamb N, Primig M. Regulation of the conserved 3'-5' exoribonuclease EXOSC10/Rrp6 during cell division, development and cancer. Biol Rev Camb Philos Soc 2021; 96:1092-1113. [PMID: 33599082 DOI: 10.1111/brv.12693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/31/2023]
Abstract
The conserved 3'-5' exoribonuclease EXOSC10/Rrp6 processes and degrades RNA, regulates gene expression and participates in DNA double-strand break repair and control of telomere maintenance via degradation of the telomerase RNA component. EXOSC10/Rrp6 is part of the multimeric nuclear RNA exosome and interacts with numerous proteins. Previous clinical, genetic, biochemical and genomic studies revealed the protein's essential functions in cell division and differentiation, its RNA substrates and its relevance to autoimmune disorders and oncology. However, little is known about the regulatory mechanisms that control the transcription, translation and stability of EXOSC10/Rrp6 during cell growth, development and disease and how these mechanisms evolved from yeast to human. Herein, we provide an overview of the RNA- and protein expression profiles of EXOSC10/Rrp6 during cell division, development and nutritional stress, and we summarize interaction networks and post-translational modifications across species. Additionally, we discuss how known and predicted protein interactions and post-translational modifications influence the stability of EXOSC10/Rrp6. Finally, we explore the idea that different EXOSC10/Rrp6 alleles, which potentially alter cellular protein levels or affect protein function, might influence human development and disease progression. In this review we interpret information from the literature together with genomic data from knowledgebases to inspire future work on the regulation of this essential protein's stability in normal and malignant cells.
Collapse
Affiliation(s)
- Igor Stuparević
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, 10000, Croatia
| | - Ana Novačić
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, 10000, Croatia
| | - A Rachid Rahmouni
- Centre de Biophysique Moléculaire, UPR4301 du CNRS, Orléans, 45071, France
| | - Anne Fernandez
- Institut de Génétique Humaine, UMR 9002 CNRS, Montpellier, France
| | - Ned Lamb
- Institut de Génétique Humaine, UMR 9002 CNRS, Montpellier, France
| | - Michael Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, 35000, France
| |
Collapse
|
7
|
Moir RD, Lavados C, Lee J, Willis IM. Functional characterization of Polr3a hypomyelinating leukodystrophy mutations in the S. cerevisiae homolog, RPC160. Gene 2020; 768:145259. [PMID: 33148458 DOI: 10.1016/j.gene.2020.145259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/23/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
Mutations in RNA polymerase III (Pol III) cause hypomeylinating leukodystrophy (HLD) and neurodegeneration in humans. POLR3A and POLR3B, the two largest Pol III subunits, together form the catalytic center and carry the majority of disease alleles. Disease-causing mutations include invariant and highly conserved residues that are predicted to negatively affect Pol III activity and decrease transcriptional output. A subset of HLD missense mutations in POLR3A cluster in the pore region that provides nucleotide access to the Pol III active site. These mutations were engineered at the corresponding positions in the Saccharomyces cerevisiae homolog, Rpc160, to evaluate their functional deficits. None of the mutations caused a growth or transcription phenotype in yeast. Each mutation was combined with a frequently occurring pore mutation, POLR3A G672E, which was also wild-type for growth and transcription. The double mutants showed a spectrum of phenotypes from wild-type to lethal, with only the least fit combinations showing an effect on Pol III transcription. In one slow-growing temperature-sensitive mutant the steady-state level of tRNAs was unaffected, however global tRNA synthesis was compromised, as was the synthesis of RPR1 and SNR52 RNAs. Affinity-purified mutant Pol III was broadly defective in both factor-independent and factor-dependent transcription in vitro across genes that represent the yeast Pol III transcriptome. Thus, the robustness of yeast Rpc160 to single Pol III leukodystrophy mutations in the pore domain can be overcome by a second mutation in the domain.
Collapse
Affiliation(s)
- Robyn D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Christian Lavados
- Graduate Program in Biomedical Science, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - JaeHoon Lee
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ian M Willis
- Departments of Biochemistry and Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|