1
|
Medlock-Lanier T, Clay KB, Roberts-Galbraith RH. Planarian LDB and SSDP proteins scaffold transcriptional complexes for regeneration and patterning. Dev Biol 2024; 515:67-78. [PMID: 38968988 PMCID: PMC11361279 DOI: 10.1016/j.ydbio.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Sequence-specific transcription factors often function as components of large regulatory complexes. LIM-domain binding protein (LDB) and single-stranded DNA-binding protein (SSDP) function as core scaffolds of transcriptional complexes in animals and plants. Little is known about potential partners and functions for LDB/SSDP complexes in the context of tissue regeneration. In this work, we find that planarian LDB1 and SSDP2 promote tissue regeneration, with a particular function in anterior regeneration and mediolateral polarity reestablishment. We find that LDB1 and SSDP2 interact with one another and with characterized planarian LIM-HD proteins Arrowhead, Islet1, and Lhx1/5-1. We also show that SSDP2 and LDB1 function with islet1 in polarity reestablishment and with lhx1/5-1 in serotonergic neuron maturation. Finally, we find new roles for LDB1 and SSDP2 in regulating gene expression in the planarian intestine and parenchyma; these functions are likely LIM-HD-independent. Together, our work provides insight into LDB/SSDP complexes in a highly regenerative organism. Further, our work provides a strong starting point for identifying and characterizing potential binding partners of LDB1 and SSDP2 and for exploring roles for these proteins in diverse aspects of planarian physiology.
Collapse
Affiliation(s)
| | - Kendall B Clay
- Neuroscience Program, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
2
|
Cervino AS, Collodel MG, Lopez IA, Roa C, Hochbaum D, Hukriede NA, Cirio MC. Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation. Sci Rep 2023; 13:16671. [PMID: 37794075 PMCID: PMC10551014 DOI: 10.1038/s41598-023-43662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
The nephron, functional unit of the vertebrate kidney, is specialized in metabolic wastes excretion and body fluids osmoregulation. Given the high evolutionary conservation of gene expression and segmentation patterning between mammalian and amphibian nephrons, the Xenopus laevis pronephric kidney offers a simplified model for studying nephrogenesis. The Lhx1 transcription factor plays several roles during embryogenesis, regulating target genes expression by forming multiprotein complexes with LIM binding protein 1 (Ldb1). However, few Lhx1-Ldb1 cofactors have been identified for kidney organogenesis. By tandem- affinity purification from kidney-induced Xenopus animal caps, we identified single-stranded DNA binding protein 2 (Ssbp2) interacts with the Ldb1-Lhx1 complex. Ssbp2 is expressed in the Xenopus pronephros, and knockdown prevents normal morphogenesis and differentiation of the glomus and the convoluted renal tubules. We demonstrate a role for a member of the Ssbp family in kidney organogenesis and provide evidence of a fundamental function for the Ldb1-Lhx1-Ssbp transcriptional complexes in embryonic development.
Collapse
Affiliation(s)
- Ailen S Cervino
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina
| | - Mariano G Collodel
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina
| | - Ivan A Lopez
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina
| | - Carolina Roa
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina
| | - Daniel Hochbaum
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Cecilia Cirio
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Bang S, Son H, Cha H, Song K, Park H, Kim H, Ko JY, Myung J, Paik S. Immunohistochemical Analysis of Single-Stranded DNA Binding Protein 2 in Non-Melanoma Skin Cancers. Biomedicines 2023; 11:1818. [PMID: 37509458 PMCID: PMC10376428 DOI: 10.3390/biomedicines11071818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Single-stranded DNA binding protein 2 (SSBP2) is a tumor suppressor candidate. In this study, the expression level and clinicopathological significance of SSBP2 in squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) were evaluated. We also identified biological pathways associated with a set of genes potentially related to SSBP2. Immunohistochemistry (IHC) was performed on 70 SCC and 146 BCC cases to assess SSBP2 expression semi-quantitatively. In addition, the associations between SSBP2 expression and clinicopathological characteristics were analyzed. Gene ontology (GO) enrichment analysis was performed using publicly available data and web-based bioinformatics tools. Compared with BCC, SCC had a significantly low SSBP2 expression (p < 0.001). In total, 12 (17.1%) of the 70 SCC cases and 30 (20.5%) of the 146 BCC cases showed low SSBP2 expression. Among SCC cases, ulceration (p = 0.005) and a deep level of invasion (p = 0.012) showed an association with low SSBP2 expression. Local recurrence was slightly more common in the SCC subgroup with low SSBP2 expression, although the difference was not significant (p = 0.058). Using GO enrichment analysis, we identified several biological functions performed by a set of 36 genes in SCC. SSBP2 evaluation using IHC can be helpful in the differential diagnosis of SCC and BCC. SSBP2 expression was associated with tumor invasiveness in SCC.
Collapse
Affiliation(s)
- Seongsik Bang
- Department of Pathology, Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Hwangkyu Son
- Department of Pathology, Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Hyebin Cha
- Department of Pathology, Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Kihyuk Song
- Department of Pathology, Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Hosub Park
- Department of Pathology, Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Hyunsung Kim
- Department of Pathology, Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Joo Yeon Ko
- Department of Dermatology, Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Jaekyung Myung
- Department of Pathology, Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Seungsam Paik
- Department of Pathology, Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| |
Collapse
|
4
|
Wang H, Bienz M, Yan XX, Xu W. Structural basis of the interaction between BCL9-Pygo and LDB-SSBP complexes in assembling the Wnt enhanceosome. Nat Commun 2023; 14:3702. [PMID: 37349336 PMCID: PMC10287724 DOI: 10.1038/s41467-023-39439-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
The Wnt enhanceosome is responsible for transactivation of Wnt-responsive genes and a promising therapeutic target for treatment of numerous cancers with Adenomatous Polyposis Coli (APC) or β-catenin mutations. How the Wnt enhanceosome is assembled remains poorly understood. Here we show that B-cell lymphoma 9 protein (BCL9), Pygopus (Pygo), LIM domain-binding protein 1 (LDB1) and single-stranded DNA-binding protein (SSBP) form a stable core complex within the Wnt enhanceosome. Their mutual interactions rely on a highly conserved N-terminal asparagine proline phenylalanine (NPF) motif of Pygo, through which the BCL9-Pygo complex binds to the LDB-SSBP core complex. Our crystal structure of a ternary complex comprising the N-terminus of human Pygo2, LDB1 and SSBP2 reveals a single LDB1-SSBP2 complex binding simultaneously to two Pygo2 molecules via their NPF motifs. These interactions critically depend on the NPF motifs which bind to a deep groove formed between LDB1 and SSBP2, potentially constituting a binding site for drugs blocking Wnt/β-catenin signaling. Analysis of human cell lines lacking LDB or Pygo supports the functional relevance of the Pygo-LDB1-SSBP2 interaction for Wnt/β-catenin-dependent transcription.
Collapse
Affiliation(s)
- Hongyang Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Mariann Bienz
- Medical Research Council Laboratory of Molecular Biology, CB2 0QH, Cambridge, United Kingdom
| | - Xiao-Xue Yan
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Wenqing Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
5
|
Cervino AS, Collodel MG, Lopez IA, Hochbaum D, Hukriede NA, Cirio MC. Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.537039. [PMID: 37090653 PMCID: PMC10120741 DOI: 10.1101/2023.04.15.537039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The nephron, functional unit of the vertebrate kidney, is specialized in metabolic wastes excretion and body fluids osmoregulation. Given the high evolutionary conservation of gene expression and segmentation patterning between mammalian and amphibian nephrons, the Xenopus laevis pronephric kidney offers a simplified model for studying nephrogenesis. The Lhx1 transcription factor plays several roles during embryogenesis, regulating target genes expression by forming multiprotein complexes with LIM binding protein 1 (Ldb1). However, few Lhx1-Ldb1 cofactors have been identified for kidney organogenesis. By tandem-affinity purification from kidney-induced Xenopus animal caps, we identified s ingle- s tranded DNA b inding p rotein 2 (Ssbp2) interacts with the Ldb1-Lhx1 complex. Ssbp2 is expressed in the Xenopus pronephros, and knockdown prevents normal morphogenesis and differentiation of the glomus and the convoluted renal tubules. We demonstrate a role for a member of the Ssbp family in kidney organogenesis and provide evidence of a fundamental function for the Ldb1-Lhx1-Ssbp transcriptional complexes in embryonic development.
Collapse
|
6
|
Ba R, Yang L, Zhang B, Jiang P, Ding Z, Zhou X, Yang Z, Zhao C. FOXG1 drives transcriptomic networks to specify principal neuron subtypes during the development of the medial pallium. SCIENCE ADVANCES 2023; 9:eade2441. [PMID: 36791184 PMCID: PMC9931217 DOI: 10.1126/sciadv.ade2441] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The medial pallium (MP) is the major forebrain region underlying learning and memory, spatial navigation, and emotion; however, the mechanisms underlying the specification of its principal neuron subtypes remain largely unexplored. Here, by postmitotic deletion of FOXG1 (a transcription factor linked to autism spectrum disorders and FOXG1 syndrome) and single-cell RNA sequencing of E17.5 MP in mice, we found that FOXG1 controls the specification of upper-layer retrosplenial cortical pyramidal neurons [RSC-PyNs (UL)], subiculum PyNs (SubC-PyNs), CA1-PyNs, CA3-PyNs, and dentate gyrus granule cells (DG-GCs) in the MP. We uncovered subtype-specific and subtype-shared FOXG1-regulated transcriptomic networks orchestrating MP neuron specification. We further demonstrated that FOXG1 transcriptionally represses Zbtb20, Prox1, and Epha4 to prevent CA3-PyN and DG-GC identities during the specification of RSC-PyNs (UL) and SubC-PyNs; FOXG1 directly activates Nr4a2 to promote SubC-PyN identity. We showed that TBR1, controlled by FOXG1 during CA1-PyN specification, was down-regulated. Thus, our study illuminates MP principal neuron subtype specification and related neuropathogenesis.
Collapse
Affiliation(s)
- Ru Ba
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Lin Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Fudan University, Shanghai 200032, P.R. China
| | - Baoshen Zhang
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Pengfei Jiang
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhipeng Ding
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xue Zhou
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Fudan University, Shanghai 200032, P.R. China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
7
|
Medlock-Lanier T, Clay KB, Roberts-Galbraith RH. Planarian LDB and SSDP proteins scaffold transcriptional complexes for regeneration and patterning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527523. [PMID: 36798167 PMCID: PMC9934679 DOI: 10.1101/2023.02.07.527523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Sequence-specific transcription factors often function as components of large regulatory complexes. LIM-domain binding protein (LDB) and single-stranded DNA-binding protein (SSDP) function as core scaffolds of transcriptional complexes in animals and plants. Little is known about potential partners and functions for LDB/SSDP complexes in the context of tissue regeneration. In this work, we find that planarian LDB1 and SSDP2 promote tissue regeneration, with a particular function in mediolateral polarity reestablishment. We find that LDB1 and SSDP2 interact with one another and with characterized planarian LIM-HD proteins Arrowhead, Islet1, and Lhx1/5-1. SSDP2 and LDB1 also function with islet1 in polarity reestablishment and with lhx1/5-1 in serotonergic neuron maturation. Finally, we show new roles for LDB1 and SSDP2 in regulating gene expression in the planarian intestine and parenchyma; these functions may be LIM-HD-independent. Together, our work provides insight into LDB/SSDP complexes in a highly regenerative organism. Further, our work provides a strong starting point for identifying and characterizing potential binding partners of LDB1 and SSDP2 and for exploring roles for these proteins in diverse aspects of planarian physiology.
Collapse
Affiliation(s)
| | - Kendall B Clay
- Neuroscience Program, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
8
|
Mechanisms of Interaction between Enhancers and Promoters in Three Drosophila Model Systems. Int J Mol Sci 2023; 24:ijms24032855. [PMID: 36769179 PMCID: PMC9917889 DOI: 10.3390/ijms24032855] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
In higher eukaryotes, the regulation of developmental gene expression is determined by enhancers, which are often located at a large distance from the promoters they regulate. Therefore, the architecture of chromosomes and the mechanisms that determine the functional interaction between enhancers and promoters are of decisive importance in the development of organisms. Mammals and the model animal Drosophila have homologous key architectural proteins and similar mechanisms in the organization of chromosome architecture. This review describes the current progress in understanding the mechanisms of the formation and regulation of long-range interactions between enhancers and promoters at three well-studied key regulatory loci in Drosophila.
Collapse
|
9
|
Cohen-Gulkar M, David A, Messika-Gold N, Eshel M, Ovadia S, Zuk-Bar N, Idelson M, Cohen-Tayar Y, Reubinoff B, Ziv T, Shamay M, Elkon R, Ashery-Padan R. The LHX2-OTX2 transcriptional regulatory module controls retinal pigmented epithelium differentiation and underlies genetic risk for age-related macular degeneration. PLoS Biol 2023; 21:e3001924. [PMID: 36649236 PMCID: PMC9844853 DOI: 10.1371/journal.pbio.3001924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/16/2022] [Indexed: 01/18/2023] Open
Abstract
Tissue-specific transcription factors (TFs) control the transcriptome through an association with noncoding regulatory regions (cistromes). Identifying the combination of TFs that dictate specific cell fate, their specific cistromes and examining their involvement in complex human traits remain a major challenge. Here, we focus on the retinal pigmented epithelium (RPE), an essential lineage for retinal development and function and the primary tissue affected in age-related macular degeneration (AMD), a leading cause of blindness. By combining mechanistic findings in stem-cell-derived human RPE, in vivo functional studies in mice and global transcriptomic and proteomic analyses, we revealed that the key developmental TFs LHX2 and OTX2 function together in transcriptional module containing LDB1 and SWI/SNF (BAF) to regulate the RPE transcriptome. Importantly, the intersection between the identified LHX2-OTX2 cistrome with published expression quantitative trait loci, ATAC-seq data from human RPE, and AMD genome-wide association study (GWAS) data, followed by functional validation using a reporter assay, revealed a causal genetic variant that affects AMD risk by altering TRPM1 expression in the RPE through modulation of LHX2 transcriptional activity on its promoter. Taken together, the reported cistrome of LHX2 and OTX2, the identified downstream genes and interacting co-factors reveal the RPE transcription module and uncover a causal regulatory risk single-nucleotide polymorphism (SNP) in the multifactorial common blinding disease AMD.
Collapse
Affiliation(s)
- Mazal Cohen-Gulkar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Ahuvit David
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Naama Messika-Gold
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Mai Eshel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Shai Ovadia
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Nitay Zuk-Bar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Maria Idelson
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy and Department of Gynecology, Jerusalem, Israel
| | - Yamit Cohen-Tayar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Benjamin Reubinoff
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy and Department of Gynecology, Jerusalem, Israel
| | - Tamar Ziv
- Smoler Proteomics Center, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Meir Shamay
- Daniella Lee Casper Laboratory in Viral Oncology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (RE); (RAP)
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (RE); (RAP)
| |
Collapse
|
10
|
Kyrchanova OV, Bylino OV, Georgiev PG. Mechanisms of enhancer-promoter communication and chromosomal architecture in mammals and Drosophila. Front Genet 2022; 13:1081088. [PMID: 36531247 PMCID: PMC9751008 DOI: 10.3389/fgene.2022.1081088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
The spatial organization of chromosomes is involved in regulating the majority of intranuclear processes in higher eukaryotes, including gene expression. Drosophila was used as a model to discover many transcription factors whose homologs play a key role in regulation of gene expression in mammals. According to modern views, a cohesin complex mostly determines the architecture of mammalian chromosomes by forming chromatin loops on anchors created by the CTCF DNA-binding architectural protein. The role of the cohesin complex in chromosome architecture is poorly understood in Drosophila, and CTCF is merely one of many Drosophila architectural proteins with a proven potential to organize specific long-range interactions between regulatory elements in the genome. The review compares the mechanisms responsible for long-range interactions and chromosome architecture between mammals and Drosophila.
Collapse
|
11
|
Hussainy M, Korsching SI, Tresch A. Pseudotime analysis reveals novel regulatory factors for multigenic onset and monogenic transition of odorant receptor expression. Sci Rep 2022; 12:16183. [PMID: 36171231 PMCID: PMC9519747 DOI: 10.1038/s41598-022-20106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
During their maturation from horizontal basal stem cells, olfactory sensory neurons (OSNs) are known to select exactly one out of hundreds of olfactory receptors (ORs) and express it on their surface, a process called monogenic selection. Monogenic expression is preceded by a multigenic phase during which several OR genes are expressed in a single OSN. Here, we perform pseudotime analysis of a single cell RNA-Seq dataset of murine olfactory epithelium to precisely align the multigenic and monogenic expression phases with the cell types occurring during OSN differentiation. In combination with motif analysis of OR gene cluster-associated enhancer regions, we identify known and novel transcription (co-)factors (Ebf1, Lhx2, Ldb1, Fos and Ssbp2) and chromatin remodelers (Kdm1a, Eed and Zmynd8) associated with OR expression. The inferred temporal order of their activity suggests novel mechanisms contributing to multigenic OR expression and monogenic selection.
Collapse
Affiliation(s)
- Mohammad Hussainy
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Institute of Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Sigrun I Korsching
- Institute of Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Achim Tresch
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany. .,Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany. .,Center for Data and Simulation Science, University of Cologne, Cologne, Germany.
| |
Collapse
|
12
|
Andrieu-Soler C, Soler E. Erythroid Cell Research: 3D Chromatin, Transcription Factors and Beyond. Int J Mol Sci 2022; 23:6149. [PMID: 35682828 PMCID: PMC9181152 DOI: 10.3390/ijms23116149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Studies of the regulatory networks and signals controlling erythropoiesis have brought important insights in several research fields of biology and have been a rich source of discoveries with far-reaching implications beyond erythroid cells biology. The aim of this review is to highlight key recent discoveries and show how studies of erythroid cells bring forward novel concepts and refine current models related to genome and 3D chromatin organization, signaling and disease, with broad interest in life sciences.
Collapse
Affiliation(s)
| | - Eric Soler
- IGMM, Université Montpellier, CNRS, 34093 Montpellier, France;
- Laboratory of Excellence GR-Ex, Université de Paris, 75015 Paris, France
| |
Collapse
|
13
|
The structural biology of canonical Wnt signalling. Biochem Soc Trans 2021; 48:1765-1780. [PMID: 32725184 PMCID: PMC7458405 DOI: 10.1042/bst20200243] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022]
Abstract
The Wnt signalling pathways are of great importance in embryonic development and oncogenesis. Canonical and non-canonical Wnt signalling pathways are known, with the canonical (or β-catenin dependent) pathway being perhaps the best studied of these. While structural knowledge of proteins and interactions involved in canonical Wnt signalling has accumulated over the past 20 years, the pace of discovery has increased in recent years, with the structures of several key proteins and assemblies in the pathway being released. In this review, we provide a brief overview of canonical Wnt signalling, followed by a comprehensive overview of currently available X-ray, NMR and cryoEM data elaborating the structures of proteins and interactions involved in canonical Wnt signalling. While the volume of structures available is considerable, numerous gaps in knowledge remain, particularly a comprehensive understanding of the assembly of large multiprotein complexes mediating key aspects of pathway, as well as understanding the structure and activation of membrane receptors in the pathway. Nonetheless, the presently available data affords considerable opportunities for structure-based drug design efforts targeting canonical Wnt signalling.
Collapse
|
14
|
Abstract
The field of molecular embryology started around 1990 by identifying new genes and analyzing their functions in early vertebrate embryogenesis. Those genes encode transcription factors, signaling molecules, their regulators, etc. Most of those genes are relatively highly expressed in specific regions or exhibit dramatic phenotypes when ectopically expressed or mutated. This review focuses on one of those genes, Lim1/Lhx1, which encodes a transcription factor. Lim1/Lhx1 is a member of the LIM homeodomain (LIM-HD) protein family, and its intimate partner, Ldb1/NLI, binds to two tandem LIM domains of LIM-HDs. The most ancient LIM-HD protein and its partnership with Ldb1 were innovated in the metazoan ancestor by gene fusion combining LIM domains and a homeodomain and by creating the LIM domain-interacting domain (LID) in ancestral Ldb, respectively. The LIM domain has multiple interacting interphases, and Ldb1 has a dimerization domain (DD), the LID, and other interacting domains that bind to Ssbp2/3/4 and the boundary factor, CTCF. By means of these domains, LIM-HD-Ldb1 functions as a hub protein complex, enabling more intricate and elaborate gene regulation. The common, ancestral role of LIM-HD proteins is neuron cell-type specification. Additionally, Lim1/Lhx1 serves crucial roles in the gastrula organizer and in kidney development. Recent studies using Xenopus embryos have revealed Lim1/Lhx1 functions and regulatory mechanisms during development and regeneration, providing insight into evolutionary developmental biology, functional genomics, gene regulatory networks, and regenerative medicine. In this review, we also discuss recent progress at unraveling participation of Ldb1, Ssbp, and CTCF in enhanceosomes, long-distance enhancer-promoter interactions, and trans-interactions between chromosomes.
Collapse
Affiliation(s)
- Yuuri Yasuoka
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| | - Masanori Taira
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
15
|
Sabirov M, Kyrchanova O, Pokholkova GV, Bonchuk A, Klimenko N, Belova E, Zhimulev IF, Maksimenko O, Georgiev P. Mechanism and functional role of the interaction between CP190 and the architectural protein Pita in Drosophila melanogaster. Epigenetics Chromatin 2021; 14:16. [PMID: 33752739 PMCID: PMC7983404 DOI: 10.1186/s13072-021-00391-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
Background Pita is required for Drosophila development and binds specifically to a long motif in active promoters and insulators. Pita belongs to the Drosophila family of zinc-finger architectural proteins, which also includes Su(Hw) and the conserved among higher eukaryotes CTCF. The architectural proteins maintain the active state of regulatory elements and the long-distance interactions between them. In particular, Pita is involved in the formation of several boundaries between regulatory domains that controlled the expression of three hox genes in the Bithorax complex (BX-C). The CP190 protein is recruited to chromatin through interaction with the architectural proteins. Results Using in vitro pull-down analysis, we precisely mapped two unstructured regions of Pita that interact with the BTB domain of CP190. Then we constructed transgenic lines expressing the Pita protein of the wild-type and mutant variants lacking CP190-interacting regions. We have demonstrated that CP190-interacting region of the Pita can maintain nucleosome-free open chromatin and is critical for Pita-mediated enhancer blocking activity in BX-C. At the same time, interaction with CP190 is not required for the in vivo function of the mutant Pita protein, which binds to the same regions of the genome as the wild-type protein. Unexpectedly, we found that CP190 was still associated with the most of genome regions bound by the mutant Pita protein, which suggested that other architectural proteins were continuing to recruit CP190 to these regions. Conclusions The results directly demonstrate role of CP190 in insulation and support a model in which the regulatory elements are composed of combinations of binding sites that interact with several architectural proteins with similar functions. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00391-x.
Collapse
Affiliation(s)
- Marat Sabirov
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 3 4/5 Vavilov St., Moscow, 119334, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 3 4/5 Vavilov St., Moscow, 119334, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Galina V Pokholkova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences (IMCB RAS), Novosibirsk, Russia
| | - Artem Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 3 4/5 Vavilov St., Moscow, 119334, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Elena Belova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 3 4/5 Vavilov St., Moscow, 119334, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Igor F Zhimulev
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences (IMCB RAS), Novosibirsk, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia.
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 3 4/5 Vavilov St., Moscow, 119334, Russia.
| |
Collapse
|
16
|
Kyrchanova O, Georgiev P. Mechanisms of Enhancer-Promoter Interactions in Higher Eukaryotes. Int J Mol Sci 2021; 22:ijms22020671. [PMID: 33445415 PMCID: PMC7828040 DOI: 10.3390/ijms22020671] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/28/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
In higher eukaryotes, enhancers determine the activation of developmental gene transcription in specific cell types and stages of embryogenesis. Enhancers transform the signals produced by various transcription factors within a given cell, activating the transcription of the targeted genes. Often, developmental genes can be associated with dozens of enhancers, some of which are located at large distances from the promoters that they regulate. Currently, the mechanisms underlying specific distance interactions between enhancers and promoters remain poorly understood. This review briefly describes the properties of enhancers and discusses the mechanisms of distance interactions and potential proteins involved in this process.
Collapse
|