1
|
Ohara K, Al Assaad M, McNulty SN, Alnajar H, Sboner A, Wilkes DC, He F, Xiang JZ, Mathew S, Elemento O, Pisapia DJ, Mosquera JM. Detection of rare and novel gene fusions in patients with diffuse glioma: An institutional retrospective study. J Neuropathol Exp Neurol 2024:nlae105. [PMID: 39340835 DOI: 10.1093/jnen/nlae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024] Open
Affiliation(s)
- Kentaro Ohara
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Majd Al Assaad
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | | | - Hussein Alnajar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - David C Wilkes
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Feng He
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, United States
| | - Jenny Zhaoying Xiang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, United States
| | - Susan Mathew
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - David J Pisapia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
2
|
Wu H, Yang Z, Chang C, Wang Z, Zhang D, Guo Q, Zhao B. A novel disulfide death-related genes prognostic signature identifies the role of IPO4 in glioma progression. Cancer Cell Int 2024; 24:168. [PMID: 38734657 PMCID: PMC11088110 DOI: 10.1186/s12935-024-03358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND "Disulfide death," a form of cellular demise, is triggered by the abnormal accumulation of intracellular disulfides under conditions of glucose deprivation. However, its role in the prognosis of glioma remains undetermined. Therefore, the main objective of this study is to establish prognostic signature based on disulfide death-related genes (DDRGs) and to provide new solutions in choosing the effective treatment of glioma. METHODS The RNA transcriptome, clinical information, and mutation data of glioma samples were sourced from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA), while normal samples were obtained from the Genotype-Tissue Expression (GTEx). DDRGs were compiled from previous studies and selected through differential analysis and univariate Cox regression analysis. The molecular subtypes were determined through consensus clustering analysis. Further, LASSO analysis was employed to select characteristic genes, and subsequently, a risk model comprising seven DDRGs was constructed based on multivariable Cox analysis. Kaplan-Meier survival curves were employed to assess survival differences between high and low-risk groups. Additionally, functional analyses (GO, KEGG, GSEA) were conducted to explore the potential biological functions and signaling pathways of genes associated with the model. The study also explored immune checkpoint (ICP) genes, immune cell infiltration levels, and immune stromal scores. Finally, the effect of Importin-4(IPO4) on glioma has been further confirmed through RT-qPCR, Western blot, and cell functional experiments. RESULTS 7 genes associated with disulfide death were obtained and two subgroups of patients with different prognosis and clinical characteristics were identified. Risk signature was subsequently developed and proved to serve as an prognostic predictor. Notably, the high-risk group exhibited an immunosuppressive microenvironment characterized by a high concentration of M2 macrophages and regulatory T cells (Tregs). In contrast, the low-risk group showed lower half-maximal inhibitory concentration (IC50) values. Therefore, patients in the high-risk group may benefit more from immunotherapy, while patients in the low-risk group may benefit more from chemotherapy. In addition, in vitro experiments have shown that inhibition of the expression of IPO4 leads to a significant reduction in the proliferation, migration, and invasion of glioma cells. CONCLUSION This study identified two glioma subtypes and constructed a prognostic signature based on DDRGs. The signature has the potential to optimize the selection of patients for immune- and chemotherapy and provided a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- HaoYuan Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China
| | - ZhiHao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China
| | - ChenXi Chang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China
| | - ZhiWei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China
| | - DeRan Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China
| | - QingGuo Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China.
| |
Collapse
|
3
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
4
|
Xu C, Yang K, Xuan Z, Li J, Liu Y, Zhao Y, Zheng Z, Bai Y, Shi Z, Shao C, Zhang L, Sun H. BCKDK regulates breast cancer cell adhesion and tumor metastasis by inhibiting TRIM21 ubiquitinate talin1. Cell Death Dis 2023; 14:445. [PMID: 37460470 PMCID: PMC10352378 DOI: 10.1038/s41419-023-05944-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023]
Abstract
Breast cancer is the most common malignant cancer in women worldwide. Cancer metastasis is the major cause of cancer-related deaths. BCKDK is associated with various diseases, including proliferation, migration, and invasion in multiple types of human cancers. However, the relevance of BCKDK to the development and progression of breast cancers and its function is unclear. This study found that BCKDK was overexpressed in breast cancer, associated with poor prognosis, and implicated in tumor metastasis. The downregulation of BCKDK expression inhibited the migration of human breast cancer cells in vitro and diminished lung metastasis in vivo. BCKDK perturbed the cadherin-catenin complex at the adherens junctions (AJs) and assembled focal adhesions (FAs) onto the extracellular matrix, thereby promoting the directed migration of breast cancer cells. We observed that BCKDK acted as a conserved regulator of the ubiquitination of cytoskeletal protein talin1 and the activation of the FAK/MAPK pathway. Further studies revealed that BCKDK inhibited the binding of talin1 to E3 ubiquitin ligase-TRIM21, leading to the decreased ubiquitination/degradation of talin1. In conclusion, identifying BCKDK as a biomarker for breast cancer metastasis facilitated further research on diagnostic biomarkers. Elucidating the mechanism by which BCKDK exerted its biological effect could provide a new theoretical basis for developing new markers for breast cancer metastasis and contribute to developing new therapies for the clinical treatment of breast cancer patients.
Collapse
Affiliation(s)
- Chunlan Xu
- School of Medicine, Xiamen University, 361102, Xiamen, China
| | - Kunao Yang
- School of Medicine, Xiamen University, 361102, Xiamen, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, China
| | - Zuodong Xuan
- School of Medicine, Xiamen University, 361102, Xiamen, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, China
| | - Jinxin Li
- School of Medicine, Xiamen University, 361102, Xiamen, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, China
| | - Yankuo Liu
- School of Medicine, Xiamen University, 361102, Xiamen, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, China
| | - Yue Zhao
- School of Medicine, Xiamen University, 361102, Xiamen, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, China
| | - Zeyuan Zheng
- School of Medicine, Xiamen University, 361102, Xiamen, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, China
| | - Yang Bai
- School of Medicine, Xiamen University, 361102, Xiamen, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, China
| | - Zhiyuan Shi
- School of Medicine, Xiamen University, 361102, Xiamen, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, China
| | - Chen Shao
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, China
| | - Lei Zhang
- School of Public Health, Xiamen University, Xiamen, China
| | - Huimin Sun
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361101, Xiamen, China.
| |
Collapse
|
5
|
Zhu X, Wu X, Yang H, Xu Q, Zhang M, Liu X, Lv K. m 6A-mediated upregulation of LINC01003 regulates cell migration by targeting the CAV1/FAK signaling pathway in glioma. Biol Direct 2023; 18:27. [PMID: 37270527 DOI: 10.1186/s13062-023-00386-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 05/30/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play important roles in the progression of glioma. Here, we examined the potential functions of a lncRNA, LINC01003, in glioma and characterized the underlying molecular mechanisms. METHODS The GEIPA2 and Chinese Glioma Genome Atlas (CCGA) databases were employed to analyze gene expression and the overall survival curve in patients with glioma. The functions of LINC01003 in glioma growth and migration were assessed by loss-of-function experiments in vitro and in vivo. RNA sequencing was used to determine the signaling pathways effected by LINC01003. Bioinformatics analysis and RNA immunoprecipitation (RIP) assays were used to explore the mechanism underlying the N6-methyladenine (m6A) modification-dependent upregulation of LINC01003 in glioma. RESULTS LINC01003 expression was upregulated in glioma cell lines and tissues. Higher LINC01003 expression predicted shorter overall survival time in glioma patients. Functionally, LINC01003 knockdown inhibited the cell cycle and cell proliferation and migration in glioma cells. Mechanistically, RNA sequencing revealed that LINC01003 mediated the focal adhesion signaling pathway. Furthermore, LINC01003 upregulation is induced by m6A modification regulated by METTL3. CONCLUSION This study characterized LINC01003 as a lncRNA that contributes to tumorigenesis in glioma and demonstrated that the LINC01003-CAV1-FAK axis serves as a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Xiaolong Zhu
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, People's Republic of China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, 241001, People's Republic of China
- Non-Coding RNA Research Center of Wannan Medical College, Wuhu, 241001, People's Republic of China
- Anhui Provincial Clinical Research Center for Critical Respiratory Disease, Wuhu, 241001, People's Republic of China
| | - Xingwei Wu
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, People's Republic of China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, 241001, People's Republic of China
- Non-Coding RNA Research Center of Wannan Medical College, Wuhu, 241001, People's Republic of China
| | - Hui Yang
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, People's Republic of China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, 241001, People's Republic of China
- Non-Coding RNA Research Center of Wannan Medical College, Wuhu, 241001, People's Republic of China
- Anhui Provincial Clinical Research Center for Critical Respiratory Disease, Wuhu, 241001, People's Republic of China
| | - Qiancheng Xu
- Anhui Provincial Clinical Research Center for Critical Respiratory Disease, Wuhu, 241001, People's Republic of China
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241001, People's Republic of China
| | - Mengying Zhang
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, People's Republic of China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, 241001, People's Republic of China
- Non-Coding RNA Research Center of Wannan Medical College, Wuhu, 241001, People's Republic of China
- Anhui Provincial Clinical Research Center for Critical Respiratory Disease, Wuhu, 241001, People's Republic of China
| | - Xiaocen Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China
| | - Kun Lv
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, People's Republic of China.
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, 241001, People's Republic of China.
- Non-Coding RNA Research Center of Wannan Medical College, Wuhu, 241001, People's Republic of China.
- Anhui Provincial Clinical Research Center for Critical Respiratory Disease, Wuhu, 241001, People's Republic of China.
| |
Collapse
|
6
|
Huang L, Sun F, Liu Z, Jin W, Zhang Y, Chen J, Zhong C, Liang W, Peng H. Probing the Potential of Defense Response-Associated Genes for Predicting the Progression, Prognosis, and Immune Microenvironment of Osteosarcoma. Cancers (Basel) 2023; 15:cancers15082405. [PMID: 37190333 DOI: 10.3390/cancers15082405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND The defense response is a type of self-protective response of the body that protects it from damage by pathogenic factors. Although these reactions make important contributions to the occurrence and development of tumors, the role they play in osteosarcoma (OS), particularly in the immune microenvironment, remains unpredictable. METHODS This study included the clinical information and transcriptomic data of 84 osteosarcoma samples and the microarray data of 12 mesenchymal stem cell samples and 84 osteosarcoma samples. We obtained 129 differentially expressed genes related to the defense response (DRGs) by taking the intersection of differentially expressed genes with genes involved in the defense response pathway, and prognostic genes were screened using univariate Cox regression. Least absolute shrinkage and selection operator (LASSO) penalized Cox regression and multivariate Cox regression were then used to establish a DRG prognostic signature (DGPS) via the stepwise method. DGPS performance was examined using independent prognostic analysis, survival curves, and receiver operating characteristic (ROC) curves. In addition, the molecular and immune mechanisms of adverse prognosis in high-risk populations identified by DGPS were elucidated. The results were well verified by experiments. RESULT BNIP3, PTGIS, and ZYX were identified as the most important DRGs for OS progression (hazard ratios of 2.044, 1.485, and 0.189, respectively). DGPS demonstrated outstanding performance in the prediction of OS prognosis (area under the curve (AUC) values of 0.842 and 0.787 in the training and test sets, respectively, adj-p < 0.05 in the survival curve). DGPS also performed better than a recent clinical prognostic approach with an AUC value of only 0.674 [metastasis], which was certified in the subsequent experimental results. These three genes regulate several key biological processes, including immune receptor activity and T cell activation, and they also reduce the infiltration of some immune cells, such as B cells, CD8+ T cells, and macrophages. Encouragingly, we found that DGPS was associated with sensitivity to chemotherapeutic drugs including JNK Inhibitor VIII, TGX221, MP470, and SB52334. Finally, we verified the effect of BNIP3 on apoptosis, proliferation, and migration of osteosarcoma cells through experiments. CONCLUSIONS This study elucidated the role and mechanism of BNIP3, PTGIS, and ZYX in OS progression and was well verified by the experimental results, enabling reliable prognostic means and treatment strategies to be proposed for OS patients.
Collapse
Affiliation(s)
- Liangkun Huang
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fei Sun
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zilin Liu
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenyi Jin
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Yubiao Zhang
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Junwen Chen
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Changheng Zhong
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wanting Liang
- Department of Clinical Medicine, Xianyue Hospital of Xiamen Medical College, Xiamen 310058, China
| | - Hao Peng
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
7
|
Wang Z, Yang L, Zhou F, Li J, Wu X, Zhong X, Lv H, Yi S, Gao Q, Yang Z, Zhao P, Wu Y, Wu C, Zhang L, Wang H, Zhang L. Integrated comparative transcriptome and weighted gene co-expression network analysis provide valuable insights into the response mechanisms of crayfish (Procambarus clarkii) to copper stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130820. [PMID: 36860031 DOI: 10.1016/j.jhazmat.2023.130820] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
One of the significant limitations of aquaculture worldwide is the prevalence of divalent copper (Cu). Crayfish (Procambarus clarkii) are economically important freshwater species adapted to a variety of environmental stimuli, including heavy metal stresses; however, large-scale transcriptomic data of the hepatopancreas of crayfish in response to Cu stress are still scarce. Here, integrated comparative transcriptome and weighted gene co-expression network analyses were initially applied to investigate gene expression profiles of the hepatopancreas of crayfish subjected to Cu stress for different periods. As a result, 4662 significant differentially expressed genes (DEGs) were identified following Cu stress. Bioinformatics analyses revealed that the "focal adhesion" pathway was one of the most significantly upregulated response pathways following Cu stress, and seven DEGs mapped to this pathway were identified as hub genes. Furthermore, the seven hub genes were examined by quantitative PCR, and each was found to have a substantial increase in transcript abundance, suggesting a critical role of the "focal adhesion" pathway in the response of crayfish to Cu stress. Our transcriptomic data can be a good resource for the functional transcriptomics of crayfish, and these results may provide valuable insights into the molecular response mechanisms underlying crayfish to Cu stress.
Collapse
Affiliation(s)
- Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China.
| | - Lianlian Yang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Fan Zhou
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China
| | - Jiapeng Li
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Xiaoyin Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Xueting Zhong
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - He Lv
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Shaokui Yi
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Quanxin Gao
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Zi Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Pengfei Zhao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Yi Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Choufei Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Liqin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Hua Wang
- Huzhou Key Laboratory of Medical and Environmental Application Technologies, College of Life Sciences, Huzhou University, Huzhou 313000, China.
| | - Lixia Zhang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
8
|
Verdugo E, Puerto I, Medina MÁ. An update on the molecular biology of glioblastoma, with clinical implications and progress in its treatment. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1083-1111. [PMID: 36129048 DOI: 10.1002/cac2.12361] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/07/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and common malignant primary brain tumor. Patients with GBM often have poor prognoses, with a median survival of ∼15 months. Enhanced understanding of the molecular biology of central nervous system tumors has led to modifications in their classifications, the most recent of which classified these tumors into new categories and made some changes in their nomenclature and grading system. This review aims to give a panoramic view of the last 3 years' findings in glioblastoma characterization, its heterogeneity, and current advances in its treatment. Several molecular parameters have been used to achieve an accurate and personalized characterization of glioblastoma in patients, including epigenetic, genetic, transcriptomic and metabolic features, as well as age- and sex-related patterns and the involvement of several noncoding RNAs in glioblastoma progression. Astrocyte-like neural stem cells and outer radial glial-like cells from the subventricular zone have been proposed as agents involved in GBM of IDH-wildtype origin, but this remains controversial. Glioblastoma metabolism is characterized by upregulation of the PI3K/Akt/mTOR signaling pathway, promotion of the glycolytic flux, maintenance of lipid storage, and other features. This metabolism also contributes to glioblastoma's resistance to conventional therapies. Tumor heterogeneity, a hallmark of GBM, has been shown to affect the genetic expression, modulation of metabolic pathways, and immune system evasion. GBM's aggressive invasion potential is modulated by cell-to-cell crosstalk within the tumor microenvironment and altered expressions of specific genes, such as ANXA2, GBP2, FN1, PHIP, and GLUT3. Nevertheless, the rising number of active clinical trials illustrates the efforts to identify new targets and drugs to treat this malignancy. Immunotherapy is still relevant for research purposes, given the amount of ongoing clinical trials based on this strategy to treat GBM, and neoantigen and nucleic acid-based vaccines are gaining importance due to their antitumoral activity by inducing the immune response. Furthermore, there are clinical trials focused on the PI3K/Akt/mTOR axis, angiogenesis, and tumor heterogeneity for developing molecular-targeted therapies against GBM. Other strategies, such as nanodelivery and computational models, may improve the drug pharmacokinetics and the prognosis of patients with GBM.
Collapse
Affiliation(s)
- Elena Verdugo
- Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Málaga, E-29071, Spain
| | - Iker Puerto
- Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Málaga, E-29071, Spain
| | - Miguel Ángel Medina
- Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Málaga, E-29071, Spain.,Biomedical Research Institute of Málaga (IBIMA-Plataforma Bionand), Málaga, Málaga, E-29071, Spain.,Spanish Biomedical Research Network Center for Rare Diseases (CIBERER), Spanish Health Institute Carlos III (ISCIII), Málaga, Málaga, E-29071, Spain
| |
Collapse
|
9
|
Jia Y, Cheng X, Liang W, Lin S, Li P, Yan Z, Zhang M, Ma W, Hu C, Wang B, Liu Z. CLSPN is a potential biomarker associated with poor prognosis in low-grade gliomas based on a multi-database analysis. Curr Res Transl Med 2022; 70:103345. [PMID: 35487167 DOI: 10.1016/j.retram.2022.103345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND The oncogene CLSPN, also known as claspin, has regulatory effects in a variety of tumours; however, it is not clear whether CLSPN is a therapeutic target in low-grade gliomas (LGG). In this study, the prognostic value of CLSPN in LGG and its role as an immunotherapeutic target were evaluated. METHODS Transcriptome and methylation data for thousands of patients with glioma were collected from various databases, including The Cancer Genome Atlas, Chinese Glioma Genome Atlas, and Gene Expression Omnibus. Subsequently, a series of bioinformatics methods were used to evaluate the relationships between CLSPN and prognosis, clinical features, methylation status, immune cells, and molecular signaling pathways in LGG. RESULTS CLSPN expression levels were positively correlated with major malignant characteristics of LGG, and low expression of CLSPN was associated with a better prognosis. The methylation sites cg04263115 and cg06100291 negatively regulated the expression of CLSPN, and increased methylation levels at these sites were related to a longer survival time in patients with LGG. CLSPN was positively correlated with tumour-infiltrating immune cells and showed high copy number variation in these cells. There was a positive regulatory relationship between CLSPN expression and programmed death-1 (PD-1) and programmed cell death ligand 1 (PD-L1). A gene set enrichment analysis revealed that CLSPN activates a variety of cancer signaling pathways. CONCLUSION CLSPN was identified as an independent risk factor for LGG with excellent prognostic value.
Collapse
Affiliation(s)
- Yulong Jia
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Xingbo Cheng
- Department of Surgery of Spine and Spinal Cord, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Microbiome Laboratory, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Wenjia Liang
- People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Shaochong Lin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengxu Li
- Department of Surgery of Spine and Spinal Cord, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Microbiome Laboratory, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Zhaoyue Yan
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Meng Zhang
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No. 7, Weiwu Road, Henan, Zhengzhou 450003, China
| | - Wen Ma
- Department of Medical Imaging, Henan Provincial People's Hospital and the People's Hospital of Zhengzhou University, No. 7, WeiWu Road, Zhengzhou, Henan 450003, China
| | - Chenchen Hu
- Intensive Care Unit, Hubei Cancer Hospital, No. 116 South Zhuodanquan Road, Wuhan, Henan 430079, China.
| | - Baoya Wang
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's, Hospital of Henan University, Zhengzhou, Henan 450003, China.
| | - Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Microbiome Laboratory, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China.
| |
Collapse
|
10
|
Li R, Jiang Q, Tang C, Chen L, Kong D, Zou C, Lin Y, Luo J, Zou D. Identification of Candidate Genes Associated With Prognosis in Glioblastoma. Front Mol Neurosci 2022; 15:913328. [PMID: 35875673 PMCID: PMC9302577 DOI: 10.3389/fnmol.2022.913328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common malignant primary brain tumor, which associated with extremely poor prognosis. Methods Data from datasets GSE16011, GSE7696, GSE50161, GSE90598 and The Cancer Genome Atlas (TCGA) were analyzed to identify differentially expressed genes (DEGs) between patients and controls. DEGs common to all five datasets were analyzed for functional enrichment and for association with overall survival using Cox regression. Candidate genes were further screened using least absolute shrinkage and selection operator (LASSO) and random forest algorithms, and the effects of candidate genes on prognosis were explored using a Gaussian mixed model, a risk model, and concordance cluster analysis. We also characterized the GBM landscape of immune cell infiltration, methylation, and somatic mutations. Results We identified 3,139 common DEGs, which were associated mainly with PI3K-Akt signaling, focal adhesion, and Hippo signaling. Cox regression identified 106 common DEGs that were significantly associated with overall survival. LASSO and random forest algorithms identified six candidate genes (AEBP1, ANXA2R, MAP1LC3A, TMEM60, PRRG3 and RPS4X) that predicted overall survival and GBM recurrence. AEBP1 showed the best prognostic performance. We found that GBM tissues were heavily infiltrated by T helper cells and macrophages, which correlated with higher AEBP1 expression. Stratifying patients based on the six candidate genes led to two groups with significantly different overall survival. Somatic mutations in AEBP1 and modified methylation of MAP1LC3A were associated with GBM. Conclusion We have identified candidate genes, particularly AEBP1, strongly associated with GBM prognosis, which may help in efforts to understand and treat the disease.
Collapse
Affiliation(s)
- Rongjie Li
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiulan Jiang
- Department of Radiation Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Chunhai Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liechun Chen
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Deyan Kong
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chun Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Lin
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jiefeng Luo
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Jiefeng Luo,
| | - Donghua Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Donghua Zou,
| |
Collapse
|
11
|
McInerney CE, Lynn JA, Gilmore AR, Flannery T, Prise KM. Using AI-Based Evolutionary Algorithms to Elucidate Adult Brain Tumor (Glioma) Etiology Associated with IDH1 for Therapeutic Target Identification. Curr Issues Mol Biol 2022; 44:2982-3000. [PMID: 35877430 PMCID: PMC9323620 DOI: 10.3390/cimb44070206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022] Open
Abstract
Adult brain tumors (glioma) represent a cancer of unmet need where standard-of-care is non-curative; thus, new therapies are urgently needed. It is unclear whether isocitrate dehydrogenases (IDH1/2) when not mutated have any role in gliomagenesis or tumor growth. Nevertheless, IDH1 is overexpressed in glioblastoma (GBM), which could impact upon cellular metabolism and epigenetic reprogramming. This study characterizes IDH1 expression and associated genes and pathways. A novel biomarker discovery pipeline using artificial intelligence (evolutionary algorithms) was employed to analyze IDH-wildtype adult gliomas from the TCGA LGG-GBM cohort. Ninety genes whose expression correlated with IDH1 expression were identified from: (1) All gliomas, (2) primary GBM, and (3) recurrent GBM tumors. Genes were overrepresented in ubiquitin-mediated proteolysis, focal adhesion, mTOR signaling, and pyruvate metabolism pathways. Other non-enriched pathways included O-glycan biosynthesis, notch signaling, and signaling regulating stem cell pluripotency (PCGF3). Potential prognostic (TSPYL2, JAKMIP1, CIT, TMTC1) and two diagnostic (MINK1, PLEKHM3) biomarkers were downregulated in GBM. Their gene expression and methylation were negatively and positively correlated with IDH1 expression, respectively. Two diagnostic biomarkers (BZW1, RCF2) showed the opposite trend. Prognostic genes were not impacted by high frequencies of molecular alterations and only one (TMTC1) could be validated in another cohort. Genes with mechanistic links to IDH1 were involved in brain neuronal development, cell proliferation, cytokinesis, and O-mannosylation as well as tumor suppression and anaplerosis. Results highlight metabolic vulnerabilities and therapeutic targets for use in future clinical trials.
Collapse
Affiliation(s)
- Caitríona E. McInerney
- Patrick G. Johnson Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn Rd, Belfast BT9 7AE, Northern Ireland, UK; (J.A.L.); (A.R.G.); (K.M.P.)
| | - Joanna A. Lynn
- Patrick G. Johnson Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn Rd, Belfast BT9 7AE, Northern Ireland, UK; (J.A.L.); (A.R.G.); (K.M.P.)
| | - Alan R. Gilmore
- Patrick G. Johnson Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn Rd, Belfast BT9 7AE, Northern Ireland, UK; (J.A.L.); (A.R.G.); (K.M.P.)
| | - Tom Flannery
- Department of Neurosurgery, Royal Victoria Hospital, Belfast Health & Social Care Trust, Belfast BT9 7AB, Northern Ireland, UK;
| | - Kevin M. Prise
- Patrick G. Johnson Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn Rd, Belfast BT9 7AE, Northern Ireland, UK; (J.A.L.); (A.R.G.); (K.M.P.)
| |
Collapse
|
12
|
Dysregulated Immune and Metabolic Microenvironment Is Associated with the Post-Operative Relapse in Stage I Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14133061. [PMID: 35804832 PMCID: PMC9265031 DOI: 10.3390/cancers14133061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/02/2022] [Accepted: 06/17/2022] [Indexed: 12/25/2022] Open
Abstract
Simple Summary The underlying mechanism of post-operative relapse of non-small cell lung cancer (NSCLC) remained poorly understood. This study highlights that both tumors and adjacent tissues from stage I NSCLC with relapse show a dysregulated immune and metabolic environment. Immune response shifts from an active state in primary tumors to a suppressive state in recurrent tumors. A model based on the enriched biological features in the primary tumors with relapse could effectively predict recurrence for stage I NSCLC. These results provide insights into the underpinning of the post-operative relapse and suggest that identifying NSCLC patients with a high risk of relapse could help the clinical decision of applying appropriate therapeutic interventions. Abstract The underlying mechanism of post-operative relapse of non-small cell lung cancer (NSCLC) remains poorly understood. We enrolled 57 stage I NSCLC patients with or without relapse and performed whole-exome sequencing (WES) and RNA sequencing (RNA-seq) on available primary and recurrent tumors, as well as on matched tumor-adjacent tissues (TATs). The WES analysis revealed that primary tumors from patients with relapse were enriched with USH2A mutation and 2q31.1 amplification. RNA-seq data showed that the relapse risk was associated with aberrant immune response and metabolism in the microenvironment of primary lesions. TATs from the patients with relapse showed an immunosuppression state. Moreover, recurrent lesions exhibited downregulated immune response compared with their paired primary tumors. Genomic and transcriptomic features were further subjected to build a prediction model classifying patients into groups with different relapse risks. We show that the recurrence risk of stage I NSCLC could be ascribed to the altered immune and metabolic microenvironment. TATs might be affected by cancer cells and facilitate the invasion of tumors. The immune microenvironment in the recurrent lesions is suppressed. Patients with a high risk of relapse need active post-operative intervention.
Collapse
|
13
|
Dang TT, Lerner M, Saunders D, Smith N, Gulej R, Zalles M, Towner RA, Morales JC. XRN2 Is Required for Cell Motility and Invasion in Glioblastomas. Cells 2022; 11:1481. [PMID: 35563787 PMCID: PMC9100175 DOI: 10.3390/cells11091481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
One of the major obstacles in treating brain cancers, particularly glioblastoma multiforme, is the occurrence of secondary tumor lesions that arise in areas of the brain and are inoperable while obtaining resistance to current therapeutic agents. Thus, gaining a better understanding of the cellular factors that regulate glioblastoma multiforme cellular movement is imperative. In our study, we demonstrate that the 5'-3' exoribonuclease XRN2 is important to the invasive nature of glioblastoma. A loss of XRN2 decreases cellular speed, displacement, and movement through a matrix of established glioblastoma multiforme cell lines. Additionally, a loss of XRN2 abolishes tumor formation in orthotopic mouse xenograft implanted with G55 glioblastoma multiforme cells. One reason for these observations is that loss of XRN2 disrupts the expression profile of several cellular factors that are important for tumor invasion in glioblastoma multiforme cells. Importantly, XRN2 mRNA and protein levels are elevated in glioblastoma multiforme patient samples. Elevation in XRN2 mRNA also correlates with poor overall patient survival. These data demonstrate that XRN2 is an important cellular factor regulating one of the major obstacles in treating glioblastomas and is a potential molecular target that can greatly enhance patient survival.
Collapse
Affiliation(s)
- Tuyen T. Dang
- Department of Neurosurgery, Sttephenson Cancer Center University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA;
| | - Megan Lerner
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA;
| | - Debra Saunders
- Department of Pathology, University of Oklahoma Health Science Center, Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (D.S.); (N.S.); (R.G.); (M.Z.); (R.A.T.)
| | - Nataliya Smith
- Department of Pathology, University of Oklahoma Health Science Center, Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (D.S.); (N.S.); (R.G.); (M.Z.); (R.A.T.)
| | - Rafal Gulej
- Department of Pathology, University of Oklahoma Health Science Center, Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (D.S.); (N.S.); (R.G.); (M.Z.); (R.A.T.)
| | - Michelle Zalles
- Department of Pathology, University of Oklahoma Health Science Center, Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (D.S.); (N.S.); (R.G.); (M.Z.); (R.A.T.)
| | - Rheal A. Towner
- Department of Pathology, University of Oklahoma Health Science Center, Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (D.S.); (N.S.); (R.G.); (M.Z.); (R.A.T.)
| | - Julio C. Morales
- Department of Neurosurgery, Sttephenson Cancer Center University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA;
| |
Collapse
|
14
|
Physical Forces in Glioblastoma Migration: A Systematic Review. Int J Mol Sci 2022; 23:ijms23074055. [PMID: 35409420 PMCID: PMC9000211 DOI: 10.3390/ijms23074055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
The invasive capabilities of glioblastoma (GBM) define the cancer’s aggressiveness, treatment resistance, and overall mortality. The tumor microenvironment influences the molecular behavior of cells, both epigenetically and genetically. Current forces being studied include properties of the extracellular matrix (ECM), such as stiffness and “sensing” capabilities. There is currently limited data on the physical forces in GBM—both relating to how they influence their environment and how their environment influences them. This review outlines the advances that have been made in the field. It is our hope that further investigation of the physical forces involved in GBM will highlight new therapeutic options and increase patient survival. A search of the PubMed database was conducted through to 23 March 2022 with the following search terms: (glioblastoma) AND (physical forces OR pressure OR shear forces OR compression OR tension OR torsion) AND (migration OR invasion). Our review yielded 11 external/applied/mechanical forces and 2 tumor microenvironment (TME) forces that affect the ability of GBM to locally migrate and invade. Both external forces and forces within the tumor microenvironment have been implicated in GBM migration, invasion, and treatment resistance. We endorse further research in this area to target the physical forces affecting the migration and invasion of GBM.
Collapse
|
15
|
Grosjean H, Işık M, Aimon A, Mobley D, Chodera J, von Delft F, Biggin PC. SAMPL7 protein-ligand challenge: A community-wide evaluation of computational methods against fragment screening and pose-prediction. J Comput Aided Mol Des 2022; 36:291-311. [PMID: 35426591 PMCID: PMC9010448 DOI: 10.1007/s10822-022-00452-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/22/2022] [Indexed: 11/01/2022]
Abstract
A novel crystallographic fragment screening data set was generated and used in the SAMPL7 challenge for protein-ligands. The SAMPL challenges prospectively assess the predictive power of methods involved in computer-aided drug design. Application of various methods to fragment molecules are now widely used in the search for new drugs. However, there is little in the way of systematic validation specifically for fragment-based approaches. We have performed a large crystallographic high-throughput fragment screen against the therapeutically relevant second bromodomain of the Pleckstrin-homology domain interacting protein (PHIP2) that revealed 52 different fragments bound across 4 distinct sites, 47 of which were bound to the pharmacologically relevant acetylated lysine (Kac) binding site. These data were used to assess computational screening, binding pose prediction and follow-up enumeration. All submissions performed randomly for screening. Pose prediction success rates (defined as less than 2 Å root mean squared deviation against heavy atom crystal positions) ranged between 0 and 25% and only a very few follow-up compounds were deemed viable candidates from a medicinal-chemistry perspective based on a common molecular descriptors analysis. The tight deadlines imposed during the challenge led to a small number of submissions suggesting that the accuracy of rapidly responsive workflows remains limited. In addition, the application of these methods to reproduce crystallographic fragment data still appears to be very challenging. The results show that there is room for improvement in the development of computational tools particularly when applied to fragment-based drug design.
Collapse
Affiliation(s)
- Harold Grosjean
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, South Parks Road, OX1 3QU, Oxford, UK
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, OX11 0QX, Didcot, UK
| | - Mehtap Işık
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 10065, New York, NY, USA
| | - Anthony Aimon
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, OX11 0QX, Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA, Didcot, UK
| | - David Mobley
- Department of Pharmaceutical Sciences, Department of Chemistry, University of California, 92617, Irvine, California, USA
| | - John Chodera
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 10065, New York, NY, USA
| | - Frank von Delft
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, OX11 0QX, Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA, Didcot, UK
- Centre for Medicines Discovery, University of Oxford, Old Road Campus, Roosevelt Drive, OX3 7DQ, Headington, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, OX3 7DQ, Headington, UK
| | - Philip C Biggin
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, South Parks Road, OX1 3QU, Oxford, UK.
| |
Collapse
|
16
|
Bhargav AG, Domino JS, Chamoun R, Thomas SM. Mechanical Properties in the Glioma Microenvironment: Emerging Insights and Theranostic Opportunities. Front Oncol 2022; 11:805628. [PMID: 35127517 PMCID: PMC8813748 DOI: 10.3389/fonc.2021.805628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/29/2021] [Indexed: 12/30/2022] Open
Abstract
Gliomas represent the most common malignant primary brain tumors, and a high-grade subset of these tumors including glioblastoma are particularly refractory to current standard-of-care therapies including maximal surgical resection and chemoradiation. The prognosis of patients with these tumors continues to be poor with existing treatments and understanding treatment failure is required. The dynamic interplay between the tumor and its microenvironment has been increasingly recognized as a key mechanism by which cellular adaptation, tumor heterogeneity, and treatment resistance develops. Beyond ongoing lines of investigation into the peritumoral cellular milieu and microenvironmental architecture, recent studies have identified the growing role of mechanical properties of the microenvironment. Elucidating the impact of these biophysical factors on disease heterogeneity is crucial for designing durable therapies and may offer novel approaches for intervention and disease monitoring. Specifically, pharmacologic targeting of mechanical signal transduction substrates such as specific ion channels that have been implicated in glioma progression or the development of agents that alter the mechanical properties of the microenvironment to halt disease progression have the potential to be promising treatment strategies based on early studies. Similarly, the development of technology to measure mechanical properties of the microenvironment in vitro and in vivo and simulate these properties in bioengineered models may facilitate the use of mechanical properties as diagnostic or prognostic biomarkers that can guide treatment. Here, we review current perspectives on the influence of mechanical properties in glioma with a focus on biophysical features of tumor-adjacent tissue, the role of fluid mechanics, and mechanisms of mechanical signal transduction. We highlight the implications of recent discoveries for novel diagnostics, therapeutic targets, and accurate preclinical modeling of glioma.
Collapse
Affiliation(s)
- Adip G. Bhargav
- Department of Neurological Surgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - Joseph S. Domino
- Department of Neurological Surgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - Roukoz Chamoun
- Department of Neurological Surgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sufi M. Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
17
|
Tumor Cell Infiltration into the Brain in Glioblastoma: From Mechanisms to Clinical Perspectives. Cancers (Basel) 2022; 14:cancers14020443. [PMID: 35053605 PMCID: PMC8773542 DOI: 10.3390/cancers14020443] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common and malignant primary brain tumor, defined by its highly aggressive nature. Despite the advances in diagnostic and surgical techniques, and the development of novel therapies in the last decade, the prognosis for glioblastoma is still extremely poor. One major factor for the failure of existing therapeutic approaches is the highly invasive nature of glioblastomas. The extreme infiltrating capacity of tumor cells into the brain parenchyma makes complete surgical removal difficult; glioblastomas almost inevitably recur in a more therapy-resistant state, sometimes at distant sites in the brain. Therefore, there are major efforts to understand the molecular mechanisms underpinning glioblastoma invasion; however, there is no approved therapy directed against the invasive phenotype as of now. Here, we review the major molecular mechanisms of glioblastoma cell invasion, including the routes followed by glioblastoma cells, the interaction of tumor cells within the brain environment and the extracellular matrix components, and the roles of tumor cell adhesion and extracellular matrix remodeling. We also include a perspective of high-throughput approaches utilized to discover novel players for invasion and clinical targeting of invasive glioblastoma cells.
Collapse
|
18
|
Morgan MAJ, Popova IK, Vaidya A, Burg JM, Marunde MR, Rendleman EJ, Dumar ZJ, Watson R, Meiners MJ, Howard SA, Khalatyan N, Vaughan RM, Rothbart SB, Keogh MC, Shilatifard A. A trivalent nucleosome interaction by PHIP/BRWD2 is disrupted in neurodevelopmental disorders and cancer. Genes Dev 2021; 35:1642-1656. [PMID: 34819353 PMCID: PMC8653789 DOI: 10.1101/gad.348766.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022]
Abstract
Mutations in the PHIP/BRWD2 chromatin regulator cause the human neurodevelopmental disorder Chung-Jansen syndrome, while alterations in PHIP expression are linked to cancer. Precisely how PHIP functions in these contexts is not fully understood. Here we demonstrate that PHIP is a chromatin-associated CRL4 ubiquitin ligase substrate receptor and is required for CRL4 recruitment to chromatin. PHIP binds to chromatin through a trivalent reader domain consisting of a H3K4-methyl binding Tudor domain and two bromodomains (BD1 and BD2). Using semisynthetic nucleosomes with defined histone post-translational modifications, we characterize PHIPs BD1 and BD2 as respective readers of H3K14ac and H4K12ac, and identify human disease-associated mutations in each domain and the intervening linker region that likely disrupt chromatin binding. These findings provide new insight into the biological function of this enigmatic chromatin protein and set the stage for the identification of both upstream chromatin modifiers and downstream targets of PHIP in human disease.
Collapse
Affiliation(s)
- Marc A J Morgan
- Simpson Querrey Center for Epigenetics, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | - Anup Vaidya
- EpiCypher, Inc., Durham, North Carolina 27709, USA
| | | | | | - Emily J Rendleman
- Simpson Querrey Center for Epigenetics, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Zachary J Dumar
- Simpson Querrey Center for Epigenetics, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | - Natalia Khalatyan
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Robert M Vaughan
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Minnesota 49503, USA
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Minnesota 49503, USA
| | | | - Ali Shilatifard
- Simpson Querrey Center for Epigenetics, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
19
|
Wen Y, Feng L, Wang H, Zhou H, Li Q, Zhang W, Wang M, Li Y, Luan X, Jiang Z, Chen L, Zhou J. Association Between Oral Microbiota and Human Brain Glioma Grade: A Case-Control Study. Front Microbiol 2021; 12:746568. [PMID: 34733261 PMCID: PMC8558631 DOI: 10.3389/fmicb.2021.746568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/24/2021] [Indexed: 01/04/2023] Open
Abstract
Gliomas are the most prevalent form of primary malignant brain tumor, which currently have no effective treatments. Evidence from human studies has indicated that oral microbiota is closely related to cancers; however, whether oral microbiota plays a role in glioma malignancy remains unclear. The present study aimed to investigate the association between oral microbiota and grade of glioma and examine the relationship between malignancy-related oral microbial features and the isocitrate dehydrogenase 1 (IDH1) mutation in glioma. High-grade glioma (HGG; n=23) patients, low-grade glioma (LGG; n=12) patients, and healthy control (HCs; n=24) participants were recruited for this case-control study. Saliva samples were collected and analyzed for 16S ribosomal RNA (rRNA) sequencing. We found that the shift in oral microbiota β-diversity was associated with high-grade glioma (p=0.01). The phylum Patescibacteria was inversely associated with glioma grade (LGG and HC: p=0.035; HGG and HC: p<0.01). The genera Capnocytophaga (LGG and HC: p=0.043; HGG and HC: p<0.01) and Leptotrichia (LGG and HC: p=0.044; HGG and HC: p<0.01) were inversely associated with glioma grades. The genera Bergeyella and Capnocytophaga were significantly more positively correlated with the IDH1 mutation in gliomas when compared with the IDH1-wild-type group. We further identified five oral microbial features (Capnocytophaga Porphyromonas, Haemophilus, Leptotrichia, and TM7x) that accurately discriminated HGG from LGG (area under the curve [AUC]: 0.63, 95% confidence interval [CI]: 0.44-0.83) and HCs (AUC: 0.79, 95% CI: 0.68-0.92). The functional prediction analysis of oral bacterial communities showed that genes involved in cell adhesion molecules (p<0.001), extracellular matrix molecule-receptor interaction (p<0.001), focal adhesion (p<0.001), and regulation of actin cytoskeleton (p<0.001) were associated with glioma grades, and some microbial gene functions involving lipid metabolism and the adenosine 5'-monophosphate-activated protein kinase signaling pathway were significantly more enriched in IDH1 mutant gliomas than compared with the IDH1-wild-type gliomas. In conclusion, our work revealed oral microbiota features and gene functions that were associated with glioma malignancy and the IDH1 mutation in glioma.
Collapse
Affiliation(s)
- Yuqi Wen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, China
| | - Le Feng
- Department of Prosthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Haorun Wang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, China
| | - Hu Zhou
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, China
| | - Qianqian Li
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenyan Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, China
| | - Ming Wang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, China
| | - Yeming Li
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, China
| | - Xingzhao Luan
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, China
| | - Zengliang Jiang
- School of Life Sciences, Westlake University, Hangzhou, China.,Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, China.,Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie Zhou
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, China.,Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
20
|
Jiang Q, Wang X, Yang Q, Zhang H, Wang X. TMEM2 Combined with IDH and 1p19q in Refining Molecular Subtypes for Predicting Survival of Patients with Glioma. DNA Cell Biol 2021; 40:1381-1395. [PMID: 34735293 DOI: 10.1089/dna.2020.6384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gliomas are common intracranial tumors with high morbidity and mortality in adults. Transmembrane protein 2 (TMEM2) is involved in the malignant behavior of solid tumors. TMEM2 regulates cell adhesion and metastasis as well as intercellular communication by degrading nonprotein components of the extracellular matrix. This study aimed to evaluate the relationship between TMEM2 expression levels and glioma subtypes or patient prognosis. Our findings revealed that TMEM2 expression was abnormally upregulated in high-grade glioma. Moreover, combining TMEM2, the status of isocitrate dehydrogenase (IDH) and 1p19q, we subdivided molecular subtypes with significant differences in survival. Patients in the MT-codel-low subgroup had better prognosis than those in the WT-no-codel-high subgroup, who fared the worst. Additionally, correlation analysis of TMEM2 and immune cell infiltration indicated an altered tumor microenvironment (TME) and cell redistribution in the TMEM2 high-expression subtype. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that focal adhesion and PI3K-Akt signaling pathways were enriched in the TMEM2-expressing group. In conclusion, aberrant TMEM2 expression can be used as an independent prognostic marker for refining glioma molecular subtyping and accurate prognosis. These findings will improve rational decision making to provide individualized therapy for patients with glioma.
Collapse
Affiliation(s)
- Qiuyi Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinzhuang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Quan Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Zhang
- Department of Hematology, Liaocheng People's Hospital, Liaocheng, China
| | - Xiaoxiong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
21
|
Cai X, Deng J, Zhou J, Cai H, Chen Z. Cyclin-dependent kinase 19 upregulation correlates with an unfavorable prognosis in hepatocellular carcinoma. BMC Gastroenterol 2021; 21:377. [PMID: 34649520 PMCID: PMC8518165 DOI: 10.1186/s12876-021-01962-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/11/2021] [Indexed: 01/12/2023] Open
Abstract
Objectives Cyclin-dependent kinase 19 (CDK19) is a component of the mediator coactivator complex, which is required for transcriptional activation. In this study, we utilized public databases and wet-bench hepatic cell line experiments to elucidate the potential roles of CDK19 in hepatocellular cancer (HCC). Materials and methods We studied the relationships between CDK19 expression and several clinical features related to HCC via the Oncomine and UALCAN databases. The prognostic value of CDK19 was tested using the Kaplan–Meier Plotter database. We presented the mutations of CDK19 and addressed the relation of CDK19 expression with immune cell infiltration by means of the cBioPortal, Catalogue of Somatic Mutations in Cancer (COSMIC) and Tumor IMmune Estimation Resource (TIMER) databases. Hub genes were obtained and further analyzed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. To test the in silico findings, we knocked down CDK19 with short hairpin RNA (shRNA) technology in two hepatic cell lines and conducted several functional characterization experiments. Results Marked CDK19 upregulation was found in HCC tissues versus normal liver tissues, and CDK19 mRNA expression had high diagnostic value in HCC patients. Subgroup analysis showed that CDK19 overexpression was associated with sex, tumor stage and TP53 mutation status. The prognostic value of CDK19 upregulation for overall survival (OS) was significant in patients with stage 2–3, stage 3–4, and grade 2 disease. One percent of the patients had CDK19 mutations, but no relationship between CDK19 mutation and prognosis was observed. CDK19 was positively correlated with the abundances of CD4 + T cells, macrophages and dendritic cells. We identified 10 genes correlated with CDK19, 8 of which presented excellent prognostic value in HCC. These hub genes were directly involved in cell division and regulation of the G2/M cell cycle transition. Protein–protein interaction (PPI) and pathway predictions indicated that CDK19 is highly likely to be involved in several cellular functions, such as proliferation, migration, and invasion. These functions were strongly interfered from two independent hepatic cell lines after CDK19 knockdown. Conclusions CDK19 could be a prognostic marker in HCC, and its therapeutic potential in HCC needs further study. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-021-01962-8.
Collapse
Affiliation(s)
- Xiaopeng Cai
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jingwen Deng
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiaming Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Huiqiang Cai
- Department of Clinical Medicine, University of Aarhus, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark.
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
22
|
Fahrmann JF, Katayama H, Irajizad E, Chakraborty A, Kato T, Mao X, Park S, Murage E, Rusling L, Yu CY, Cai Y, Hsiao FC, Dennison JB, Tran H, Ostrin E, Wilson DO, Yuan JM, Vykoukal J, Hanash S. Plasma Based Protein Signatures Associated with Small Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13163972. [PMID: 34439128 PMCID: PMC8391533 DOI: 10.3390/cancers13163972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/04/2023] Open
Abstract
Small-cell-lung cancer (SCLC) is associated with overexpression of oncogenes including Myc family genes and YAP1 and inactivation of tumor suppressor genes. We performed in-depth proteomic profiling of plasmas collected from 15 individuals with newly diagnosed early stage SCLC and from 15 individuals before the diagnosis of SCLC and compared findings with plasma proteomic profiles of 30 matched controls to determine the occurrence of signatures that reflect disease pathogenesis. A total of 272 proteins were elevated (area under the receiver operating characteristic curve (AUC) ≥ 0.60) among newly diagnosed cases compared to matched controls of which 31 proteins were also elevated (AUC ≥ 0.60) in case plasmas collected within one year prior to diagnosis. Ingenuity Pathway analyses of SCLC-associated proteins revealed enrichment of signatures of oncogenic MYC and YAP1. Intersection of proteins elevated in case plasmas with proteomic profiles of conditioned medium from 17 SCLC cell lines yielded 52 overlapping proteins characterized by YAP1-associated signatures of cytoskeletal re-arrangement and epithelial-to-mesenchymal transition. Among samples collected more than one year prior to diagnosis there was a predominance of inflammatory markers. Our integrated analyses identified novel circulating protein features in early stage SCLC associated with oncogenic drivers.
Collapse
Affiliation(s)
- Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Ehsan Irajizad
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Ashish Chakraborty
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Taketo Kato
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Xiangying Mao
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Soyoung Park
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Eunice Murage
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Leona Rusling
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Chuan-Yih Yu
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Yinging Cai
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Fu Chung Hsiao
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Jennifer B. Dennison
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Hai Tran
- Department of Thoracic-Head & Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA;
| | - Edwin Ostrin
- Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA;
| | - David O. Wilson
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA;
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
- Correspondence:
| |
Collapse
|
23
|
Kim KB, Soroceanu L, de Semir D, Millis SZ, Ross J, Vosoughi E, Dar AA, Nosrati M, Desprez PY, Ice R, Chen M, Chetal K, Bhattacharjee A, Moretto J, Leong SP, Singer MI, Parrett BM, Minor DR, McAllister S, Miller JR, Salomonis N, Kashani-Sabet M. Prevalence of Homologous Recombination Pathway Gene Mutations in Melanoma: Rationale for a New Targeted Therapeutic Approach. J Invest Dermatol 2021; 141:2028-2036.e2. [DOI: 10.1016/j.jid.2021.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/17/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
|
24
|
Pienkowski T, Kowalczyk T, Kretowski A, Ciborowski M. A review of gliomas-related proteins. Characteristics of potential biomarkers. Am J Cancer Res 2021; 11:3425-3444. [PMID: 34354853 PMCID: PMC8332856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023] Open
Abstract
Brain tumors are one of the most commonly diagnosed cancers of the central nervous system. Of all diagnosed malignant tumors, 80% are gliomas. An unequivocal diagnosis of gliomas is not always simple, and there is a great need for research to find new treatment options and diagnostic approaches. This paper is focused on the glioma-related protein profiles as compared to healthy brain tissue, which is reflected in multiple correlations between biological aspects that influence proliferation, apoptosis evasion and the invasiveness of neoplastic cells. The work presents the possibilities of facilitating clinical practice with proteomic biomarkers, which offer a wider diagnostic spectrum and reduce the margin of mistake in histopathological or imaging diagnostic methods. In fact, many changes in the body's homeostasis can be overlooked due to the lack of symptoms or their non-specificity. Nevertheless, a single marker has limited reliability in distinguishing a particular tumor subtype, since the increased or decreased level of the protein of interest may differ between the stages or locations of the tumor. Moreover, the correlations between proposed proteins - presented in this paper - may help clinicians to choose the most optimal therapy, and estimate its effectiveness, or indicate new therapeutic targets affecting disrupted biochemical pathways.
Collapse
Affiliation(s)
- Tomasz Pienkowski
- Clinical Research Center, Medical University of Bialystok M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Tomasz Kowalczyk
- Clinical Research Center, Medical University of Bialystok M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Adam Kretowski
- Clinical Research Center, Medical University of Bialystok M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Center, Medical University of Bialystok M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| |
Collapse
|
25
|
Mishra YG, Manavathi B. Focal adhesion dynamics in cellular function and disease. Cell Signal 2021; 85:110046. [PMID: 34004332 DOI: 10.1016/j.cellsig.2021.110046] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Acting as a bridge between the cytoskeleton of the cell and the extra cellular matrix (ECM), the cell-ECM adhesions with integrins at their core, play a major role in cell signalling to direct mechanotransduction, cell migration, cell cycle progression, proliferation, differentiation, growth and repair. Biochemically, these adhesions are composed of diverse, yet an organised group of structural proteins, receptors, adaptors, various enzymes including protein kinases, phosphatases, GTPases, proteases, etc. as well as scaffolding molecules. The major integrin adhesion complexes (IACs) characterised are focal adhesions (FAs), invadosomes (podosomes and invadopodia), hemidesmosomes (HDs) and reticular adhesions (RAs). The varied composition and regulation of the IACs and their signalling, apart from being an integral part of normal cell survival, has been shown to be of paramount importance in various developmental and pathological processes. This review per-illustrates the recent advancements in the research of IACs, their crucial roles in normal as well as diseased states. We have also touched on few of the various methods that have been developed over the years to visualise IACs, measure the forces they exert and study their signalling and molecular composition. Having such pertinent roles in the context of various pathologies, these IACs need to be understood and studied to develop therapeutical targets. We have given an update to the studies done in recent years and described various techniques which have been applied to study these structures, thereby, providing context in furthering research with respect to IAC targeted therapeutics.
Collapse
Affiliation(s)
- Yasaswi Gayatri Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|