1
|
Kim K, Choe D, Kang M, Cho SH, Cho S, Jeong KJ, Palsson B, Cho BK. Serial adaptive laboratory evolution enhances mixed carbon metabolic capacity of Escherichia coli. Metab Eng 2024; 83:160-171. [PMID: 38636729 DOI: 10.1016/j.ymben.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/31/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Microbes have inherent capacities for utilizing various carbon sources, however they often exhibit sub-par fitness due to low metabolic efficiency. To test whether a bacterial strain can optimally utilize multiple carbon sources, Escherichia coli was serially evolved in L-lactate and glycerol. This yielded two end-point strains that evolved first in L-lactate then in glycerol, and vice versa. The end-point strains displayed a universal growth advantage on single and a mixture of adaptive carbon sources, enabled by a concerted action of carbon source-specialists and generalist mutants. The combination of just four variants of glpK, ppsA, ydcI, and rph-pyrE, accounted for more than 80% of end-point strain fitness. In addition, machine learning analysis revealed a coordinated activity of transcriptional regulators imparting condition-specific regulation of gene expression. The effectiveness of the serial adaptive laboratory evolution (ALE) scheme in bioproduction applications was assessed under single and mixed-carbon culture conditions, in which serial ALE strain exhibited superior productivity of acetoin compared to ancestral strains. Together, systems-level analysis elucidated the molecular basis of serial evolution, which hold potential utility in bioproduction applications.
Collapse
Affiliation(s)
- Kangsan Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea; KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Donghui Choe
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Minjeong Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea; KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Sang-Hyeok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea; KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Suhyung Cho
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Ki Jun Jeong
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea; Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea; Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA; Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea; KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea; Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
2
|
da Silva CV, Velikkakam T, de Oliveira ECM, Silveira ACA, de Lima Júnior JP, Uombe NPI, da Silva PHR, Borges BC. Cellular dormancy: A widespread phenomenon that perpetuates infectious diseases. J Basic Microbiol 2024; 64:e2300389. [PMID: 38064123 DOI: 10.1002/jobm.202300389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/05/2023] [Accepted: 11/21/2023] [Indexed: 05/03/2024]
Abstract
Under adverse environmental conditions, microorganisms are able to enter a state of cellular dormancy which consists of cell cycle arrest and interruption of multiplication. This process ensures their perpetuation in the infected host organism and enables the spread of disease. Throughout biological evolution, dormancy allowed microorganisms to persist in a harsh niche until favorable conditions for their reactivation were re-established. Here, we propose to discuss the dormancy of bacteria and protozoa pathogens focusing on the potential mechanisms and components associated with dormancy.
Collapse
Affiliation(s)
- Claudio V da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Teresiama Velikkakam
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Elida C M de Oliveira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Anna C A Silveira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Joed P de Lima Júnior
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Nelsa P I Uombe
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Paulo H R da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Bruna C Borges
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| |
Collapse
|
3
|
Joshi H, Kandari D, Maitra SS, Bhatnagar R, Banerjee N. Identification of genes associated with persistence in Mycobacterium smegmatis. Front Microbiol 2024; 15:1302883. [PMID: 38410395 PMCID: PMC10894938 DOI: 10.3389/fmicb.2024.1302883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
The prevalence of bacterial persisters is related to their phenotypic diversity and is responsible for the relapse of chronic infections. Tolerance to antibiotic therapy is the hallmark of bacterial persistence. In this study, we have screened a transposon library of Mycobacterium smegmatis mc2155 strain using antibiotic tolerance, survival in mouse macrophages, and biofilm-forming ability of the mutants. Out of 10 thousand clones screened, we selected ten mutants defective in all the three phenotypes. Six mutants showed significantly lower persister abundance under different stress conditions. Insertions in three genes belonging to the pathways of oxidative phosphorylation msmeg_3233 (cydA), biotin metabolism msmeg_3194 (bioB), and oxidative metabolism msmeg_0719, a flavoprotein monooxygenase, significantly reduced the number of live cells, suggesting their role in pathways promoting long-term survival. Another group that displayed a moderate reduction in CFU included a glycosyltransferase, msmeg_0392, a hydrogenase subunit, msmeg_2263 (hybC), and a DNA binding protein, msmeg_2211. The study has revealed potential candidates likely to facilitate the long-term survival of M. smegmatis. The findings offer new targets to develop antibiotics against persisters. Further, investigating the corresponding genes in M. tuberculosis may provide valuable leads in improving the treatment of chronic and persistent tuberculosis infections.
Collapse
Affiliation(s)
- Hemant Joshi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Divya Kandari
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Divacc Research Laboratories Pvt. Ltd., incubated under Atal Incubation Centre, Jawaharlal Nehru University, New Delhi, India
| | - Subhrangsu Sundar Maitra
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Nirupama Banerjee
- Divacc Research Laboratories Pvt. Ltd., incubated under Atal Incubation Centre, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
4
|
Urbaniec J, Getino M, McEwan TBD, Sanderson-Smith ML, McFadden J, Hai F, La Ragione R, Hassan MM, Hingley-Wilson S. Anti-persister efficacy of colistin and meropenem against uropathogenic Escherichia coli is dependent on environmental conditions. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37990974 DOI: 10.1099/mic.0.001403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Antibiotic persistence is a phenomenon observed when genetically susceptible cells survive long-term exposure to antibiotics. These 'persisters' are an intrinsic component of bacterial populations and stem from phenotypic heterogeneity. Persistence to antibiotics is a concern for public health globally, as it increases treatment duration and can contribute to treatment failure. Furthermore, there is a growing array of evidence that persistence is a 'stepping-stone' for the development of genetic antimicrobial resistance. Urinary tract infections (UTIs) are a major contributor to antibiotic consumption worldwide, and are known to be both persistent (i.e. affecting the host for a prolonged period) and recurring. Currently, in clinical settings, routine laboratory screening of pathogenic isolates does not determine the presence or the frequency of persister cells. Furthermore, the majority of research undertaken on antibiotic persistence has been done on lab-adapted bacterial strains. In the study presented here, we characterized antibiotic persisters in a panel of clinical uropathogenic Escherichia coli isolates collected from hospitals in the UK and Australia. We found that a urine-pH mimicking environment not only induces higher levels of antibiotic persistence to meropenem and colistin than standard laboratory growth conditions, but also results in rapid development of transient colistin resistance, regardless of the genetic resistance profile of the isolate. Furthermore, we provide evidence for the presence of multiple virulence factors involved in stress resistance and biofilm formation in the genomes of these isolates, whose activities have been previously shown to contribute to the formation of persister cells.
Collapse
Affiliation(s)
- Joanna Urbaniec
- Department of Microbial Sciences, University of Surrey, Guildford, UK
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Maria Getino
- School of Veterinary Medicine, University of Surrey, Guildford, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Tahnee B-D McEwan
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Martina L Sanderson-Smith
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Johnjoe McFadden
- Department of Microbial Sciences, University of Surrey, Guildford, UK
| | - Faisal Hai
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Roberto La Ragione
- Department of Microbial Sciences, University of Surrey, Guildford, UK
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Marwa M Hassan
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | | |
Collapse
|
5
|
Ji L, Jiang T, Zhao X, Cai D, Hua K, Du P, Chen Y, Xie J. Mycobacterium tuberculosis Rv0494 Protein Contributes to Mycobacterial Persistence. Infect Drug Resist 2023; 16:4755-4762. [PMID: 37501888 PMCID: PMC10370413 DOI: 10.2147/idr.s419914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Purpose Fatty acid metabolism plays an important role in the survival and pathogenesis of Mycobacterium tuberculosis. During dormancy, lipids are considered to be the main source of energy. A previous study found that Rv0494 is a starvation-inducible, lipid-responsive transcriptional regulator. However, the role of Rv0494 in bacterial persister survival has not been studied. Methods We constructed a Rv0494 deletion mutant strain of Mycobacterium tuberculosis H37Rv and evaluated the susceptibility of the mutant strain to antibiotics using a persistence test. Results We found that mutations in Rv0494 lead to survival defects of persisters, which reflected in increased sensitivity to isoniazid. Conclusion We conclude that Rv0494 is important for persister survival and may serve as a good target for developing new antibiotics that kill persister bacteria for improved treatment of persistent bacterial infections.
Collapse
Affiliation(s)
- Lei Ji
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Tingting Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Xin Zhao
- Department of International Registration, Ustar Biotechnologies (Hangzhou) Ltd, Hangzhou, Zhejiang, People’s Republic of China
| | - Damin Cai
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Kouzhen Hua
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Peng Du
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yuanyuan Chen
- Tuberculosis Diagnosis and Treatment Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, Ministry of Education, Chongqing Municipal Key Laboratory of Karst Environment, School of Life Sciences, Southwest University, Chongqing, People’s Republic of China
| |
Collapse
|
6
|
Urbaniec J, Sanderson-Smith M, McFadden J, Hai FI, Hingley-Wilson SM. Dysregulated NAD(H) homeostasis associated with ciprofloxacin tolerance in Escherichia coli investigated on a single-cell level with the Peredox [NADH:NAD+] biosensor. Front Microbiol 2023; 14:1191968. [PMID: 37415820 PMCID: PMC10321300 DOI: 10.3389/fmicb.2023.1191968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/11/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction Antibiotic persistence (subpopulation tolerance) occurs when a subpopulation of antibiotic sensitive cells survives prolonged exposure to a bactericidal concentration of an antibiotic, and is capable of regrowth once the antibiotic is removed. This phenomenon has been shown to contribute to prolonged treatment duration, infection recurrence, and accelerated development of genetic resistance. Currently, there are no biomarkers which would allow for segregation of these antibiotic-tolerant cells from the bulk population prior to antibiotic exposure, limiting research on this phenomenon to retrograde analyses. However, it has been previously shown that persisters often have a dysregulated intracellular redox homeostasis, warranting its investigation as a potential marker for antibiotic tolerance. Furthermore, it is currently unknown whether another antibiotic tolerant subpopulation - viable but non-culturable cells (VBNCs), are simply persisters with extreme lag phase, or are formed through separate pathways. VBNCs similarly to persisters remain viable following antibiotic exposure, however, are not capable of regrowth in standard conditions. Methods In this article we employed an NADH:NAD+ biosensor (Peredox) to investigate NADH homeostasis of ciprofloxacin-tolerant E. coli cells on a single-cell level. [NADH:NAD+] was used as a proxy for measuring intracellular redox homeostasis and respiration rate. Results and Discussion First, we demonstrated that ciprofloxacin exposure results in a high number of VBNCs, several orders of magnitude higher than persisters. However, we found no correlation in the frequencies of persister and VBNC subpopulations. Ciprofloxacin-tolerant cells (persisters & VBNCs) were actively undergoing respiration, although at a significantly lower rate on average when compared to the bulk population. We also noted significant heterogeneity on a single-cell level within the subpopulations, however were unable to segregate persisters from VBNCs based on these observations alone. Finally, we showed that in the highly-persistent strain of E. coli, E. coli HipQ, ciprofloxacin-tolerant cells have a significantly lower [NADH:NAD+] ratio than tolerant cells of its parental strain, providing further link between disturbed NADH homeostasis and antibiotic tolerance.
Collapse
Affiliation(s)
- Joanna Urbaniec
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Martina Sanderson-Smith
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Johnjoe McFadden
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
| | - Faisal I. Hai
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, Australia
| | | |
Collapse
|
7
|
Yang K, Xu F, Zhu L, Li H, Sun Q, Yan A, Ren B, Zhu YG, Cui L. An Isotope-Labeled Single-Cell Raman Spectroscopy Approach for Tracking the Physiological Evolution Trajectory of Bacteria toward Antibiotic Resistance. Angew Chem Int Ed Engl 2023; 62:e202217412. [PMID: 36732297 DOI: 10.1002/anie.202217412] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/28/2022] [Accepted: 02/02/2023] [Indexed: 02/04/2023]
Abstract
Understanding evolution of antibiotic resistance is vital for containing its global spread. Yet our ability to in situ track highly heterogeneous and dynamic evolution is very limited. Here, we present a new single-cell approach integrating D2 O-labeled Raman spectroscopy, advanced multivariate analysis, and genotypic profiling to in situ track physiological evolution trajectory toward resistance. Physiological diversification of individual cells from isogenic population with cyclic ampicillin treatment is captured. Advanced multivariate analysis of spectral changes classifies all individual cells into four subsets of sensitive, intrinsic tolerant, evolved tolerant and resistant. Remarkably, their dynamic shifts with evolution are depicted and spectral markers of each state are identified. Genotypic analysis validates the phenotypic shift and provides insights into the underlying genetic basis. The new platform advances rapid phenotyping resistance evolution and guides evolution control.
Collapse
Affiliation(s)
- Kai Yang
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Fei Xu
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Longji Zhu
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Hongzhe Li
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Qian Sun
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Aixin Yan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Li Cui
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
8
|
Shi X, Zarkan A. Bacterial survivors: evaluating the mechanisms of antibiotic persistence. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748698 DOI: 10.1099/mic.0.001266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacteria withstand antibiotic onslaughts by employing a variety of strategies, one of which is persistence. Persistence occurs in a bacterial population where a subpopulation of cells (persisters) survives antibiotic treatment and can regrow in a drug-free environment. Persisters may cause the recalcitrance of infectious diseases and can be a stepping stone to antibiotic resistance, so understanding persistence mechanisms is critical for therapeutic applications. However, current understanding of persistence is pervaded by paradoxes that stymie research progress, and many aspects of this cellular state remain elusive. In this review, we summarize the putative persister mechanisms, including toxin-antitoxin modules, quorum sensing, indole signalling and epigenetics, as well as the reasons behind the inconsistent body of evidence. We highlight present limitations in the field and underscore a clinical context that is frequently neglected, in the hope of supporting future researchers in examining clinically important persister mechanisms.
Collapse
Affiliation(s)
- Xiaoyi Shi
- Cambridge Centre for International Research, Cambridge CB4 0PZ, UK
| | - Ashraf Zarkan
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
9
|
Urbaniec J, Xu Y, Hu Y, Hingley-Wilson S, McFadden J. Phenotypic heterogeneity in persisters: a novel 'hunker' theory of persistence. FEMS Microbiol Rev 2022; 46:fuab042. [PMID: 34355746 PMCID: PMC8767447 DOI: 10.1093/femsre/fuab042] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
Persistence has been linked to treatment failure since its discovery over 70 years ago and understanding formation, nature and survival of this key antibiotic refractory subpopulation is crucial to enhancing treatment success and combatting the threat of antimicrobial resistance (AMR). The term 'persistence' is often used interchangeably with other terms such as tolerance or dormancy. In this review we focus on 'antibiotic persistence' which we broadly define as a feature of a subpopulation of bacterial cells that possesses the non-heritable character of surviving exposure to one or more antibiotics; and persisters as cells that possess this characteristic. We discuss novel molecular mechanisms involved in persister cell formation, as well as environmental factors which can contribute to increased antibiotic persistence in vivo, highlighting recent developments advanced by single-cell studies. We also aim to provide a comprehensive model of persistence, the 'hunker' theory which is grounded in intrinsic heterogeneity of bacterial populations and a myriad of 'hunkering down' mechanisms which can contribute to antibiotic survival of the persister subpopulation. Finally, we discuss antibiotic persistence as a 'stepping-stone' to AMR and stress the urgent need to develop effective anti-persister treatment regimes to treat this highly clinically relevant bacterial sub-population.
Collapse
Affiliation(s)
- J Urbaniec
- Department of Microbial Sciences and University of Surrey, Guildford, Surrey, GU27XH, UK
| | - Ye Xu
- Department of Microbial Sciences and University of Surrey, Guildford, Surrey, GU27XH, UK
| | - Y Hu
- Farnborough Sensonic limited, Farnborough road, GU14 7NA, UK
| | - S Hingley-Wilson
- Department of Microbial Sciences and University of Surrey, Guildford, Surrey, GU27XH, UK
| | - J McFadden
- Department of Microbial Sciences and University of Surrey, Guildford, Surrey, GU27XH, UK
- Quantum biology doctoral training centre, University of Surrey, Guildford, Surrey, GU27XH, UK
| |
Collapse
|
10
|
Nieto C, Vargas-García C, Pedraza JM. Continuous rate modeling of bacterial stochastic size dynamics. Phys Rev E 2021; 104:044415. [PMID: 34781449 DOI: 10.1103/physreve.104.044415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/06/2021] [Indexed: 12/26/2022]
Abstract
Bacterial division is an inherently stochastic process with effects on fluctuations of protein concentration and phenotype variability. Current modeling tools for the stochastic short-term cell-size dynamics are scarce and mainly phenomenological. Here we present a general theoretical approach based on the Chapman-Kolmogorov equation incorporating continuous growth and division events as jump processes. This approach allows us to include different division strategies, noisy growth, and noisy cell splitting. Considering bacteria synchronized from their last division, we predict oscillations in both the central moments of the size distribution and its autocorrelation function. These oscillations, barely discussed in past studies, can arise as a consequence of the discrete time displacement invariance of the system with a period of one doubling time, and they do not disappear when including stochasticity on either division times or size heterogeneity on the starting population but only after inclusion of noise in either growth rate or septum position. This result illustrates the usefulness of having a solid mathematical description that explicitly incorporates the inherent stochasticity in various biological processes, both to understand the process in detail and to evaluate the effect of various sources of variability when creating simplified descriptions.
Collapse
Affiliation(s)
- César Nieto
- Department of Physics, Universidad de los Andes, Bogotá 111711, Colombia.,Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - César Vargas-García
- Corporacion Colombiana de Investigación Agropecuaria AGROSAVIA, Mosquera 250047, Colombia
| | - Juan M Pedraza
- Department of Physics, Universidad de los Andes, Bogotá 111711, Colombia
| |
Collapse
|
11
|
Methods for Studying Bacterial–Fungal Interactions in the Microenvironments of Soil. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Due to their small size, microorganisms directly experience only a tiny portion of the environmental heterogeneity manifested in the soil. The microscale variations in soil properties constrain the distribution of fungi and bacteria, and the extent to which they can interact with each other, thereby directly influencing their behavior and ecological roles. Thus, to obtain a realistic understanding of bacterial–fungal interactions, the spatiotemporal complexity of their microenvironments must be accounted for. The objective of this review is to further raise awareness of this important aspect and to discuss an overview of possible methodologies, some of easier applicability than others, that can be implemented in the experimental design in this field of research. The experimental design can be rationalized in three different scales, namely reconstructing the physicochemical complexity of the soil matrix, identifying and locating fungi and bacteria to depict their physical interactions, and, lastly, analyzing their molecular environment to describe their activity. In the long term, only relevant experimental data at the cell-to-cell level can provide the base for any solid theory or model that may serve for accurate functional prediction at the ecosystem level. The way to this level of application is still long, but we should all start small.
Collapse
|
12
|
Liu S, Brul S, Zaat SAJ. Isolation of Persister Cells of Bacillus subtilis and Determination of Their Susceptibility to Antimicrobial Peptides. Int J Mol Sci 2021; 22:10059. [PMID: 34576222 PMCID: PMC8470456 DOI: 10.3390/ijms221810059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
Persister cells are growth-arrested subpopulations that can survive possible fatal environments and revert to wild types after stress removal. Clinically, persistent pathogens play a key role in antibiotic therapy failure, as well as chronic, recurrent, and antibiotic-resilient infections. In general, molecular and physiological research on persister cells formation and compounds against persister cells are much desired. In this study, we firstly demonstrated that the spore forming Gram-positive model organism Bacillus subtilis can be used to generate persister cells during exposure to antimicrobial compounds. Interestingly, instead of exhibiting a unified antibiotic tolerance profile, different number of persister cells and spores were quantified in various stress conditions. qPCR results also indicated that differential stress responses are related to persister formation in various environmental conditions. We propose, for the first time to the best of our knowledge, an effective method to isolate B. subtilis persister cells from a population using fluorescence-activated cell sorting (FACS), which makes analyzing persister populations feasible. Finally, we show that alpha-helical cationic antimicrobial peptides SAAP-148 and TC-19, derived from human cathelicidin LL-37 and human thrombocidin-1, respectively, have high efficiency against both B. subtilis vegetative cells and persisters, causing membrane permeability and fluidity alteration. In addition, we confirm that in contrast to persister cells, dormant B. subtilis spores are not susceptible to the antimicrobial peptides.
Collapse
Affiliation(s)
- Shiqi Liu
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Sebastian A. J. Zaat
- Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, Department of Medical Microbiology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
13
|
Harvey HJ, Wildman RD, Mooney SJ, Avery SV. Challenges and approaches in assessing the interplay between microorganisms and their physical micro-environments. Comput Struct Biotechnol J 2020; 18:2860-2866. [PMID: 33133427 PMCID: PMC7588748 DOI: 10.1016/j.csbj.2020.09.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/22/2022] Open
Abstract
Spatial structure over scales ranging from nanometres to centimetres (and beyond) varies markedly in diverse habitats and the industry-relevant settings that support microbial activity. Developing an understanding of the interplay between a structured environment and the associated microbial processes and ecology is fundamental, but challenging. Several novel approaches have recently been developed and implemented to help address key questions for the field: from the use of imaging tools such as X-ray Computed Tomography to explore microbial growth in soils, to the fabrication of scratched materials to examine microbial-surface interactions, to the design of microfluidic devices to track microbial biofilm formation and the metabolic processes therein. This review discusses new approaches and challenges for incorporating structured elements into the study of microbial processes across different scales. We highlight how such methods can be pivotal for furthering our understanding of microbial interactions with their environments.
Collapse
Affiliation(s)
- Harry J. Harvey
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ricky D. Wildman
- Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Sacha J. Mooney
- School of Biosciences, University of Nottingham, Nottingham, UK
| | - Simon V. Avery
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Corresponding author.
| |
Collapse
|