1
|
Lee JY, Bays DJ, Savage HP, Bäumler AJ. The human gut microbiome in health and disease: time for a new chapter? Infect Immun 2024:e0030224. [PMID: 39347570 DOI: 10.1128/iai.00302-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
The gut microbiome, composed of the colonic microbiota and their host environment, is important for many aspects of human health. A gut microbiome imbalance (gut dysbiosis) is associated with major causes of human morbidity and mortality. Despite the central part our gut microbiome plays in health and disease, mechanisms that maintain homeostasis and properties that demarcate dysbiosis remain largely undefined. Here we discuss that sorting taxa into meaningful ecological units reveals that the availability of respiratory electron acceptors, such as oxygen, in the host environment has a dominant influence on gut microbiome health. During homeostasis, host functions that limit the diffusion of oxygen into the colonic lumen shelter a microbial community dominated by primary fermenters from atmospheric oxygen. In turn, primary fermenters break down unabsorbed nutrients into fermentation products that support host nutrition. This symbiotic relationship is disrupted when host functions that limit the luminal availability of host-derived electron acceptors become weakened. The resulting changes in the host environment drive alterations in the microbiota composition, which feature an elevated abundance of facultatively anaerobic microbes. Thus, the part of the gut microbiome that becomes imbalanced during dysbiosis is the host environment, whereas changes in the microbiota composition are secondary to this underlying cause. This shift in our understanding of dysbiosis provides a novel starting point for therapeutic strategies to restore microbiome health. Such strategies can either target the microbes through metabolism-based editing or strengthen the host functions that control their environment.
Collapse
Affiliation(s)
- Jee-Yon Lee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, USA
| | - Derek J Bays
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Hannah P Savage
- Department of Pathology Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
2
|
Culp EJ, Nelson NT, Verdegaal AA, Goodman AL. Microbial transformation of dietary xenobiotics shapes gut microbiome composition. Cell 2024:S0092-8674(24)00967-X. [PMID: 39321800 DOI: 10.1016/j.cell.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/23/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024]
Abstract
Diet is a major determinant of gut microbiome composition, and variation in diet-microbiome interactions may contribute to variation in their health consequences. To mechanistically understand these relationships, here we map interactions between ∼150 small-molecule dietary xenobiotics and the gut microbiome, including the impacts of these compounds on community composition, the metabolic activities of human gut microbes on dietary xenobiotics, and interindividual variation in these traits. Microbial metabolism can toxify and detoxify these compounds, producing emergent interactions that explain community-specific remodeling by dietary xenobiotics. We identify the gene and enzyme responsible for detoxification of one such dietary xenobiotic, resveratrol, and demonstrate that this enzyme contributes to interindividual variation in community remodeling by resveratrol. Together, these results systematically map interactions between dietary xenobiotics and the gut microbiome and connect toxification and detoxification to interpersonal differences in microbiome response to diet.
Collapse
Affiliation(s)
- Elizabeth J Culp
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Nora T Nelson
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew A Verdegaal
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Huang S, Méheust R, Barquera B, Light SH. Versatile roles of protein flavinylation in bacterial extracyotosolic electron transfer. mSystems 2024; 9:e0037524. [PMID: 39041811 PMCID: PMC11334425 DOI: 10.1128/msystems.00375-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Bacteria perform diverse redox chemistries in the periplasm, cell wall, and extracellular space. Electron transfer for these extracytosolic activities is frequently mediated by proteins with covalently bound flavins, which are attached through post-translational flavinylation by the enzyme ApbE. Despite the significance of protein flavinylation to bacterial physiology, the basis and function of this modification remain unresolved. Here we apply genomic context analyses, computational structural biology, and biochemical studies to address the role of ApbE flavinylation throughout bacterial life. We identify ApbE flavinylation sites within structurally diverse protein domains and show that multi-flavinylated proteins, which may mediate longer distance electron transfer via multiple flavinylation sites, exhibit substantial structural heterogeneity. We identify two novel classes of flavinylation substrates that are related to characterized proteins with non-covalently bound flavins, providing evidence that protein flavinylation can evolve from a non-covalent flavoprotein precursor. We further find a group of structurally related flavinylation-associated cytochromes, including those with the domain of unknown function DUF4405, that presumably mediate electron transfer in the cytoplasmic membrane. DUF4405 homologs are widespread in bacteria and related to ferrosome iron storage organelle proteins that may facilitate iron redox cycling within ferrosomes. These studies reveal a complex basis for flavinylated electron transfer and highlight the discovery power of coupling comparative genomic analyses with high-quality structural models. IMPORTANCE This study explores the mechanisms bacteria use to transfer electrons outside the cytosol, a fundamental process involved in energy metabolism and environmental interactions. Central to this process is a phenomenon known as flavinylation, where a flavin molecule-a compound related to vitamin B2-is covalently attached to proteins, to enable electron transfer. We employed advanced genomic analysis and computational modeling to explore how this modification occurs across different bacterial species. Our findings uncover new types of proteins that undergo this modification and highlight the diversity and complexity of bacterial electron transfer mechanisms. This research broadens our understanding of bacterial physiology and informs potential biotechnological applications that rely on microbial electron transfer, including bioenergy production and bioremediation.
Collapse
Affiliation(s)
- Shuo Huang
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Raphaël Méheust
- Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d'Évry, Université Paris-Saclay, CNRS, Evry, France
| | - Blanca Barquera
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Samuel H. Light
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Huang S, Méheust R, Barquera B, Light SH. Versatile roles of protein flavinylation in bacterial extracyotosolic electron transfer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584918. [PMID: 38559090 PMCID: PMC10979944 DOI: 10.1101/2024.03.13.584918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Bacteria perform diverse redox chemistries in the periplasm, cell wall, and extracellular space. Electron transfer for these extracytosolic activities is frequently mediated by proteins with covalently bound flavins, which are attached through post-translational flavinylation by the enzyme ApbE. Despite the significance of protein flavinylation to bacterial physiology, the basis and function of this modification remains unresolved. Here we apply genomic context analyses, computational structural biology, and biochemical studies to address the role of ApbE flavinylation throughout bacterial life. We find that ApbE flavinylation sites exhibit substantial structural heterogeneity. We identify two novel classes of flavinylation substrates that are related to characterized proteins with non-covalently bound flavins, providing evidence that protein flavinylation can evolve from a non-covalent flavoprotein precursor. We further find a group of structurally related flavinylation-associated cytochromes, including those with the domain of unknown function DUF4405, that presumably mediate electron transfer in the cytoplasmic membrane. DUF4405 homologs are widespread in bacteria and related to ferrosome iron storage organelle proteins that may facilitate iron redox cycling within ferrosomes. These studies reveal a complex basis for flavinylated electron transfer and highlight the discovery power of coupling comparative genomic analyses with high-quality structural models.
Collapse
Affiliation(s)
- Shuo Huang
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Raphaël Méheust
- Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d’Évry, Université Paris-Saclay, CNRS, Evry, France
| | - Blanca Barquera
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute; Troy, NY
| | - Samuel H. Light
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Delavari N, Zhang Z, Stull F. Rapid reaction studies on the chemistry of flavin oxidation in urocanate reductase. J Biol Chem 2024; 300:105689. [PMID: 38280427 PMCID: PMC10882135 DOI: 10.1016/j.jbc.2024.105689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024] Open
Abstract
Urocanate reductase (UrdA) is a bacterial flavin-dependent enzyme that reduces urocanate to imidazole propionate, enabling bacteria to use urocanate as an alternative respiratory electron acceptor. Elevated serum levels of imidazole propionate are associated with the development of type 2 diabetes, and, since UrdA is only present in humans in gut bacteria, this enzyme has emerged as a significant factor linking the health of the gut microbiome and insulin resistance. Here, we investigated the chemistry of flavin oxidation by urocanate in the isolated FAD domain of UrdA (UrdA') using anaerobic stopped-flow experiments. This analysis unveiled the presence of a charge-transfer complex between reduced FAD and urocanate that forms within the dead time of the stopped-flow instrument (∼1 ms), with flavin oxidation subsequently occurring with a rate constant of ∼60 s-1. The pH dependence of the reaction and analysis of an Arg411Ala mutant of UrdA' are consistent with Arg411 playing a crucial role in catalysis by serving as the active site acid that protonates urocanate during hydride transfer from reduced FAD. Mutational analysis of urocanate-binding residues suggests that the twisted conformation of urocanate imposed by the active site of UrdA' facilitates urocanate reduction. Overall, this study provides valuable insight into the mechanism of urocanate reduction by UrdA.
Collapse
Affiliation(s)
- Niusha Delavari
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan, USA
| | - Zhiyao Zhang
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan, USA
| | - Frederick Stull
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan, USA.
| |
Collapse
|
6
|
Zhang J, Li F, Liu D, Liu Q, Song H. Engineering extracellular electron transfer pathways of electroactive microorganisms by synthetic biology for energy and chemicals production. Chem Soc Rev 2024; 53:1375-1446. [PMID: 38117181 DOI: 10.1039/d3cs00537b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The excessive consumption of fossil fuels causes massive emission of CO2, leading to climate deterioration and environmental pollution. The development of substitutes and sustainable energy sources to replace fossil fuels has become a worldwide priority. Bio-electrochemical systems (BESs), employing redox reactions of electroactive microorganisms (EAMs) on electrodes to achieve a meritorious combination of biocatalysis and electrocatalysis, provide a green and sustainable alternative approach for bioremediation, CO2 fixation, and energy and chemicals production. EAMs, including exoelectrogens and electrotrophs, perform extracellular electron transfer (EET) (i.e., outward and inward EET), respectively, to exchange energy with the environment, whose rate determines the efficiency and performance of BESs. Therefore, we review the synthetic biology strategies developed in the last decade for engineering EAMs to enhance the EET rate in cell-electrode interfaces for facilitating the production of electricity energy and value-added chemicals, which include (1) progress in genetic manipulation and editing tools to achieve the efficient regulation of gene expression, knockout, and knockdown of EAMs; (2) synthetic biological engineering strategies to enhance the outward EET of exoelectrogens to anodes for electricity power production and anodic electro-fermentation (AEF) for chemicals production, including (i) broadening and strengthening substrate utilization, (ii) increasing the intracellular releasable reducing equivalents, (iii) optimizing c-type cytochrome (c-Cyts) expression and maturation, (iv) enhancing conductive nanowire biosynthesis and modification, (v) promoting electron shuttle biosynthesis, secretion, and immobilization, (vi) engineering global regulators to promote EET rate, (vii) facilitating biofilm formation, and (viii) constructing cell-material hybrids; (3) the mechanisms of inward EET, CO2 fixation pathway, and engineering strategies for improving the inward EET of electrotrophic cells for CO2 reduction and chemical production, including (i) programming metabolic pathways of electrotrophs, (ii) rewiring bioelectrical circuits for enhancing inward EET, and (iii) constructing microbial (photo)electrosynthesis by cell-material hybridization; (4) perspectives on future challenges and opportunities for engineering EET to develop highly efficient BESs for sustainable energy and chemical production. We expect that this review will provide a theoretical basis for the future development of BESs in energy harvesting, CO2 fixation, and chemical synthesis.
Collapse
Affiliation(s)
- Junqi Zhang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Feng Li
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Dingyuan Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Qijing Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
7
|
Bertsova YV, Serebryakova MV, Anashkin VA, Baykov AA, Bogachev AV. A Redox-Regulated, Heterodimeric NADH:cinnamate Reductase in Vibrio ruber. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:241-256. [PMID: 38622093 DOI: 10.1134/s0006297924020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 04/17/2024]
Abstract
Genes of putative reductases of α,β-unsaturated carboxylic acids are abundant among anaerobic and facultatively anaerobic microorganisms, yet substrate specificity has been experimentally verified for few encoded proteins. Here, we co-produced in Escherichia coli a heterodimeric protein of the facultatively anaerobic marine bacterium Vibrio ruber (GenBank SJN56019 and SJN56021; annotated as NADPH azoreductase and urocanate reductase, respectively) with Vibrio cholerae flavin transferase. The isolated protein (named Crd) consists of the sjn56021-encoded subunit CrdB (NADH:flavin, FAD binding 2, and FMN bind domains) and an additional subunit CrdA (SJN56019, a single NADH:flavin domain) that interact via their NADH:flavin domains (Alphafold2 prediction). Each domain contains a flavin group (three FMNs and one FAD in total), one of the FMN groups being linked covalently by the flavin transferase. Crd readily reduces cinnamate, p-coumarate, caffeate, and ferulate under anaerobic conditions with NADH or methyl viologen as the electron donor, is moderately active against acrylate and practically inactive against urocanate and fumarate. Cinnamates induced Crd synthesis in V. ruber cells grown aerobically or anaerobically. The Crd-catalyzed reduction started by NADH demonstrated a time lag of several minutes, suggesting a redox regulation of the enzyme activity. The oxidized enzyme is inactive, which apparently prevents production of reactive oxygen species under aerobic conditions. Our findings identify Crd as a regulated NADH-dependent cinnamate reductase, apparently protecting V. ruber from (hydroxy)cinnamate poisoning.
Collapse
Affiliation(s)
- Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Victor A Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
8
|
Little AS, Younker IT, Schechter MS, Bernardino PN, Méheust R, Stemczynski J, Scorza K, Mullowney MW, Sharan D, Waligurski E, Smith R, Ramanswamy R, Leiter W, Moran D, McMillin M, Odenwald MA, Iavarone AT, Sidebottom AM, Sundararajan A, Pamer EG, Eren AM, Light SH. Dietary- and host-derived metabolites are used by diverse gut bacteria for anaerobic respiration. Nat Microbiol 2024; 9:55-69. [PMID: 38177297 PMCID: PMC11055453 DOI: 10.1038/s41564-023-01560-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024]
Abstract
Respiratory reductases enable microorganisms to use molecules present in anaerobic ecosystems as energy-generating respiratory electron acceptors. Here we identify three taxonomically distinct families of human gut bacteria (Burkholderiaceae, Eggerthellaceae and Erysipelotrichaceae) that encode large arsenals of tens to hundreds of respiratory-like reductases per genome. Screening species from each family (Sutterella wadsworthensis, Eggerthella lenta and Holdemania filiformis), we discover 22 metabolites used as respiratory electron acceptors in a species-specific manner. Identified reactions transform multiple classes of dietary- and host-derived metabolites, including bioactive molecules resveratrol and itaconate. Products of identified respiratory metabolisms highlight poorly characterized compounds, such as the itaconate-derived 2-methylsuccinate. Reductase substrate profiling defines enzyme-substrate pairs and reveals a complex picture of reductase evolution, providing evidence that reductases with specificities for related cinnamate substrates independently emerged at least four times. These studies thus establish an exceptionally versatile form of anaerobic respiration that directly links microbial energy metabolism to the gut metabolome.
Collapse
Affiliation(s)
- Alexander S Little
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Isaac T Younker
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Matthew S Schechter
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Paola Nol Bernardino
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Raphaël Méheust
- Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d'Évry, Université Paris-Saclay, CNRS, Evry, France
| | - Joshua Stemczynski
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Kaylie Scorza
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | | | - Deepti Sharan
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Emily Waligurski
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Rita Smith
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | | | - William Leiter
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - David Moran
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Mary McMillin
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Matthew A Odenwald
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, Berkeley, CA, USA
| | | | | | - Eric G Pamer
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Section of Infectious Diseases & Global Health, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - A Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenbug, Germany
| | - Samuel H Light
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA.
- Department of Microbiology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
9
|
Liu J, Ran X, Li J, Wang H, Xue G, Wang Y. Novel insights into carbon nanomaterials enhancing anammox for nitrogen removal: Effects and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167146. [PMID: 37726079 DOI: 10.1016/j.scitotenv.2023.167146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
Carbon nanomaterials (CNMs) possess the properties including large specific surface area, high porosity, and stable chemical structures, presenting significant application advantages in wastewater treatment. Indeed, CNMs are considered to be added to anammox systems to strengthen anammox function, especially to resolve the challenge of anammox technology, i.e., the slow growth rate of anammox bacteria, as well as its high environmental sensitivity. This paper systematically reviews the promotion effects and mechanisms of CNMs on the nitrogen removal performance of anammox system. Among the zero-, one-, and two-dimensional CNMs, two-dimensional CNMs have best promoting effect on the nitrogen removal performance of anammox system due to its excellent conductivity and abundant functional groups. Then, the promotion effects of CNMs on anammox process are summarized from the perspective of anammox activity and bacteria abundance. Furthermore, CNMs not only enhance the anammox process, but also stimulate the coupling of denitrification pathways with anammox, as well as the improvement of system operational stability (alleviating the inhibitions of low temperature and pH fluctuation), thus contributing to the promoted nitrogen removal performance. Essentially, CNMs are capable of facilitating microbial immobilization and electron transfer, which favor to improve the efficiency and stability of anammox process. Finally, this review highlights the gap in knowledge and future work, aiming to provide a deeper understanding of how CNMs can strengthen the anammox system and provide a novel perspective for the engineering of the anammox process.
Collapse
Affiliation(s)
- Jiawei Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| | - Gang Xue
- Shanghai Institute of Pollution Control and Ecological Security, Donghua University, Shanghai 201620, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
10
|
Smith HB, Lee K, Freeman MJ, Stevenson DM, Amador-Noguez D, Sauer JD. Listeria monocytogenes requires DHNA-dependent intracellular redox homeostasis facilitated by Ndh2 for survival and virulence. Infect Immun 2023; 91:e0002223. [PMID: 37754681 PMCID: PMC10580952 DOI: 10.1128/iai.00022-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/09/2023] [Indexed: 09/28/2023] Open
Abstract
Listeria monocytogenes is a remarkably well-adapted facultative intracellular pathogen that can thrive in a wide range of ecological niches. L. monocytogenes maximizes its ability to generate energy from diverse carbon sources using a respiro-fermentative metabolism that can function under both aerobic and anaerobic conditions. Cellular respiration maintains redox homeostasis by regenerating NAD+ while also generating a proton motive force. The end products of the menaquinone (MK) biosynthesis pathway are essential to drive both aerobic and anaerobic cellular respirations. We previously demonstrated that intermediates in the MK biosynthesis pathway, notably 1,4-dihydroxy-2-naphthoate (DHNA), are required for the survival and virulence of L. monocytogenes independent of their role in respiration. Furthermore, we found that restoration of NAD+/NADH ratio through expression of water-forming NADH oxidase could rescue phenotypes associated with DHNA deficiency. Here, we extend these findings to demonstrate that endogenous production or direct supplementation of DHNA restored both the cellular redox homeostasis and metabolic output of fermentation in L. monocytogenes. Furthermore, exogenous supplementation of DHNA rescues the in vitro growth and ex vivo virulence of L. monocytogenes DHNA-deficient mutants. Finally, we demonstrate that exogenous DHNA restores redox balance in L. monocytogenes specifically through the recently annotated NADH dehydrogenase Ndh2, independent of its role in the extracellular electron transport pathway. These data suggest that the production of DHNA may represent an additional layer of metabolic adaptability by L. monocytogenes to drive energy metabolism in the absence of respiration-favorable conditions.
Collapse
Affiliation(s)
- Hans B. Smith
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kijeong Lee
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew J. Freeman
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David M. Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
11
|
Farjana N, Furukawa H, Sumi H, Yumoto I. Effect of Fermentation Scale on Microbiota Dynamics and Metabolic Functions for Indigo Reduction. Int J Mol Sci 2023; 24:14696. [PMID: 37834143 PMCID: PMC10572741 DOI: 10.3390/ijms241914696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
During indigo dyeing fermentation, indigo reduction for the solubilization of indigo particles occurs through the action of microbiota under anaerobic alkaline conditions. The original microbiota in the raw material (sukumo: composted indigo plant) should be appropriately converged toward the extracellular electron transfer (EET)-occurring microbiota by adjusting environmental factors for indigo reduction. The convergence mechanisms of microbiota, microbial physiological basis for indigo reduction, and microbiota led by different velocities in the decrease in redox potential (ORP) at different fermentation scales were analyzed. A rapid ORP decrease was realized in the big batch, excluding Actinomycetota effectively and dominating Alkalibacterium, which largely contributed to the effective indigo reduction. Functional analyses of the microbiota related to strong indigo reduction on approximately day 30 indicated that the carbohydrate metabolism, prokaryotic defense system, and gene regulatory functions are important. Because the major constituent in the big batch was Alkalibacterium pelagium, we attempted to identify genes related to EET in its genome. Each set of genes for flavin adenine dinucleotide (FAD) transportation to modify the flavin mononucleotide (FMN)-associated family, electron transfer from NADH to the FMN-associated family, and demethylmenaquinone (DMK) synthesis were identified in the genome sequence. The correlation between indigo intensity reduction and metabolic functions suggests that V/A-type H+/Na+-transporting ATPase and NAD(P)H-producing enzymes drive membrane transportations and energization in the EET system, respectively.
Collapse
Affiliation(s)
- Nowshin Farjana
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan;
- Laboratory of Environmental Microbiology, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Hiromitsu Furukawa
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan;
| | - Hisako Sumi
- North-Indigo Textile Arts Studio, Otaru 047-0022, Japan;
| | - Isao Yumoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan;
- Laboratory of Environmental Microbiology, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
12
|
Zayabaatar E, Tang NMT, Pham MT. Electrogenic Staphylococcus epidermidis colonizes nasal cavities and alleviates IL-6 progression induced by the SARS2-CoV nucleocapsid protein. J Appl Microbiol 2023; 134:lxad179. [PMID: 37558389 DOI: 10.1093/jambio/lxad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023]
Abstract
AIM Certain probiotic bacteria have been shown to possess an immunomodulatory effect and a protective effect on influenza infections. Using the Staphylococcus epidermidis K1 colonized mice model, we assessed the effect of nasal administration of glycerol or flavin mononucleotide (FMN) on the production of interleukin (IL)-6 mediated by the severe acute respiratory syndrome coronavirus 2 (SARS2-CoV) nucleocapsid protein (NPP). METHODS AND RESULTS FMN, one of the key electron donors for the generation of electricity facilitated by S. epidermidis ATCC 12228, was detected in the glycerol fermentation medium. Compared to the S. epidermidis ATCC 12228, the S. epidermidis K1 isolate showed significant expression of the electron transfer genes, including pyruvate dehydrogenase (pdh), riboflavin kinase (rk), 1,4-dihydroxy-2-naphthoate octaprenyltransferase (menA), and type II NADH quinone oxidoreductase (ndh2). Institute of cancer research (ICR) mice were intranasally administered with S. epidermidis K1 with or without pretreatment with riboflavin kinase inhibitors, then nasally treated with glycerol or FMN before inoculating the NPP. Furthermore, J774A.1 macrophages were exposed to NPP serum and then treated with NPP of SARS2-CoV. The IL-6 levels in the bronchoalveolar lavage fluid (BALF) of mice and macrophages were quantified using a mouse IL-6 enzyme-linked immunosorbent assay kit. CONCLUSIONS Here, we report that nasal administration of NPP strongly elevates IL-6 levels in both BALF and J774A.1 macrophages. It is worth noting that NPP-neutralizing antibodies can decrease IL-6 levels in macrophages. The nasal administration of glycerol or FMN to S. epidermidis K1-colonized mice results in a reduction of NPP-induced IL-6 production.
Collapse
Affiliation(s)
- Enkhbat Zayabaatar
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320317, Taiwan
| | - Nguyen Mai Trinh Tang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320317, Taiwan
| | - Minh Tan Pham
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
13
|
Dundas CM, Keitz BK. Tapping the potential of Gram-positive bacteria for bioelectrochemical applications. Trends Biotechnol 2023; 41:273-275. [PMID: 36535817 DOI: 10.1016/j.tibtech.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Bacteria that perform extracellular electron transfer (EET) are central to redox-driven biotechnologies, including microbial fuel cells, bioremediation, and bioelectrosynthesis. However, engineerable EET strains have been restricted to well-characterized, Gram-negative model species. Light et al. identified a previously unknown but widely conserved EET pathway in the Gram-positive bacterium Listeria monocytogenes.
Collapse
Affiliation(s)
| | - Benjamin K Keitz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
14
|
Rivera-Lugo R, Huang S, Lee F, Méheust R, Iavarone AT, Sidebottom AM, Oldfield E, Portnoy DA, Light SH. Distinct Energy-Coupling Factor Transporter Subunits Enable Flavin Acquisition and Extracytosolic Trafficking for Extracellular Electron Transfer in Listeria monocytogenes. mBio 2023; 14:e0308522. [PMID: 36744898 PMCID: PMC9973259 DOI: 10.1128/mbio.03085-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/05/2023] [Indexed: 02/07/2023] Open
Abstract
A variety of electron transfer mechanisms link bacterial cytosolic electron pools with functionally diverse redox activities in the cell envelope and extracellular space. In Listeria monocytogenes, the ApbE-like enzyme FmnB catalyzes extracytosolic protein flavinylation, covalently linking a flavin cofactor to proteins that transfer electrons to extracellular acceptors. L. monocytogenes uses an energy-coupling factor (ECF) transporter complex that contains distinct substrate-binding, transmembrane, ATPase A, and ATPase A' subunits (RibU, EcfT, EcfA, and EcfA') to import environmental flavins, but the basis of extracytosolic flavin trafficking for FmnB flavinylation remains poorly defined. In this study, we show that the EetB and FmnA proteins are related to ECF transporter substrate-binding and transmembrane subunits, respectively, and are essential for exporting flavins from the cytosol for flavinylation. Comparisons of the flavin import versus export capabilities of L. monocytogenes strains lacking different ECF transporter subunits demonstrate a strict directionality of substrate-binding subunit transport but partial functional redundancy of transmembrane and ATPase subunits. Based on these results, we propose that ECF transporter complexes with different subunit compositions execute directional flavin import/export through a broadly conserved mechanism. Finally, we present genomic context analyses that show that related ECF exporter genes are distributed across members of the phylum Firmicutes and frequently colocalize with genes encoding flavinylated extracytosolic proteins. These findings clarify the basis of ECF transporter export and extracytosolic flavin cofactor trafficking in Firmicutes. IMPORTANCE Bacteria import vitamins and other essential compounds from their surroundings but also traffic related compounds from the cytosol to the cell envelope where they serve various functions. Studying the foodborne pathogen Listeria monocytogenes, we find that the modular use of subunits from a prominent class of bacterial transporters enables the import of environmental vitamin B2 cofactors and the extracytosolic trafficking of a vitamin B2-derived cofactor that facilitates redox reactions in the cell envelope. These studies clarify the basis of bidirectional small-molecule transport across the cytoplasmic membrane and the assembly of redox-active proteins within the cell envelope and extracellular space.
Collapse
Affiliation(s)
- Rafael Rivera-Lugo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Shuo Huang
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Frank Lee
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Raphaël Méheust
- Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d’Évry, Université Paris-Saclay, CNRS, Evry, France
| | - Anthony T. Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, Berkeley, California, USA
| | | | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Samuel H. Light
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
15
|
Zhang T, Pan Z, Wang J, Qian X, Yamashita H, Bian Z, Zhao Y. Homogeneous Carbon Dot-Anchored Fe(III) Catalysts with Self-Regulated Proton Transfer for Recyclable Fenton Chemistry. JACS AU 2023; 3:516-525. [PMID: 36873695 PMCID: PMC9975837 DOI: 10.1021/jacsau.2c00644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 05/19/2023]
Abstract
Fenton chemistry has been widely studied in a broad range from geochemistry, chemical oxidation to tumor chemodynamic therapy. It was well established that Fe3+/H2O2 resulted in a sluggish initial rate or even inactivity. Herein, we report the homogeneous carbon dot-anchored Fe(III) catalysts (CD-COOFeIII) wherein CD-COOFeIII active center activates H2O2 to produce hydroxyl radicals (•OH) reaching 105 times larger than that of the Fe3+/H2O2 system. The key is the •OH flux produced from the O-O bond reductive cleavage boosting by the high electron-transfer rate constants of CD defects and its self-regulated proton-transfer behavior probed by operando ATR-FTIR spectroscopy in D2O and kinetic isotope effects, respectively. Organic molecules interact with CD-COOFeIII via hydrogen bonds, promoting the electron-transfer rate constants during the redox reaction of CD defects. The antibiotics removal efficiency in the CD-COOFeIII/H2O2 system is at least 51 times large than the Fe3+/H2O2 system under equivalent conditions. Our findings provide a new pathway for traditional Fenton chemistry.
Collapse
Affiliation(s)
- Ting Zhang
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, China
| | - Zhelun Pan
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, China
| | - Jianying Wang
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, China
| | - Xufang Qian
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, China
| | - Hiromi Yamashita
- Division
of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita565-0871, Osaka, Japan
| | - Zhenfeng Bian
- The
Education Ministry Key Lab. of Resource Chemistry, Shanghai Key Laboratory
of Rare Earth Functional Materials, Shanghai
Normal University, 100
Guilin Road, Shanghai200234, China
| | - Yixin Zhao
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, China
| |
Collapse
|
16
|
Wu Y, Zhu X, Wang X, Lin Z, Reinfelder JR, Li F, Liu T. A New Electron Shuttling Pathway Mediated by Lipophilic Phenoxazine via the Interaction with Periplasmic and Inner Membrane Proteins of Shewanella oneidensis MR-1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2636-2646. [PMID: 36652548 DOI: 10.1021/acs.est.2c07862] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although it has been established that electron mediators substantially promote extracellular electron transfer (EET), electron shuttling pathways are not fully understood. Here, a new electron shuttling pathway was found in the EET process by Shewanella oneidensis MR-1 with resazurin, a lipophilic electron mediator. With resazurin, the genes encoding outer-membrane cytochromes (mtrCBA and omcA) were downregulated. Although cytochrome deletion substantially reduced biocurrent generation to 1-12% of that of wild-type (WT) cells, the presence of resazurin restored biocurrent generation to 168 μA·cm-2 (ΔmtrA/omcA/mtrC), nearly equivalent to that of WT cells (194 μA·cm-2), indicating that resazurin-mediated electron transfer was not dependent on the Mtr pathway. Biocurrent generation by resazurin was much lower in ΔcymA and ΔmtrA/omcA/mtrC/fccA/cctA mutants (4 and 6 μA·cm-2) than in WT cells, indicating a key role of FccA, CctA, and CymA in this process. The effectiveness of resazurin in EET of Mtr cytochrome mutants is also supported by cyclic voltammetry, resazurin reduction kinetics, and in situ c-type cytochrome spectroscopy results. The findings demonstrated that low molecular weight, lipophilic electron acceptors, such as phenoxazine and phenazine, may facilitate electron transfer directly from periplasmic and inner membrane proteins, thus providing new insight into the roles of exogenous electron mediators in electron shuttling in natural and engineered biogeochemical systems.
Collapse
Affiliation(s)
- Yundang Wu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiao Zhu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinxin Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhixin Lin
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - John R Reinfelder
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
17
|
The Differing Roles of Flavins and Quinones in Extracellular Electron Transfer in Lactiplantibacillus plantarum. Appl Environ Microbiol 2023; 89:e0131322. [PMID: 36533923 PMCID: PMC9888254 DOI: 10.1128/aem.01313-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lactiplantibacillus plantarum is a lactic acid bacterium that is commonly found in the human gut and fermented food products. Despite its overwhelmingly fermentative metabolism, this microbe can perform extracellular electron transfer (EET) when provided with an exogenous quinone, 1,4-dihydroxy-2-naphthoic acid (DHNA), and riboflavin. However, the separate roles of DHNA and riboflavin in EET in L. plantarum have remained unclear. Here, we seek to understand the role of quinones and flavins in EET by monitoring iron and anode reduction in the presence and absence of these small molecules. We found that addition of either DHNA or riboflavin can support robust iron reduction, indicating electron transfer to extracellular iron occurs through both flavin-dependent and DHNA-dependent routes. Using genetic mutants of L. plantarum, we found that flavin-dependent iron reduction requires Ndh2 and EetA, while DHNA-dependent iron reduction largely relies on Ndh2 and PplA. In contrast to iron reduction, DHNA-containing medium supported more robust anode reduction than riboflavin-containing medium, suggesting electron transfer to an anode proceeds most efficiently through the DHNA-dependent pathway. Furthermore, we found that flavin-dependent anode reduction requires EetA, Ndh2, and PplA, while DHNA-dependent anode reduction requires Ndh2 and PplA. Taken together, we identify multiple EET routes utilized by L. plantarum and show that the EET route depends on access to environmental biomolecules and on the electron acceptor. This work expands our molecular-level understanding of EET in Gram-positive microbes and provides additional opportunities to manipulate EET for biotechnology. IMPORTANCE Lactic acid bacteria are named because of their nearly exclusive fermentative metabolism. Thus, the recent observation of EET activity-typically associated with anaerobic respiration-in this class of organisms has forced researchers to rethink the rules governing microbial metabolic strategies. Our identification of multiple routes for EET in L. plantarum that depend on two different redox active small molecules expands our understanding of how microbes metabolically adapt to different environments to gain an energetic edge and how these processes can be manipulated for biotechnological uses. Understanding the role of EET in lactic acid bacteria is of great importance due to the significance of lactic acid bacteria in agriculture, bioremediation, food production, and gut health. Furthermore, the maintenance of multiple EET routes speaks to the importance of this process to function under a variety of environmental conditions.
Collapse
|
18
|
The Extracellular Electron Transport Pathway Reduces Copper for Sensing by the CopRS Two-Component System under Anaerobic Conditions in Listeria monocytogenes. J Bacteriol 2023; 205:e0039122. [PMID: 36622231 PMCID: PMC9879103 DOI: 10.1128/jb.00391-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The renowned antimicrobial activity of copper stems in part from its ability to undergo redox cycling between Cu1+/2+ oxidation states. Bacteria counter copper toxicity with a network of sensors that often include two-component signaling systems to direct transcriptional responses. As in typical two-component systems, ligand binding by the extracellular domain of the membrane bound copper sensor component leads to phosphorylation and activation of the cognate response regulator transcription factor. In Listeria monocytogenes, the plasmid-borne CopRS two-component system upregulates both copper resistance and lipoprotein remodeling genes upon copper challenge, but the oxidation state of copper bound by CopS is unknown. Herein, we show CopS utilizes a triad of key residues (His-His-Phe) that are predicted to be at the dimerization interface and that are analogous with the Escherichia coli CusS copper sensor to specifically bind Cu1+/Ag1+ and activate CopR transcription. We demonstrate Cu2+ only induces CopRS if first reduced by electron transport systems, as strains lacking menaquinone carriers were unable to respond to Cu2+. The flavin-dependent extracellular electron transport system (EET) was the main mechanism for metal reduction, capable of either generating inducing ligand (Cu2+ to Cu1+) or removing it by precipitation (Ag1+ to Ag0). We show that EET flux is directly proportional to the rate of Cu2+ reduction and that since EET activity is low under oxygenated conditions when a competing respiratory chain is operating, CopRS signaling in turn is activated only under anaerobic conditions. EET metal reduction thus sensitizes cells to copper while providing resistance to silver under anaerobic growth. IMPORTANCE Two-component extracellular copper sensing from the periplasm of Gram-negative bacteria has been well studied, but copper detection at the cell surface of the Gram-positive L. monocytogenes is less understood. Collectively, our results show that EET is most active under anaerobic conditions and reduces Cu2+ and Ag1+ to, respectively, generate or remove the monovalent ligands that directly bind to CopS and lead to the induction of lipoprotein remodeling genes. This reducing activity regulates CopRS signaling and links the upregulation of copper resistance genes with increasing EET flux. Our studies provide insight into how a two-component copper sensing system is integrated into a model monoderm Firmicute to take cues from the electron transport chain activity.
Collapse
|
19
|
Smith HB, Lee K, Stevenson DM, Amador-Noguez D, Sauer JD. Listeria monocytogenes requires DHNA-dependent intracellular redox homeostasis facilitated by Ndh2 for survival and virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.524026. [PMID: 36711537 PMCID: PMC9882099 DOI: 10.1101/2023.01.13.524026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Listeria monocytogenes is a remarkably well-adapted facultative intracellular pathogen that can thrive in a wide range of ecological niches. L. monocytogenes maximizes its ability to generate energy from diverse carbon sources using a respiro-fermentative metabolism that can function under both aerobic and anaerobic conditions. Cellular respiration maintains redox homeostasis by regenerating NAD + while also generating a proton motive force (PMF). The end products of the menaquinone (MK) biosynthesis pathway are essential to drive both aerobic and anaerobic cellular respiration. We previously demonstrated that intermediates in the MK biosynthesis pathway, notably 1,4-dihydroxy-2-naphthoate (DHNA), are required for the survival and virulence of L. monocytogenes independent of their role in respiration. Furthermore, we found that restoration of NAD + /NADH ratio through expression of water-forming NADH oxidase (NOX) could rescue phenotypes associated with DHNA deficiency. Here we extend these findings to demonstrate that endogenous production or direct supplementation of DHNA restored both the cellular redox homeostasis and metabolic output of fermentation in L. monocytogenes . Further, exogenous supplementation of DHNA rescues the in vitro growth and ex vivo virulence of L. monocytogenes DHNA-deficient mutants. Finally, we demonstrate that exogenous DHNA restores redox balance in L. monocytogenes specifically through the recently annotated NADH dehydrogenase Ndh2, independent of the extracellular electron transport (EET) pathway. These data suggest that the production of DHNA may represent an additional layer of metabolic adaptability by L. monocytogenes to drive energy metabolism in the absence of respiration-favorable conditions.
Collapse
Affiliation(s)
- Hans B. Smith
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, United States of America
| | - Kijeong Lee
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, United States of America
| | - David M. Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, United States of America
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, United States of America
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, United States of America
| |
Collapse
|
20
|
Ding DW, Huang WF, Lei LL, Wu P. Co-fitness analysis identifies a diversity of signal proteins involved in the utilization of specific c-type cytochromes. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01694-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
c-Type cytochromes are essential for extracellular electron transfer (EET) in electroactive microorganisms. The expression of appropriate c-type cytochromes is an important feature of these microorganisms in response to different extracellular electron acceptors. However, how these diverse c-type cytochromes are tightly regulated is still poorly understood.
Methods
In this study, we identified the high co-fitness genes that potentially work with different c-type cytochromes by using genome-wide co-fitness analysis. We also constructed and studied the co-fitness networks that composed of c-type cytochromes and the top 20 high co-fitness genes of them.
Results
We found that high co-fitness genes of c-type cytochromes were enriched in signal transduction processes in Shewanella oneidensis MR-1 cells. We then checked the top 20 co-fitness proteins for each of the 41 c-type cytochromes and identified the corresponding signal proteins for different c-type cytochromes. In particular, through the analysis of the high co-fitness signal protein for CymA, we further confirmed the cooperation between signal proteins and c-type cytochromes and identified a novel signal protein that is putatively involved in the regulation of CymA. In addition, we showed that these signal proteins form two signal transduction modules.
Conclusion
Taken together, these findings provide novel insights into the coordinated utilization of different c-type cytochromes under diverse conditions.
Collapse
|
21
|
Kato S, Masuda S, Shibata A, Shirasu K, Ohkuma M. Insights into ecological roles of uncultivated bacteria in Katase hot spring sediment from long-read metagenomics. Front Microbiol 2022; 13:1045931. [PMID: 36406403 PMCID: PMC9671151 DOI: 10.3389/fmicb.2022.1045931] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/11/2022] [Indexed: 08/11/2023] Open
Abstract
Diverse yet-uncultivated bacteria and archaea, i.e., microbial dark matter, are present in terrestrial hot spring environments. Numerous metagenome-assembled genomes (MAGs) of these uncultivated prokaryotes by short-read metagenomics have been reported so far, suggesting their metabolic potential. However, more reliable MAGs, i.e., circularized complete MAGs (cMAGs), have been rarely reported from hot spring environments. Here, we report 61 high-quality (HQ)-MAGs, including 14 cMAGs, of diverse uncultivated bacteria and archaea retrieved from hot spring sediment (52°C, pH 7.2) by highly accurate long-read sequencing using PacBio Sequel II. The HQ MAGs were affiliated with one archaeal and 13 bacterial phyla. Notably, nine of the 14 cMAGs were the first reported cMAGs for the family- to class-level clades that these cMAGs belonged to. The genome information suggests that the bacteria represented by MAGs play a significant role in the biogeochemical cycling of carbon, nitrogen, iron, and sulfur at this site. In particular, the genome analysis of six HQ MAGs including two cMAGs of Armatimonadota, of which members are frequently abundant in hot spring environments, predicts that they are aerobic, moderate thermophilic chemoorganoheterotrophs, and potentially oxidize and/or reduce iron. This prediction is consistent with the environmental conditions where they were detected. Our results expand the knowledge regarding the ecological potential of uncultivated bacteria in moderately-high-temperature environments.
Collapse
Affiliation(s)
- Shingo Kato
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Sachiko Masuda
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Arisa Shibata
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Ken Shirasu
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Japan
| |
Collapse
|
22
|
Edel M, Philipp LA, Lapp J, Reiner J, Gescher J. Electron transfer of extremophiles in bioelectrochemical systems. Extremophiles 2022; 26:31. [PMID: 36222927 PMCID: PMC9556394 DOI: 10.1007/s00792-022-01279-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022]
Abstract
The interaction of bacteria and archaea with electrodes is a relatively new research field which spans from fundamental to applied research and influences interdisciplinary research in the fields of microbiology, biochemistry, biotechnology as well as process engineering. Although a substantial understanding of electron transfer processes between microbes and anodes and between microbes and cathodes has been achieved in mesophilic organisms, the mechanisms used by microbes under extremophilic conditions are still in the early stages of discovery. Here, we review our current knowledge on the biochemical solutions that evolved for the interaction of extremophilic organisms with electrodes. To this end, the available knowledge on pure cultures of extremophilic microorganisms has been compiled and the study has been extended with the help of bioinformatic analyses on the potential distribution of different electron transfer mechanisms in extremophilic microorganisms.
Collapse
Affiliation(s)
- Miriam Edel
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany
| | - Laura-Alina Philipp
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany
| | - Jonas Lapp
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany
| | - Johannes Reiner
- Karlsruhe Institute of Technology, Engler-Bunte-Institute, Karlsruhe, Germany
| | - Johannes Gescher
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany.
| |
Collapse
|
23
|
Lopes HDFS, Tu Z, Sumi H, Yumoto I. Indigofera tinctoria L. leaf powder promotes initiation of indigo reduction by inducing of rapid transition of the microbial community. Front Microbiol 2022; 13:957809. [PMID: 36016790 PMCID: PMC9395713 DOI: 10.3389/fmicb.2022.957809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Water-insoluble indigo is solubilized by the reducing action of microorganisms which occurs during fermentation. In natural indigo fermentation, composted leaves of Polygonum tinctorium L. (sukumo) are the raw material that has been used as both the indigo source and the bacterial inoculum. Ideally, indigo reduction occurs shortly after preparation of the fermentation vat. The time-to-reduction depends on the quality of the sukumo and the methods for preparation and management of the fermentation batch. We estimated the effect of adding Indigofera tinctoria L. leaf powder (LP) to indigo fermentation in two fermentations originally exhibiting either rapid or slow time-to-reduction (T-sukumo and D-sukumo, respectively). Alkalihalobacillus spp. (97.7%–98.4% similarities with Alkalihalobacillus macyae) were observed only in the LP-added T-sukumo fermentation liquor. They appeared from day 1 (0.7%) and increased to 24.4% on day 6, and their presence was related to indigo reduction. Differences in functional ratio between LP-added and its control batches revealed enhancement of pathways related to reconstitution of cellular functions and substrate metabolisms, to all of which Alkalihalobacillus spp. contributed intensively. In D-sukumo batch, appearance of bacteria necessary to initiate indigo reduction (principally Anaerobacillus/Polygonibacillus) was comparatively slower. LP promotes earlier indigo reduction in both T- and D-sukumo-based batches, owing to its promotion of microbiota transition. The effect of the LP was intensified from day 1 to day 2 in both sukumo using batches according to the assumed function of the microbiota. The initial effect of LP on the T-sukumo batches was more intense than that in the D-sukumo batches and was continued until day 3, while the duration in the T-sukumo batches was continued until day 5. Based on these observations, we propose that the LP functions through its phytochemicals that eliminate oxygen, stimulate the microbiota, and accelerate its transitional changes toward a suitable function that opens the pathway for the extracellular electron transfer using carbohydrates as a substrate.
Collapse
Affiliation(s)
- Helena de Fátima Silva Lopes
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
- Laboratory of Environmental Microbiology, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Zhihao Tu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
- Laboratory of Environmental Microbiology, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hisako Sumi
- North-Indigo Textile Arts Studio, Otaru, Japan
| | - Isao Yumoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
- Laboratory of Environmental Microbiology, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
- *Correspondence: Isao Yumoto,
| |
Collapse
|
24
|
Cao H, Qiao S, Qin H, Jandt KD. Antibacterial Designs for Implantable Medical Devices: Evolutions and Challenges. J Funct Biomater 2022; 13:jfb13030086. [PMID: 35893454 PMCID: PMC9326756 DOI: 10.3390/jfb13030086] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022] Open
Abstract
The uses of implantable medical devices are safer and more common since sterilization methods and techniques were established a century ago; however, device-associated infections (DAIs) are still frequent and becoming a leading complication as the number of medical device implantations keeps increasing. This urges the world to develop instructive prevention and treatment strategies for DAIs, boosting the studies on the design of antibacterial surfaces. Every year, studies associated with DAIs yield thousands of publications, which here are categorized into four groups, i.e., antibacterial surfaces with long-term efficacy, cell-selective capability, tailored responsiveness, and immune-instructive actions. These innovations are promising in advancing the solution to DAIs; whereas most of these are normally quite preliminary “proof of concept” studies lacking exact clinical scopes. To help identify the flaws of our current antibacterial designs, clinical features of DAIs are highlighted. These include unpredictable onset, site-specific incidence, and possibly involving multiple and resistant pathogenic strains. The key point we delivered is antibacterial designs should meet the specific requirements of the primary functions defined by the “intended use” of an implantable medical device. This review intends to help comprehend the complex relationship between the device, pathogens, and the host, and figure out future directions for improving the quality of antibacterial designs and promoting clinical translations.
Collapse
Affiliation(s)
- Huiliang Cao
- Interfacial Electrochemistry and Biomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science & Technology, Shanghai 200237, China
- Chair of Materials Science, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| | - Shichong Qiao
- Department of Implant Dentistry, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| | - Hui Qin
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| | - Klaus D. Jandt
- Chair of Materials Science, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena School for Microbial Communication (JSMC), Neugasse 23, 07743 Jena, Germany
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| |
Collapse
|
25
|
Radlinski LC, Bäumler AJ. To breathe or not to breathe? eLife 2022; 11:79593. [PMID: 35593698 PMCID: PMC9122492 DOI: 10.7554/elife.79593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Listeria monocytogenes uses respiration to sustain a risky fermentative lifestyle during infection.
Collapse
Affiliation(s)
- Lauren C Radlinski
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, United States
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, United States
| |
Collapse
|
26
|
Liu Y, Charamis N, Boeren S, Blok J, Lewis AG, Smid EJ, Abee T. Physiological Roles of Short-Chain and Long-Chain Menaquinones (Vitamin K2) in Lactococcus cremoris. Front Microbiol 2022; 13:823623. [PMID: 35369466 PMCID: PMC8965153 DOI: 10.3389/fmicb.2022.823623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/17/2022] [Indexed: 01/07/2023] Open
Abstract
Lactococcus cremoris and L. lactis are well known for their occurrence and applications in dairy fermentations, but their niche extends to a range of natural and food production environments. L. cremoris and L. lactis produce MKs (vitamin K2), mainly as the long-chain forms represented by MK-9 and MK-8, and a detectable number of short-chain forms represented by MK-3. The physiological significance of the different MK forms in the lifestyle of these bacterial species has not been investigated extensively. In this study, we used L. cremoris MG1363 to construct mutants producing different MK profiles by deletion of genes encoding (i) a menaquinone-specific isochorismate synthase, (ii) a geranyltranstransferase, and (iii) a prenyl diphosphate synthase. These gene deletions resulted in (i) a non-MK producer (ΔmenF), (ii) a presumed MK-1 producer (ΔispA), and (iii) an MK-3 producer (Δllmg_0196), respectively. By examining the phenotypes of the MG1363 wildtype strain and respective mutants, including biomass accumulation, stationary phase survival, oxygen consumption, primary metabolites, azo dye/copper reduction, and proteomes, under aerobic, anaerobic, and respiration-permissive conditions, we could infer that short-chain MKs like MK-1 and MK-3 are preferred to mediate extracellular electron transfer and reaction with extracellular oxygen, while the long-chain MKs like MK-9 and MK-8 are more efficient in aerobic respiratory electron transport chain. The different electron transfer routes mediated by short-chain and long-chain MKs likely support growth and survival of L. cremoris in a range of (transiently) anaerobic and aerobic niches including food fermentations, highlighting the physiological significance of diverse MKs in L. cremoris.
Collapse
Affiliation(s)
- Yue Liu
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Nikolaos Charamis
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, Netherlands
| | - Joost Blok
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | | | - Eddy J Smid
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
27
|
Rivera-Lugo R, Deng D, Anaya-Sanchez A, Tejedor-Sanz S, Tang E, Reyes Ruiz VM, Smith HB, Titov DV, Sauer JD, Skaar EP, Ajo-Franklin CM, Portnoy DA, Light SH. Listeria monocytogenes requires cellular respiration for NAD + regeneration and pathogenesis. eLife 2022; 11:e75424. [PMID: 35380108 PMCID: PMC9094743 DOI: 10.7554/elife.75424] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Cellular respiration is essential for multiple bacterial pathogens and a validated antibiotic target. In addition to driving oxidative phosphorylation, bacterial respiration has a variety of ancillary functions that obscure its contribution to pathogenesis. We find here that the intracellular pathogen Listeria monocytogenes encodes two respiratory pathways which are partially functionally redundant and indispensable for pathogenesis. Loss of respiration decreased NAD+ regeneration, but this could be specifically reversed by heterologous expression of a water-forming NADH oxidase (NOX). NOX expression fully rescued intracellular growth defects and increased L. monocytogenes loads >1000-fold in a mouse infection model. Consistent with NAD+ regeneration maintaining L. monocytogenes viability and enabling immune evasion, a respiration-deficient strain exhibited elevated bacteriolysis within the host cytosol and NOX expression rescued this phenotype. These studies show that NAD+ regeneration represents a major role of L. monocytogenes respiration and highlight the nuanced relationship between bacterial metabolism, physiology, and pathogenesis.
Collapse
Affiliation(s)
- Rafael Rivera-Lugo
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - David Deng
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Andrea Anaya-Sanchez
- Graduate Group in Microbiology, University of California, BerkeleyBerkeleyUnited States
| | - Sara Tejedor-Sanz
- Department of Biosciences, Rice UniversityHoustonUnited States
- The Molecular Foundry, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Eugene Tang
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Valeria M Reyes Ruiz
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashvilleUnited States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical CenterNashvilleUnited States
| | - Hans B Smith
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
| | - Denis V Titov
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Department of Nutritional Sciences and Toxicology, University of California, BerkeleyBerkeleyUnited States
- Center for Computational Biology, University of California, BerkeleyBerkeleyUnited States
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashvilleUnited States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical CenterNashvilleUnited States
| | - Caroline M Ajo-Franklin
- Department of Biosciences, Rice UniversityHoustonUnited States
- The Molecular Foundry, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Daniel A Portnoy
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - Samuel H Light
- Department of Microbiology, University of ChicagoChicagoUnited States
- Duchossois Family Institute, University of ChicagoChicagoUnited States
| |
Collapse
|
28
|
Quinones: More Than Electron Shuttles. Res Microbiol 2022; 173:103953. [DOI: 10.1016/j.resmic.2022.103953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/21/2022]
|
29
|
Electron transfer in Gram-positive bacteria: enhancement strategies for bioelectrochemical applications. World J Microbiol Biotechnol 2022; 38:83. [DOI: 10.1007/s11274-022-03255-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/21/2022] [Indexed: 12/30/2022]
|
30
|
Rivera-Lugo R, Light SH, Garelis NE, Portnoy DA. RibU is an essential determinant of Listeria pathogenesis that mediates acquisition of FMN and FAD during intracellular growth. Proc Natl Acad Sci U S A 2022; 119:e2122173119. [PMID: 35316134 PMCID: PMC9060500 DOI: 10.1073/pnas.2122173119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are essential riboflavin-derived cofactors involved in a myriad of redox reactions across all forms of life. Nevertheless, the basis of flavin acquisition strategies by riboflavin auxotrophic pathogens remains poorly defined. In this study, we examined how the facultative intracellular pathogen Listeria monocytogenes, a riboflavin auxotroph, acquires flavins during infection. A L. monocytogenes mutant lacking the putative riboflavin transporter (RibU) was completely avirulent in mice but had no detectable growth defect in nutrient-rich media. However, unlike wild type, the RibU mutant was unable to grow in defined media supplemented with FMN or FAD or to replicate in macrophages starved for riboflavin. Consistent with RibU functioning to scavenge FMN and FAD inside host cells, a mutant unable to convert riboflavin to FMN or FAD retained virulence and grew in cultured macrophages and in spleens and livers of infected mice. However, this FMN- and FAD-requiring strain was unable to grow in the gallbladder or intestines, where L. monocytogenes normally grows extracellularly, suggesting that these sites do not contain sufficient flavin cofactors to promote replication. Thus, by deleting genes required to synthesize FMN and FAD, we converted L. monocytogenes from a facultative to an obligate intracellular pathogen. Collectively, these data indicate that L. monocytogenes requires riboflavin to grow extracellularly in vivo but scavenges FMN and FAD to grow in host cells.
Collapse
Affiliation(s)
- Rafael Rivera-Lugo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Samuel H. Light
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Nicholas E. Garelis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
31
|
Tejedor-Sanz S, Stevens ET, Li S, Finnegan P, Nelson J, Knoesen A, Light SH, Ajo-Franklin CM, Marco ML. Extracellular electron transfer increases fermentation in lactic acid bacteria via a hybrid metabolism. eLife 2022; 11:e70684. [PMID: 35147079 PMCID: PMC8837199 DOI: 10.7554/elife.70684] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
Energy conservation in microorganisms is classically categorized into respiration and fermentation; however, recent work shows some species can use mixed or alternative bioenergetic strategies. We explored the use of extracellular electron transfer for energy conservation in diverse lactic acid bacteria (LAB), microorganisms that mainly rely on fermentative metabolism and are important in food fermentations. The LAB Lactiplantibacillus plantarum uses extracellular electron transfer to increase its NAD+/NADH ratio, generate more ATP through substrate-level phosphorylation, and accumulate biomass more rapidly. This novel, hybrid metabolism is dependent on a type-II NADH dehydrogenase (Ndh2) and conditionally requires a flavin-binding extracellular lipoprotein (PplA) under laboratory conditions. It confers increased fermentation product yield, metabolic flux, and environmental acidification in laboratory media and during kale juice fermentation. The discovery of a single pathway that simultaneously blends features of fermentation and respiration in a primarily fermentative microorganism expands our knowledge of energy conservation and provides immediate biotechnology applications.
Collapse
Affiliation(s)
- Sara Tejedor-Sanz
- Department of BioSciences, Rice UniversityHoustonUnited States
- Biological Nanostructures Facility, The Molecular Foundry, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Eric T Stevens
- Department of Food Science & Technology, University of California‐DavisDavisUnited States
| | - Siliang Li
- Department of BioSciences, Rice UniversityHoustonUnited States
| | - Peter Finnegan
- Department of Food Science & Technology, University of California‐DavisDavisUnited States
| | - James Nelson
- Department of Electrical and Computer Engineering, University of California‐DavisDavisUnited States
| | - Andre Knoesen
- Department of Electrical and Computer Engineering, University of California‐DavisDavisUnited States
| | - Samuel H Light
- Department of Microbiology, University of ChicagoChicagoUnited States
| | - Caroline M Ajo-Franklin
- Department of BioSciences, Rice UniversityHoustonUnited States
- Biological Nanostructures Facility, The Molecular Foundry, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Maria L Marco
- Department of Food Science & Technology, University of California‐DavisDavisUnited States
| |
Collapse
|
32
|
Wang YX, Hou N, Liu XL, Mu Y. Advances in interfacial engineering for enhanced microbial extracellular electron transfer. BIORESOURCE TECHNOLOGY 2022; 345:126562. [PMID: 34910968 DOI: 10.1016/j.biortech.2021.126562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
The extracellular electron transfer (EET) efficiency between electroactive microbes (EAMs) and electrode is a key factor determining the development of microbial electrochemical technology (MET). Currently, the low EET efficiency of EAMs limits the application of MET in the fields of organic matter degradation, electric energy production, seawater desalination, bioremediation and biosensing. Enhancement of the interaction between EAMs and electrode by interfacial engineering methods brings bright prospects for the improvement of the EET efficiency of EAMs. In view of the research in recent years, this mini-review systematically summarizes various interfacial engineering strategies ranging from electrode surface modification to hybrid biofilm formation, then to single cell interfacial engineering and intracellular reformation for promoting the electron transfer between EAMs and electrode, focusing on the applicability and limitations of these methodologies. Finally, the possible key directions, challenges and opportunities for future interfacial engineering to strengthen the microbial EET are proposed in this mini-review.
Collapse
Affiliation(s)
- Yi-Xuan Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Nannan Hou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Xiao-Li Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
33
|
Deka RK, Deka A, Liu WZ, Norgard MV, Brautigam CA. Inhibition of bacterial FMN transferase: A potential avenue for countering antimicrobial resistance. Protein Sci 2022; 31:545-551. [PMID: 34796555 PMCID: PMC8819833 DOI: 10.1002/pro.4241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/01/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023]
Abstract
Antibiotic resistance is a challenge for the control of bacterial infections. In an effort to explore unconventional avenues for antibacterial drug development, we focused on the FMN-transferase activity of the enzyme Ftp from the syphilis spirochete, Treponema pallidum (Ftp_Tp). This enzyme, which is only found in prokaryotes and trypanosomatids, post-translationally modifies proteins in the periplasm, covalently linking FMN (from FAD) to proteins that typically are important for establishing an essential electrochemical gradient across the cytoplasmic membrane. As such, Ftp inhibitors potentially represent a new class of antimicrobials. Previously, we showed that AMP is both a product of the Ftp_tp-catalyzed reaction and an inhibitor of the enzyme. As a preliminary step in exploiting this property to develop a novel Ftp_Tp inhibitor, we have used structural and solution studies to examine the inhibitory and enzyme-binding properties of several adenine-based nucleosides, with particular focus on the 2-position of the purine ring. Implications for future drug design are discussed.
Collapse
Affiliation(s)
- Ranjit K. Deka
- Department of MicrobiologyUT Southwestern Medical CenterDallasTexasUSA
| | | | - Wei Z. Liu
- Department of MicrobiologyUT Southwestern Medical CenterDallasTexasUSA
| | | | - Chad A. Brautigam
- Department of MicrobiologyUT Southwestern Medical CenterDallasTexasUSA,Department of BiophysicsUT Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
34
|
Mukherjee T, Venkata Mohan S. Metabolic flux of Bacillus subtilis under poised potential in electrofermentation system: Gene expression vs product formation. BIORESOURCE TECHNOLOGY 2021; 342:125854. [PMID: 34537531 DOI: 10.1016/j.biortech.2021.125854] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
The role of poised (negative/positive) potential (0.2/0.4/0.6/0.8 V vs Ag/AgCl at anode) was studied in electrofermentation system (EF) to understand the metabolic flux of Bacillus subtilis with pyruvate as a carbon source. The relative expression of genes encoding pyruvate dehydrogenase (pdhA), lactate dehydrogenase (lctE), acetate kinase (ackA), pyruvate carboxylase (pycA), adenylosuccinate lyase (purB), acylCoA dehydrogenase (acdA) and NADH dehydrogenase (ndh) allowed evaluation of metabolic changes in correlation to product formation and bioelectrochemical analysis. In comparison to control, poised circumstances showed marked influence on product profile with up-regulation of key enzymes involved in pyruvate metabolism. EF poised with - 0.8 V and -0.6 V enhanced bio-hydrogen production by 6 folds and 4 folds respectively. Concomitantly, -0.8 V resulted in maximum ethanol and acetic acid production whilst, -0.6 V and + 0.6 V resulted in maximum lactic acid and succinic acid production respectively. The transcripts for genes associated synthesis were upregulated in the respected poised reactors.
Collapse
Affiliation(s)
- Triya Mukherjee
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
35
|
Bird LJ, Kundu BB, Tschirhart T, Corts AD, Su L, Gralnick JA, Ajo-Franklin CM, Glaven SM. Engineering Wired Life: Synthetic Biology for Electroactive Bacteria. ACS Synth Biol 2021; 10:2808-2823. [PMID: 34637280 DOI: 10.1021/acssynbio.1c00335] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electroactive bacteria produce or consume electrical current by moving electrons to and from extracellular acceptors and donors. This specialized process, known as extracellular electron transfer, relies on pathways composed of redox active proteins and biomolecules and has enabled technologies ranging from harvesting energy on the sea floor, to chemical sensing, to carbon capture. Harnessing and controlling extracellular electron transfer pathways using bioengineering and synthetic biology promises to heighten the limits of established technologies and open doors to new possibilities. In this review, we provide an overview of recent advancements in genetic tools for manipulating native electroactive bacteria to control extracellular electron transfer. After reviewing electron transfer pathways in natively electroactive organisms, we examine lessons learned from the introduction of extracellular electron transfer pathways into Escherichia coli. We conclude by presenting challenges to future efforts and give examples of opportunities to bioengineer microbes for electrochemical applications.
Collapse
Affiliation(s)
- Lina J. Bird
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Biki B. Kundu
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas 77005, United States
| | - Tanya Tschirhart
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Anna D. Corts
- Joyn Bio, Boston, Massachusetts 02210, United States
| | - Lin Su
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210018, People’s Republic of China
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Jeffrey A. Gralnick
- Department of Plant and Microbial Biology, BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| | | | - Sarah M. Glaven
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
36
|
McCuskey SR, Chatsirisupachai J, Zeglio E, Parlak O, Panoy P, Herland A, Bazan GC, Nguyen TQ. Current Progress of Interfacing Organic Semiconducting Materials with Bacteria. Chem Rev 2021; 122:4791-4825. [PMID: 34714064 DOI: 10.1021/acs.chemrev.1c00487] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microbial bioelectronics require interfacing microorganisms with electrodes. The resulting abiotic/biotic platforms provide the basis of a range of technologies, including energy conversion and diagnostic assays. Organic semiconductors (OSCs) provide a unique strategy to modulate the interfaces between microbial systems and external electrodes, thereby improving the performance of these incipient technologies. In this review, we explore recent progress in the field on how OSCs, and related materials capable of charge transport, are being used within the context of microbial systems, and more specifically bacteria. We begin by examining the electrochemical communication modes in bacteria and the biological basis for charge transport. Different types of synthetic organic materials that have been designed and synthesized for interfacing and interrogating bacteria are discussed next, followed by the most commonly used characterization techniques for evaluating transport in microbial, synthetic, and hybrid systems. A range of applications is subsequently examined, including biological sensors and energy conversion systems. The review concludes by summarizing what has been accomplished so far and suggests future design approaches for OSC bioelectronics materials and technologies that hybridize characteristic properties of microbial and OSC systems.
Collapse
Affiliation(s)
- Samantha R McCuskey
- Department of Chemistry, National University of Singapore, Singapore 119077, Singapore
| | - Jirat Chatsirisupachai
- Center for Polymers and Organic Solids & Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States.,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Erica Zeglio
- Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm 17177, Sweden
| | - Onur Parlak
- Dermatology and Venereology Division, Department of Medicine(Solna), Karolinska Institute, Stockholm 17177, Sweden.,AIMES Center of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
| | - Patchareepond Panoy
- Center for Polymers and Organic Solids & Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States.,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Anna Herland
- Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm 17177, Sweden.,AIMES Center of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
| | - Guillermo C Bazan
- Department of Chemistry, National University of Singapore, Singapore 119077, Singapore
| | - Thuc-Quyen Nguyen
- Center for Polymers and Organic Solids & Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
37
|
The longitudinal and cross-sectional heterogeneity of the intestinal microbiota. Curr Opin Microbiol 2021; 63:221-230. [PMID: 34428628 DOI: 10.1016/j.mib.2021.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
A central goal of microbiome research is to understand the factors that balance gut-associated microbial communities, thereby creating longitudinal and cross-sectional heterogeneity in their composition and density. Whereas the diet dictates taxa dominance, microbial communities are linked intimately to host physiology through digestive and absorptive functions that generate longitudinal heterogeneity in nutrient availability. Additionally, the host differentially controls the access to electron acceptors along the longitudinal axis of the intestine to drive the development of microbial communities that are dominated by facultatively anaerobic bacteria in the small intestine or obligately anaerobic bacteria in the large intestine. By secreting mucus and antimicrobials, the host further constructs microhabitats that generate cross-sectional heterogeneity in the colonic microbiota composition. Here we will review how understanding the host factors involved in generating longitudinal and cross-sectional microbiota heterogeneity helps define physiological states that are characteristic of or appropriate to a homeostatic microbiome.
Collapse
|
38
|
Lovley DR, Holmes DE. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms. Nat Rev Microbiol 2021; 20:5-19. [PMID: 34316046 DOI: 10.1038/s41579-021-00597-6] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 02/03/2023]
Abstract
Electroactive microorganisms markedly affect many environments in which they establish outer-surface electrical contacts with other cells and minerals or reduce soluble extracellular redox-active molecules such as flavins and humic substances. A growing body of research emphasizes their broad phylogenetic diversity and shows that these microorganisms have key roles in multiple biogeochemical cycles, as well as the microbiome of the gut, anaerobic waste digesters and metal corrosion. Diverse bacteria and archaea have independently evolved cytochrome-based strategies for electron exchange between the outer cell surface and the cell interior, but cytochrome-free mechanisms are also prevalent. Electrically conductive protein filaments, soluble electron shuttles and non-biological conductive materials can substantially extend the electronic reach of microorganisms beyond the surface of the cell. The growing appreciation of the diversity of electroactive microorganisms and their unique electronic capabilities is leading to a broad range of applications.
Collapse
Affiliation(s)
- Derek R Lovley
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China. .,Department of Microbiology, University of Massachusetts, Amherst, MA, USA. .,Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA.
| | - Dawn E Holmes
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA.,Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA.,Department of Physical and Biological Sciences, Western New England University, Springfield, MA, USA
| |
Collapse
|
39
|
Tu Z, Lopes HDFS, Narihiro T, Yumoto I. The Mechanism Underlying of Long-Term Stable Indigo Reduction State in Indigo Fermentation Using Sukumo (Composted Polygonum tinctorium Leaves). Front Microbiol 2021; 12:698674. [PMID: 34367099 PMCID: PMC8342947 DOI: 10.3389/fmicb.2021.698674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/30/2021] [Indexed: 01/04/2023] Open
Abstract
Indigo fermentation fluid maintains its indigo-reducing state for more than 6 months under open-air. To elucidate the mechanism underlying the sustainability of this indigo reduction state, three indigo fermentation batches with different durations for the indigo reduction state were compared. The three examined batches exhibited different microbiota and consisted of two phases. In the initial phase, oxygen-metabolizing-bacteria derived from sukumo established an initial network. With decreasing redox potential (ORP), the initial bacterial community was replaced by obligate anaerobes (mainly Proteinivoraceae; phase 1). Approximately 1 month after the beginning of fermentation, the predominating obligate anaerobes were decreased, and Amphibacillus and Polygonibacillus, which can decompose macromolecules derived from wheat bran, were predominantly observed, and the transition of microbiota became slow (phase 2). Considering the substrate utilization ability of the dominated bacterial taxa, the transitional change from phase 1 to phase 2 suggests that this changed from the bacterial flora that utilizes substrates derived from sukumo, including intrinsic substrates in sukumo and weakened or dead bacterial cells derived from early events (heat and alkaline treatment and reduction of ORP) to that of wheat bran-utilizers. This succession was directly related to the change in the major substrate sustaining the corresponding community and the turning point was approximately 1 month after the start of fermentation. As a result, we understand that the role of sukumo includes changes in the microbial flora immediately after the start of fermentation, which has an important function in the start-up phase of fermentation, whereas the ecosystem comprised of the microbiota utilizing wheat bran underpins the subsequent long-term indigo reduction.
Collapse
Affiliation(s)
- Zhihao Tu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan.,Laboratory of Environmental Microbiology, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Helena de Fátima Silva Lopes
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan.,Laboratory of Environmental Microbiology, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Isao Yumoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan.,Laboratory of Environmental Microbiology, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
40
|
Dong Y, Shan Y, Xia K, Shi L. The Proposed Molecular Mechanisms Used by Archaea for Fe(III) Reduction and Fe(II) Oxidation. Front Microbiol 2021; 12:690918. [PMID: 34276623 PMCID: PMC8280799 DOI: 10.3389/fmicb.2021.690918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
Iron (Fe) is the fourth most abundant element in the Earth's crust where ferrous Fe [Fe(II)] and ferric Fe [Fe(III)] can be used by archaea for energy conservation. In these archaea-Fe interactions, Fe(III) serves as terminal electron acceptor for anaerobic respiration by a variety of archaea, while Fe(II) serves as electron donor and/or energy sources for archaeal growth. As no Fe is incorporated into the archaeal cells, these redox reactions are referred to as dissimilatory Fe(III) reduction and Fe(II) oxidation, respectively. Dissimilatory Fe(III)-reducing archaea (FeRA) and Fe(II)-oxidizing archaea (FeOA) are widespread on Earth where they play crucial roles in biogeochemical cycling of not only Fe, but also carbon and sulfur. To reduce extracellular Fe(III) (oxyhydr)oxides, some FeRA transfer electrons directly to the Fe(III) (oxyhydr)oxides most likely via multiheme c-type cytochromes (c-Cyts). These multiheme c-Cyts may form the pathways similar to those found in bacteria for transferring electrons from the quinone/quinol pool in the cytoplasmic membrane to the Fe(III) (oxyhydr)oxides external to the archaeal cells. Use of multiheme c-Cyts for extracellular Fe(III) reduction by both Domains of Archaea and Bacteria emphasizes an ancient mechanism of extracellular electron transfer, which is well conserved. Other FeRA, however, reduce Fe(III) (oxyhydr)oxides indirectly via electron shuttles. Similarly, it is proposed that FeOA use pathways to oxidize Fe(II) on the surface of the cytoplasmic membrane and then to transfer the released electrons across the cytoplasmic membrane inward to the O2 and NAD+ in the cytoplasm. In this review, we focus on the latest understandings of the molecular mechanisms used by FeRA and FeOA for Fe(III) reduction and Fe(II) oxidation, respectively.
Collapse
Affiliation(s)
- Yiran Dong
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Yawei Shan
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Kemin Xia
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Liang Shi
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
41
|
Méheust R, Huang S, Rivera-Lugo R, Banfield JF, Light SH. Post-translational flavinylation is associated with diverse extracytosolic redox functionalities throughout bacterial life. eLife 2021; 10:66878. [PMID: 34032212 PMCID: PMC8238504 DOI: 10.7554/elife.66878] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Disparate redox activities that take place beyond the bounds of the prokaryotic cell cytosol must connect to membrane or cytosolic electron pools. Proteins post-translationally flavinylated by the enzyme ApbE mediate electron transfer in several characterized extracytosolic redox systems but the breadth of functions of this modification remains unknown. Here, we present a comprehensive bioinformatic analysis of 31,910 prokaryotic genomes that provides evidence of extracytosolic ApbEs within ~50% of bacteria and the involvement of flavinylation in numerous uncharacterized biochemical processes. By mining flavinylation-associated gene clusters, we identify five protein classes responsible for transmembrane electron transfer and two domains of unknown function (DUF2271 and DUF3570) that are flavinylated by ApbE. We observe flavinylation/iron transporter gene colocalization patterns that implicate functions in iron reduction and assimilation. We find associations with characterized and uncharacterized respiratory oxidoreductases that highlight roles of flavinylation in respiratory electron transport chains. Finally, we identify interspecies gene cluster variability consistent with flavinylation/cytochrome functional redundancies and discover a class of ‘multi-flavinylated proteins’ that may resemble multi-heme cytochromes in facilitating longer distance electron transfer. These findings provide mechanistic insight into an important facet of bacterial physiology and establish flavinylation as a functionally diverse mediator of extracytosolic electron transfer. In bacteria, certain chemical reactions required for life do not take place directly inside the cells. For instance, ‘redox’ reactions essential to gather minerals, repair proteins and obtain energy are localised in the membranes and space that surround a bacterium. These chemical reactions involve electrons being transferred from one molecule to another in a cascade that connects the exterior of a cell to its internal space. The enzyme ApbE allows proteins to perform electron transfer by equipping them with ring-like compounds called flavins, through a process known as flavinylation. Yet, the prevelance of flavinylation in bacteria and the scope of redox reactions it facilitates has remained unclear. To investigate this question, Méheust, Huang et al. analysed over 30,000 bacterial genomes, finding genes essential for ApbE flavinylation in about half of all bacterial species across the tree of life. The role of ApbE-flavinylated proteins was then deciphered using a ‘guilt by association’ approach. In bacteria, genes that perform similar roles are often close to each other in the genome, which helps to infer the function of a protein coded by a specific gene. This approach revealed that flavinylation is involved in processes that allow bacteria to acquire iron and to use various energy sources. A number of interesting proteins were also identified, including a group that carry multiple flavins, and could therefore, in theory, transfer electrons over long distances. This discovery could be relevant to bioelectronic applications, which are already considering another class of bacterial electron-carrying molecules as candidates to form minuscule electric wires.
Collapse
Affiliation(s)
- Raphaël Méheust
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, United States.,Innovative Genomics Institute, Berkeley, United States.,LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, Evry, France
| | - Shuo Huang
- Duchossois Family Institute, University of Chicago, Chicago, United States.,Department of Microbiology, University of Chicago, Chicago, United States
| | - Rafael Rivera-Lugo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, United States.,Innovative Genomics Institute, Berkeley, United States
| | - Samuel H Light
- Duchossois Family Institute, University of Chicago, Chicago, United States.,Department of Microbiology, University of Chicago, Chicago, United States
| |
Collapse
|
42
|
Cain TJ, Smith AT. Ferric iron reductases and their contribution to unicellular ferrous iron uptake. J Inorg Biochem 2021; 218:111407. [PMID: 33684686 PMCID: PMC8035299 DOI: 10.1016/j.jinorgbio.2021.111407] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/29/2021] [Accepted: 02/19/2021] [Indexed: 12/21/2022]
Abstract
Iron is a necessary element for nearly all forms of life, and the ability to acquire this trace nutrient has been identified as a key virulence factor for the establishment of infection by unicellular pathogens. In the presence of O2, iron typically exists in the ferric (Fe3+) oxidation state, which is highly unstable in aqueous conditions, necessitating its sequestration into cofactors and/or host proteins to remain soluble. To counter this insolubility, and to compete with host sequestration mechanisms, many unicellular pathogens will secrete low molecular weight, high-affinity Fe3+ chelators known as siderophores. Once acquired, unicellular pathogens must liberate the siderophore-bound Fe3+ in order to assimilate this nutrient into metabolic pathways. While these organisms may hydrolyze the siderophore backbone to release the chelated Fe3+, this approach is energetically costly. Instead, iron may be liberated from the Fe3+-siderophore complex through reduction to Fe2+, which produces a lower-affinity form of iron that is highly soluble. This reduction is performed by a class of enzymes known as ferric reductases. Ferric reductases are broadly-distributed electron-transport proteins that are expressed by numerous infectious organisms and are connected to the virulence of unicellular pathogens. Despite this importance, ferric reductases remain poorly understood. This review provides an overview of our current understanding of unicellular ferric reductases (both soluble and membrane-bound), with an emphasis on the important but underappreciated connection between ferric-reductase mediated Fe3+ reduction and the transport of Fe2+ via ferrous iron transporters.
Collapse
Affiliation(s)
- Timothy J Cain
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
43
|
Bacterial Microcompartments Coupled with Extracellular Electron Transfer Drive the Anaerobic Utilization of Ethanolamine in Listeria monocytogenes. mSystems 2021; 6:6/2/e01349-20. [PMID: 33850044 PMCID: PMC8547011 DOI: 10.1128/msystems.01349-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ethanolamine (EA) is a valuable microbial carbon and nitrogen source derived from cell membranes. EA catabolism is suggested to occur in a cellular metabolic subsystem called a bacterial microcompartment (BMC), and the activation of EA utilization (eut) genes is linked to bacterial pathogenesis. Despite reports showing that the activation of eut is regulated by a vitamin B12-binding riboswitch and that upregulation of eut genes occurs in mice, it remains unknown whether EA catabolism is BMC dependent in Listeria monocytogenes Here, we provide evidence for BMC-dependent anaerobic EA utilization via metabolic analysis, proteomics, and electron microscopy. First, we show vitamin B12-induced activation of the eut operon in L. monocytogenes coupled to the utilization of EA, thereby enabling growth. Next, we demonstrate BMC formation connected with EA catabolism with the production of acetate and ethanol in a molar ratio of 2:1. Flux via the ATP-generating acetate branch causes an apparent redox imbalance due to the reduced regeneration of NAD+ in the ethanol branch resulting in a surplus of NADH. We hypothesize that the redox imbalance is compensated by linking eut BMCs to anaerobic flavin-based extracellular electron transfer (EET). Using L. monocytogenes wild-type, BMC mutant, and EET mutant strains, we demonstrate an interaction between BMCs and EET and provide evidence for a role of Fe3+ as an electron acceptor. Taken together, our results suggest an important role of BMC-dependent EA catabolism in L. monocytogenes growth in anaerobic environments like the human gastrointestinal tract, with a crucial role for the flavin-based EET system in redox balancing.IMPORTANCE Listeria monocytogenes is a foodborne pathogen causing severe illness, and as such, it is crucial to understand the molecular mechanisms contributing to pathogenicity. One carbon source that allows L. monocytogenes to grow in humans is ethanolamine (EA), which is derived from phospholipids present in eukaryotic cell membranes. It is hypothesized that EA utilization occurs in bacterial microcompartments (BMCs), self-assembling subcellular proteinaceous structures and analogs of eukaryotic organelles. Here, we demonstrate that BMC-driven utilization of EA in L. monocytogenes results in increased energy production essential for anaerobic growth. However, exploiting BMCs and the encapsulated metabolic pathways also requires the balancing of oxidative and reductive pathways. We now provide evidence that L. monocytogenes copes with this by linking BMC activity to flavin-based extracellular electron transfer (EET) using iron as an electron acceptor. Our results shed new light on an important molecular mechanism that enables L. monocytogenes to grow using host-derived phospholipid degradation products.
Collapse
|
44
|
Venskutonytė R, Koh A, Stenström O, Khan MT, Lundqvist A, Akke M, Bäckhed F, Lindkvist-Petersson K. Structural characterization of the microbial enzyme urocanate reductase mediating imidazole propionate production. Nat Commun 2021; 12:1347. [PMID: 33649331 PMCID: PMC7921117 DOI: 10.1038/s41467-021-21548-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/29/2021] [Indexed: 11/30/2022] Open
Abstract
The human microbiome can produce metabolites that modulate insulin signaling. Type 2 diabetes patients have increased circulating concentrations of the microbially produced histidine metabolite, imidazole propionate (ImP) and administration of ImP in mice resulted in impaired glucose tolerance. Interestingly, the fecal microbiota of the patients had increased capacity to produce ImP, which is mediated by the bacterial enzyme urocanate reductase (UrdA). Here, we describe the X-ray structures of the ligand-binding domains of UrdA in four different states, representing the structural transitions along the catalytic reaction pathway of this unexplored enzyme linked to disease in humans. The structures in combination with functional data provide key insights into the mechanism of action of UrdA that open new possibilities for drug development strategies targeting type 2 diabetes. Imidazole propionate (ImP) produced by gut microbiota has been associated with type 2 diabetes. Here, the authors present crystal structures of the ImP biosynthesis enzyme urocanate reductase in four different states, providing molecular insights into its catalytic mechanism.
Collapse
Affiliation(s)
- Raminta Venskutonytė
- Experimental Medical Science, Medical Structural Biology, BMC C13, Lund University, Lund, Sweden
| | - Ara Koh
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Precision Medicine, Samsung Biomedical Research Institute, Samsung Medical Center, School of Medicine, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Olof Stenström
- Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, Lund, Sweden
| | - Muhammad Tanweer Khan
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Annika Lundqvist
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Mikael Akke
- Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, Lund, Sweden
| | - Fredrik Bäckhed
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karin Lindkvist-Petersson
- Experimental Medical Science, Medical Structural Biology, BMC C13, Lund University, Lund, Sweden. .,LINXS - Lund Institute of Advanced Neutron and X-ray Science, Lund, Sweden.
| |
Collapse
|
45
|
Faustino MM, Fonseca BM, Costa NL, Lousa D, Louro RO, Paquete CM. Crossing the Wall: Characterization of the Multiheme Cytochromes Involved in the Extracellular Electron Transfer Pathway of Thermincola ferriacetica. Microorganisms 2021; 9:microorganisms9020293. [PMID: 33572691 PMCID: PMC7911101 DOI: 10.3390/microorganisms9020293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Bioelectrochemical systems (BES) are emerging as a suite of versatile sustainable technologies to produce electricity and added-value compounds from renewable and carbon-neutral sources using electroactive organisms. The incomplete knowledge on the molecular processes that allow electroactive organisms to exchange electrons with electrodes has prevented their real-world implementation. In this manuscript we investigate the extracellular electron transfer processes performed by the thermophilic Gram-positive bacteria belonging to the Thermincola genus, which were found to produce higher levels of current and tolerate higher temperatures in BES than mesophilic Gram-negative bacteria. In our study, three multiheme c-type cytochromes, Tfer_0070, Tfer_0075, and Tfer_1887, proposed to be involved in the extracellular electron transfer pathway of T. ferriacetica, were cloned and over-expressed in E. coli. Tfer_0070 (ImdcA) and Tfer_1887 (PdcA) were purified and biochemically characterized. The electrochemical characterization of these proteins supports a pathway of extracellular electron transfer via these two proteins. By contrast, Tfer_0075 (CwcA) could not be stabilized in solution, in agreement with its proposed insertion in the peptidoglycan wall. However, based on the homology with the outer-membrane cytochrome OmcS, a structural model for CwcA was developed, providing a molecular perspective into the mechanisms of electron transfer across the peptidoglycan layer in Thermincola.
Collapse
|
46
|
|
47
|
Zhao J, Li F, Cao Y, Zhang X, Chen T, Song H, Wang Z. Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms. Biotechnol Adv 2020; 53:107682. [PMID: 33326817 DOI: 10.1016/j.biotechadv.2020.107682] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/04/2020] [Accepted: 12/09/2020] [Indexed: 11/27/2022]
Abstract
Electroactive microorganisms (EAMs) are ubiquitous in nature and have attracted considerable attention as they can be used for energy recovery and environmental remediation via their extracellular electron transfer (EET) capabilities. Although the EET mechanisms of Shewanella and Geobacter have been rigorously investigated and are well characterized, much less is known about the EET mechanisms of other microorganisms. For EAMs, efficient EET is crucial for the sustainable economic development of bioelectrochemical systems (BESs). Currently, the low efficiency of EET remains a key factor in limiting the development of BESs. In this review, we focus on the EET mechanisms of different microorganisms, (i.e., bacteria, fungi, and archaea). In addition, we describe in detail three engineering strategies for improving the EET ability of EAMs: (1) enhancing transmembrane electron transport via cytochrome protein channels; (2) accelerating electron transport via electron shuttle synthesis and transmission; and (3) promoting the microbe-electrode interface reaction via regulating biofilm formation. At the end of this review, we look to the future, with an emphasis on the cross-disciplinary integration of systems biology and synthetic biology to build high-performance EAM systems.
Collapse
Affiliation(s)
- Juntao Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.
| |
Collapse
|
48
|
Xiao X, Yu HQ. Molecular mechanisms of microbial transmembrane electron transfer of electrochemically active bacteria. Curr Opin Chem Biol 2020; 59:104-110. [DOI: 10.1016/j.cbpa.2020.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 10/23/2022]
|
49
|
Paquete CM. Electroactivity across the cell wall of Gram-positive bacteria. Comput Struct Biotechnol J 2020; 18:3796-3802. [PMID: 33335679 PMCID: PMC7720022 DOI: 10.1016/j.csbj.2020.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
The growing interest on sustainable biotechnological processes for the production of energy and industrial relevant organic compounds have increased the discovery of electroactive organisms (i.e. organisms that are able to exchange electrons with an electrode) and the characterization of their extracellular electron transfer mechanisms. While most of the knowledge on extracellular electron transfer processes came from studies on Gram-negative bacteria, less is known about the processes performed by Gram-positive bacteria. In contrast to Gram-negative bacteria, Gram-positive bacteria lack an outer-membrane and contain a thick cell wall, which were thought to prevent extracellular electron transfer. However, in the last decade, an increased number of Gram-positive bacteria have been found to perform extracellular electron transfer, and exchange electrons with an electrode. In this mini-review the current knowledge on the extracellular electron transfer processes performed by Gram-positive bacteria is introduced, emphasising their electroactive role in bioelectrochemical systems. Also, the existent information of the molecular processes by which these bacteria exchange electrons with an electrode is highlighted. This understanding is fundamental to advance the implementation of these organisms in sustainable biotechnological processes, either through modification of the systems or through genetic engineering, where the organisms can be optimized to become better catalysts.
Collapse
Affiliation(s)
- Catarina M. Paquete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Portugal
| |
Collapse
|
50
|
Tahernia M, Plotkin-Kaye E, Mohammadifar M, Gao Y, Oefelein MR, Cook LC, Choi S. Characterization of Electrogenic Gut Bacteria. ACS OMEGA 2020; 5:29439-29446. [PMID: 33225175 PMCID: PMC7676329 DOI: 10.1021/acsomega.0c04362] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/29/2020] [Indexed: 05/13/2023]
Abstract
While electrogenic, or electricity-producing, Gram-negative bacteria predominantly found in anaerobic habitats have been intensively explored, the potential of Gram-positive microbial electrogenic capability residing in a similar anoxic environment has not been considered. Because Gram-positive bacteria contain a thick non-conductive cell wall, they were previously believed to be very weak exoelectrogens. However, with the recent discovery of electrogenicity by Gram-positive pathogens and elucidation of their electron-transfer pathways, significant and accelerated attention has been given to the discovery and characterization of these pathways in the members of gut microbiota. The discovery of electrogenic bacteria present in the human gut and the understanding of their electrogenic capacity opens up possibilities of bacterial powered implantable batteries and provide a novel biosensing platform to monitor human gastrointestinal health. In this work, we characterized microbial extracellular electron-transfer capabilities and capacities of five gut bacteria: Staphylococcus aureus, Enterococcus faecalis, Streptococcus agalactiae, Lactobacillus reuteri, and Lactobacillus rhamnosus. A 21-well paper-based microbial fuel cell array with enhanced sensitivity was developed as a powerful yet simple screening method to accurately and simultaneously characterize bacterial electrogenicity. S. aureus, E. faecalis, and S. agalactiae exhibited distinct electrogenic capabilities, and their power generations were comparable to that of the well-known Gram-negative exoelectrogen, Shewanella oneidensis. Importantly, this system was used to begin a large-scale transposon screen to examine the genes involved in electrogenicity by the human pathobiont S. aureus.
Collapse
Affiliation(s)
- Mehdi Tahernia
- Bioelectronics
& Microsystems Laboratory, Department of Electrical & Computer
Engineering, State University of New York-Binghamton, Binghamton, New York 13902-6000, United States
| | - Ellie Plotkin-Kaye
- Department
of Biological Science, State University
of New York-Binghamton, Binghamton, New York 13902-6000, United States
| | - Maedeh Mohammadifar
- Bioelectronics
& Microsystems Laboratory, Department of Electrical & Computer
Engineering, State University of New York-Binghamton, Binghamton, New York 13902-6000, United States
| | - Yang Gao
- Bioelectronics
& Microsystems Laboratory, Department of Electrical & Computer
Engineering, State University of New York-Binghamton, Binghamton, New York 13902-6000, United States
| | - Melissa R. Oefelein
- Department
of Biological Science, State University
of New York-Binghamton, Binghamton, New York 13902-6000, United States
| | - Laura C. Cook
- Department
of Biological Science, State University
of New York-Binghamton, Binghamton, New York 13902-6000, United States
| | - Seokheun Choi
- Bioelectronics
& Microsystems Laboratory, Department of Electrical & Computer
Engineering, State University of New York-Binghamton, Binghamton, New York 13902-6000, United States
| |
Collapse
|