1
|
Hamilton JR, Levine RD, Remacle F. Constructing Dynamical Symmetries for Quantum Computing: Applications to Coherent Dynamics in Coupled Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2056. [PMID: 39728591 DOI: 10.3390/nano14242056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Dynamical symmetries, time-dependent operators that almost commute with the Hamiltonian, extend the role of ordinary symmetries. Motivated by progress in quantum technologies, we illustrate a practical algebraic approach to computing such time-dependent operators. Explicitly we expand them as a linear combination of time-independent operators with time-dependent coefficients. There are possible applications to the dynamics of systems of coupled coherent two-state systems, such as qubits, pumped by optical excitation and other addressing inputs. Thereby, the interaction of the system with the excitation is bilinear in the coherence between the two states and in the strength of the time-dependent excitation. The total Hamiltonian is a sum of such bilinear terms and of terms linear in the populations. The terms in the Hamiltonian form a basis for Lie algebra, which can be represented as coupled individual two-state systems, each using the population and the coherence between two states. Using the factorization approach of Wei and Norman, we construct a unitary quantum mechanical evolution operator that is a factored contribution of individual two-state systems. By that one can accurately propagate both the wave function and the density matrix with special relevance to quantum computing based on qubit architecture. Explicit examples are derived for the electronic dynamics in coupled semi-conducting nanoparticles that can be used as hardware for quantum technologies.
Collapse
Affiliation(s)
- James R Hamilton
- Theoretical Physical Chemistry, UR MOLSYS, University of Liege, B4000 Liège, Belgium
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Raphael D Levine
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Francoise Remacle
- Theoretical Physical Chemistry, UR MOLSYS, University of Liege, B4000 Liège, Belgium
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
2
|
Fleming GR, Scholes GD. The development and applications of multidimensional biomolecular spectroscopy illustrated by photosynthetic light harvesting. Q Rev Biophys 2024; 57:e11. [PMID: 39434618 DOI: 10.1017/s003358352400009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The parallel and synergistic developments of atomic resolution structural information, new spectroscopic methods, their underpinning formalism, and the application of sophisticated theoretical methods have led to a step function change in our understanding of photosynthetic light harvesting, the process by which photosynthetic organisms collect solar energy and supply it to their reaction centers to initiate the chemistry of photosynthesis. The new spectroscopic methods, in particular multidimensional spectroscopies, have enabled a transition from recording rates of processes to focusing on mechanism. We discuss two ultrafast spectroscopies - two-dimensional electronic spectroscopy and two-dimensional electronic-vibrational spectroscopy - and illustrate their development through the lens of photosynthetic light harvesting. Both spectroscopies provide enhanced spectral resolution and, in different ways, reveal pathways of energy flow and coherent oscillations which relate to the quantum mechanical mixing of, for example, electronic excitations (excitons) and nuclear motions. The new types of information present in these spectra provoked the application of sophisticated quantum dynamical theories to describe the temporal evolution of the spectra and provide new questions for experimental investigation. While multidimensional spectroscopies have applications in many other areas of science, we feel that the investigation of photosynthetic light harvesting has had the largest influence on the development of spectroscopic and theoretical methods for the study of quantum dynamics in biology, hence the focus of this review. We conclude with key questions for the next decade of this review.
Collapse
Affiliation(s)
- Graham R Fleming
- Department of Chemistry and QB3 Institute, Kavli Energy Nanoscience Institute, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
3
|
Kambhampati P. Unraveling the excitonics of light emission from metal-halide perovskite quantum dots. NANOSCALE 2024; 16:15033-15058. [PMID: 39052235 DOI: 10.1039/d4nr01481b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Metal halide semicondictor perovskites have been under intense investigation for their promise in light absorptive applications like photovoltaics. They have more recently experienced interest for their promise in light emissive applications. A key aspect of perovskites is their glassy, ionic lattice that exhibits dynamical disorder. One possible result of this dynamical disorder is their strong coupling between electronic and lattice degrees of freedom which may confer remarkable properties for light emission such as defect tolerance. How does the system, comprised of excitons, couple to the bath, comprised of lattice modes? How does this system-bath interaction give rise to novel light emissive properties and how do these properties give insight into the nature of these materials? We review recent work from this group in which time-resolved photoluminescence spectroscopy is used to reveal such insights. Based upon a fast time resolution of 3 ps, energy resolution, and temperature dependence, a wide variety of insights are gleaned. These insights include: lattice contributions to the emission linewidths, multiexciton formation, hot carrier cooling, excitonic fine structure, single dot superradiance, and a breakdown of the Condon approximation, all due to complex structural dynamics in these materials.
Collapse
|
4
|
Lian Z, Kuerban R, Niu Z, Aisaiti P, Wu C, Yang X. Notch Signaling Is Associated with Pulmonary Fibrosis in Patients with Pigeon Breeder's Lung by Regulating Oxidative Stress. Emerg Med Int 2024; 2024:7610032. [PMID: 39139588 PMCID: PMC11321885 DOI: 10.1155/2024/7610032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/03/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
This study explored the molecular mechanism underlying the association of Notch signaling and oxidative stress with the occurrence of pulmonary fibrosis in patients with pigeon breeder's lung (PBL). Rat models of fibrotic PBL were constructed with freeze-dried protein powder, and the animals were divided into the control (intratracheal instillation of normal saline; n = 9), M (PBL model; intratracheal instillation of freeze-dried protein powder; n = 9), and M + D (PBL+ the Notch inhibitor DAPT; n = 9) groups. Immunohistochemistry was employed to observe the protein levels of pathway factors and α-SMA, and the levels of ROS, GSH-PX, SOD, and MDA were observed using ELISA. To verify the results of the animal experiment, cytological models were constructed. The M group and the M + D group had significantly increased α-SMA levels (P < 0.05). Although both groups had significantly higher key protein levels in the Notch channel, the M + D group had significantly lower levels relative to the M group (P < 0.05). Oxidative stress products were examined, and the levels of MDA and ROS were significantly increased, while those of GSH-PX and SOD were significantly decreased in the M and M + D groups as compared to the control, but the M group and the M + D group significantly differed (P < 0.05). These findings were further validated by the cytological experiment. Notch signaling is associated with pulmonary fibrosis in PBL by regulating cellular oxidative stress, and inhibiting this pathway can slow down pulmonary fibrosis progression.
Collapse
Affiliation(s)
- Zhichuang Lian
- Graduate SchoolXinjiang Medical University, Urumqi 830001, China
| | - Remila Kuerban
- Department of Respiratory and Critical Care MedicinePeople's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Zongxin Niu
- Department of Respiratory and Critical Care MedicinePeople's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Paruzha Aisaiti
- Department of Respiratory and Critical Care MedicinePeople's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Chao Wu
- Graduate SchoolXinjiang Medical University, Urumqi 830001, China
| | - Xiaohong Yang
- Graduate SchoolXinjiang Medical University, Urumqi 830001, China
| |
Collapse
|
5
|
Brosseau P, Jasrasaria D, Ghosh A, Seiler H, Palato S, Kambhampati P. Two-Dimensional Electronic Spectroscopy Reveals Dynamics within the Bright Fine Structure of CdSe Quantum Dots. J Phys Chem Lett 2024; 15:1702-1707. [PMID: 38316135 DOI: 10.1021/acs.jpclett.3c03378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Semiconductor quantum dots are characterized by a discrete excitonic structure featuring coarse as well as fine structure. The lowest fine structure states have splittings into bright-dark states which are now well confirmed by single dot spectroscopy. In contrast, the splitting of the lowest coarse exciton into bright-bright fine structure states has not been observed nor the dynamics between these states. Here, we use the unique combination of time and energy resolution of two-dimensional electronic spectroscopy to directly observe the fine structure splittings into a bright-bright doublet. These splittings are strongly size dependent, with population relaxation on the <100 fs time scale.
Collapse
Affiliation(s)
- Patrick Brosseau
- Department of Chemistry, McGill University, Montreal H3A 0G4, Canada
| | - Dipti Jasrasaria
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Arnab Ghosh
- Department of Chemistry, McGill University, Montreal H3A 0G4, Canada
| | - Helene Seiler
- Department of Chemistry, McGill University, Montreal H3A 0G4, Canada
| | - Samuel Palato
- Department of Chemistry, McGill University, Montreal H3A 0G4, Canada
| | | |
Collapse
|
6
|
Strandell D, Wu Y, Mora-Perez C, Prezhdo O, Kambhampati P. Breaking the Condon Approximation for Light Emission from Metal Halide Perovskite Nanocrystals. J Phys Chem Lett 2023; 14:11281-11285. [PMID: 38061060 DOI: 10.1021/acs.jpclett.3c02826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The idea that the electronic transition dipole moment does not depend upon nuclear excursions is the Condon approximation and is central to most spectroscopy, especially in the solid state. We show a strong breakdown of the Condon approximation in the time-resolved photoluminescence from CsPbBr3 metal halide perovskite semiconductor nanocrystals. Experiments reveal that the electronic transition dipole moment increases on the 30 ps time scale due to structural dynamics in the lattice. Ab initio molecular dynamics calculations quantitatively reproduce experiments by considering excitation-induced structural dynamics.
Collapse
Affiliation(s)
- Dallas Strandell
- Department of Chemistry, McGill University, Montreal, QC H3A 0G4, Canada
| | - Yifan Wu
- Department of Chemistry, University of Southern California, Los Angeles, California 90007, United States
| | - Carlos Mora-Perez
- Department of Chemistry, University of Southern California, Los Angeles, California 90007, United States
| | - Oleg Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90007, United States
| | | |
Collapse
|
7
|
Brosseau P, Ghosh A, Seiler H, Strandell D, Kambhampati P. Exciton-polaron interactions in metal halide perovskite nanocrystals revealed via two-dimensional electronic spectroscopy. J Chem Phys 2023; 159:184711. [PMID: 37962451 DOI: 10.1063/5.0173369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Metal halide perovskite nanocrystals have been under intense investigation for their promise in optoelectronic devices due to their remarkable physics, such as liquid/solid duality. This liquid/solid duality may give rise to their defect tolerance and other such useful properties. This duality means that the electronic states are fluctuating in time, on a distribution of timescales from femtoseconds to picoseconds. Hence, these lattice induced energy fluctuations that are connected to polaron formation are also connected to exciton formation and dynamics. We observe these correlations and dynamics in metal halide perovskite nanocrystals of CsPbI3 and CsPbBr3 using two-dimensional electronic (2DE) spectroscopy, with its unique ability to resolve dynamics in heterogeneously broadened systems. The 2DE spectra immediately reveal a previously unobserved excitonic splitting in these 15 nm NCs that may have a coarse excitonic structure. 2D lineshape dynamics reveal a glassy response on the 300 fs timescale due to polaron formation. The lighter Br system shows larger amplitude and faster timescale fluctuations that give rise to dynamic line broadening. The 2DE signals enable 1D transient absorption analysis of exciton cooling dynamics. Exciton cooling within this doublet is shown to take place on a slower timescale than within the excitonic continuum. The energy dissipation rates are the same for the I and Br systems for incoherent exciton cooling but are very different for the coherent dynamics that give rise to line broadening. Exciton cooling is shown to take place on the same timescale as polaron formation, revealing both as coupled many-body excitation.
Collapse
Affiliation(s)
- Patrick Brosseau
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Arnab Ghosh
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Helene Seiler
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Dallas Strandell
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | | |
Collapse
|
8
|
Lin K, Jasrasaria D, Yoo JJ, Bawendi M, Utzat H, Rabani E. Theory of Photoluminescence Spectral Line Shapes of Semiconductor Nanocrystals. J Phys Chem Lett 2023; 14:7241-7248. [PMID: 37552653 DOI: 10.1021/acs.jpclett.3c01630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Single-molecule photoluminescence (PL) spectroscopy of semiconductor nanocrystals (NCs) reveals the nature of exciton-phonon interactions in NCs. Understanding the homogeneous spectral line shapes and their temperature dependence remains an open problem. Here, we develop an atomistic model to describe the PL spectrum of NCs, accounting for excitonic effects, phonon dispersion relations, and exciton-phonon couplings. We validate our model using single-NC measurements on CdSe/CdS NCs from T = 4 to 290 K, and we find that the slightly asymmetric main peak at low temperatures is comprised of a narrow zero-phonon line (ZPL) and acoustic phonon sidebands. Furthermore, we identify the specific phonon modes that give rise to the optical phonon sidebands. At temperatures above 200 K, the spectral line width shows a stronger dependence upon the temperature, which we demonstrate to be correlated with higher order exciton-phonon couplings. We also identify the line width dependence upon reorganization energy, NC core sizes, and shell thicknesses.
Collapse
Affiliation(s)
- Kailai Lin
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Dipti Jasrasaria
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jason J Yoo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02143, United States
| | - Moungi Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02143, United States
| | - Hendrik Utzat
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
9
|
Gumber S, Prezhdo OV. Zeno and Anti-Zeno Effects in Nonadiabatic Molecular Dynamics. J Phys Chem Lett 2023; 14:7274-7282. [PMID: 37556319 PMCID: PMC10440816 DOI: 10.1021/acs.jpclett.3c01831] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Decoherence plays an important role in nonadiabatic (NA) molecular dynamics (MD) simulations because it provides a physical mechanism for trajectory hopping and can alter transition rates by orders of magnitude. Generally, decoherence effects slow quantum transitions, as exemplified by the quantum Zeno effect: in the limit of infinitely fast decoherence, the transitions stop. If the measurements are not sufficiently frequent, an opposite quantum anti-Zeno effect occurs, in which the transitions are accelerated with faster decoherence. Using two common NA-MD approaches, fewest switches surface hopping and decoherence-induced surface hopping, combined with analytic examination, we demonstrate that including decoherence into NA-MD slows down NA transitions; however, many realistic systems operate in the anti-Zeno regime. Therefore, it is important that NA-MD methods describe both Zeno and anti-Zeno effects. Numerical simulations of charge trapping and relaxation in graphitic carbon nitride suggest that time-dependent NA Hamiltonians encountered in realistic systems produce robust results with respect to errors in the decoherence time, a favorable feature for NA-MD simulations.
Collapse
Affiliation(s)
- Shriya Gumber
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
10
|
Stingel AM, Leemans J, Hens Z, Geiregat P, Petersen PB. Narrow homogeneous linewidths and slow cooling dynamics across infrared intra-band transitions in n-doped HgSe colloidal quantum dots. J Chem Phys 2023; 158:114202. [PMID: 36948807 DOI: 10.1063/5.0139795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Intra-band transitions in colloidal quantum dots (QDs) are promising for opto-electronic applications in the mid-IR spectral region. However, such intra-band transitions are typically very broad and spectrally overlapping, making the study of individual excited states and their ultrafast dynamics very challenging. Here, we present the first full spectrum two-dimensional continuum infrared (2D CIR) spectroscopy study of intrinsically n-doped HgSe QDs, which exhibit mid-infrared intra-band transitions in their ground state. The obtained 2D CIR spectra reveal that underneath the broad absorption line shape of ∼500 cm-1, the transitions exhibit surprisingly narrow intrinsic linewidths with a homogeneous broadening of 175-250 cm-1. Furthermore, the 2D IR spectra are remarkably invariant, with no sign of spectral diffusion dynamics at waiting times up to 50 ps. Accordingly, we attribute the large static inhomogeneous broadening to the distribution of size and doping level of the QDs. In addition, the two higher-lying P-states of the QDs can be clearly identified in the 2D IR spectra along the diagonal with a cross-peak. However, there is no indication of cross-peak dynamics indicating that, despite the strong spin-orbit coupling in HgSe, transitions between the P-states must be longer than our maximum waiting time of 50 ps. This study illustrates a new frontier of 2D IR spectroscopy enabling the study of intra-band carrier dynamics in nanocrystalline materials across the entire mid-infrared spectrum.
Collapse
Affiliation(s)
- Ashley M Stingel
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Jari Leemans
- Physics and Chemistry of Nanostructures Group, Department of Chemistry, Faculty of Sciences, Ghent University, 9000 Gent, Belgium
| | - Zeger Hens
- Physics and Chemistry of Nanostructures Group, Department of Chemistry, Faculty of Sciences, Ghent University, 9000 Gent, Belgium
| | - Pieter Geiregat
- Physics and Chemistry of Nanostructures Group, Department of Chemistry, Faculty of Sciences, Ghent University, 9000 Gent, Belgium
| | - Poul B Petersen
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
11
|
Remacle F, Levine RD. A quantum information processing machine for computing by observables. Proc Natl Acad Sci U S A 2023; 120:e2220069120. [PMID: 36897984 PMCID: PMC10243124 DOI: 10.1073/pnas.2220069120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/31/2023] [Indexed: 03/12/2023] Open
Abstract
A quantum machine that accepts an input and processes it in parallel is described. The logic variables of the machine are not wavefunctions (qubits) but observables (i.e., operators) and its operation is described in the Heisenberg picture. The active core is a solid-state assembly of small nanosized colloidal quantum dots (QDs) or dimers of dots. The size dispersion of the QDs that causes fluctuations in their discrete electronic energies is a limiting factor. The input to the machine is provided by a train of very brief laser pulses, at least four in number. The coherent band width of each ultrashort pulse needs to span at least several and preferably all the single electron excited states of the dots. The spectrum of the QD assembly is measured as a function of the time delays between the input laser pulses. The dependence of the spectrum on the time delays can be Fourier transformed to a frequency spectrum. This spectrum of a finite range in time is made up of discrete pixels. These are the visible, raw, basic logic variables. The spectrum is analyzed to determine a possibly smaller number of principal components. A Lie-algebraic point of view is used to explore the use of the machine to emulate the dynamics of other quantum systems. An explicit example demonstrates the considerable quantum advantage of our scheme.
Collapse
Affiliation(s)
- F. Remacle
- Theoretical Physical Chemistry, University of Liège, 4000Liège, Belgium
- The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904Jerusalem, Israel
| | - R. D. Levine
- The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904Jerusalem, Israel
- Department of Chemistry and Biochemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| |
Collapse
|
12
|
Brosseau P, Seiler H, Palato S, Sonnichsen C, Baker H, Socie E, Strandell D, Kambhampati P. Perturbed free induction decay obscures early time dynamics in two-dimensional electronic spectroscopy: The case of semiconductor nanocrystals. J Chem Phys 2023; 158:084201. [PMID: 36859087 DOI: 10.1063/5.0138252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Two-dimensional electronic spectroscopy (2DES) has recently been gaining popularity as an alternative to the more common transient absorption spectroscopy due to the combination of high frequency and time resolution of 2DES. In order to advance the reliable analysis of population dynamics and to optimize the time resolution of the method, one has to understand the numerous field matter interactions that take place at an early and negative time. These interactions have historically been discussed in one-dimensional spectroscopy as coherent artifacts and have been assigned to both resonant and non-resonant system responses during or before the pulse overlap. These coherent artifacts have also been described in 2DES but remain less well-understood due to the complexity of 2DES and the relative novelty of the method. Here, we present 2DES results in two model nanocrystal samples, CdSe and CsPbI3. We demonstrate non-resonant signals due to solvent response during the pulse overlap and resonant signals, which we assign to perturbed free induction decay (PFID), both before and during the pulse overlap. The simulations of the 2DES response functions at early and negative time delays reinforce the assignment of the negative time delay signals to PFID. Modeling reveals that the PFID signals will severely distort the initial picture of the resonant population dynamics. By including these effects in models of 2DES spectra, one is able to push forward the extraction of early time dynamics in 2DES.
Collapse
Affiliation(s)
- Patrick Brosseau
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Hélène Seiler
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Samuel Palato
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Colin Sonnichsen
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Harry Baker
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Etienne Socie
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Dallas Strandell
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | | |
Collapse
|
13
|
Nguyen HL, Do TN, Durmusoglu EG, Izmir M, Sarkar R, Pal S, Prezhdo OV, Demir HV, Tan HS. Measuring the Ultrafast Spectral Diffusion and Vibronic Coupling Dynamics in CdSe Colloidal Quantum Wells using Two-Dimensional Electronic Spectroscopy. ACS NANO 2023; 17:2411-2420. [PMID: 36706108 DOI: 10.1021/acsnano.2c09606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We measure the ultrafast spectral diffusion, vibronic dynamics, and energy relaxation of a CdSe colloidal quantum wells (CQWs) system at room temperature using two-dimensional electronic spectroscopy (2DES). The energy relaxation of light-hole (LH) excitons and hot carriers to heavy-hole (HH) excitons is resolved with a time scale of ∼210 fs. We observe the equilibration dynamics between the spectroscopically accessible HH excitonic state and a dark state with a time scale of ∼160 fs. We use the center line slope analysis to quantify the spectral diffusion dynamics in HH excitons, which contains an apparent sub-200 fs decay together with oscillatory features resolved at 4 and 25 meV. These observations can be explained by the coupling to various lattice phonon modes. We further perform quantum calculations that can replicate and explain the observed dynamics. The 4 meV mode is observed to be in the near-critically damped regime and may be mediating the transition between the bright and dark HH excitons. These findings show that 2DES can provide a comprehensive and detailed characterization of the ultrafast spectral properties in CQWs and similar nanomaterials.
Collapse
Affiliation(s)
- Hoang Long Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore637371, Singapore
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Thanh Nhut Do
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore637371, Singapore
| | - Emek G Durmusoglu
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore639798, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore637371, Singapore
| | - Merve Izmir
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore639798, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Ritabrata Sarkar
- Department of Chemistry, University of Gour Banga, Malda732103, India
- Bremen Center for Computational Materials Science, University of Bremen, Bremen28359, Germany
| | - Sougata Pal
- Department of Chemistry, University of Gour Banga, Malda732103, India
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California90089, United States
| | - Hilmi Volkan Demir
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore639798, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore637371, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore639798, Singapore
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM─Institute of Materials Science and Nanotechnology, Bilkent University, Ankara06800, Turkey
| | - Howe-Siang Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore637371, Singapore
| |
Collapse
|
14
|
Ghosh A, Strandell DP, Kambhampati P. A spectroscopic overview of the differences between the absorbing states and the emitting states in semiconductor perovskite nanocrystals. NANOSCALE 2023; 15:2470-2487. [PMID: 36691921 DOI: 10.1039/d2nr05698d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Semiconductor perovskites have been under intense investigation for their promise in optoelectronic applications and their novel and unique physical properties. There have been a variety of material implementations of perovskites from thin films to single crystals to nanocrystals. The nanocrystal form, in particular, is attractive as it enables solution processing and also spectroscopically probes both absorptive and emissive transitions. Broadly, the literature is comprised of experiments of either form, but the experiments are rarely performed in concert and are not discussed in a unified picture. For example, absorptive experiments are typically transient absorption measurements, which aim to measure carrier kinetics and dynamics. In contrast, the emissive experiments largely focus on excitonic fine structures and coupling to phonons. The time resolved emission experiments report on excited state lifetimes and their dependence on temperature. There are broad differences in the spectroscopy techniques and the questions asked in both classes of experiments. Yet there is one measure in common that suggests there are mysteries in our understanding of how the absorbing and emitting states are connected. The linewidth of emission spectra is always larger than the linewidth of absorption spectra. The question of the physics underlying linewidths is complex and is one of the central issues in perovskite nanocrystals. So why are the absorptive and emissive linewidths different? At present even this simple question has no clear answer. The more complex questions of the structure and dynamics of absorptive and emissive states are even more ambiguous. Hence there is a need to connect these experiments and the relevant states. Here, we provide an overview of the salient absorptive and emissive spectroscopy techniques in an effort to begin connecting these two disparate areas of inquiry.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada.
| | - Dallas P Strandell
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada.
| | | |
Collapse
|
15
|
Leng X, Yan Y, Zhu R, Zou J, Zhang W, Shi Q. Revealing Intermolecular Electronic and Vibronic Coherence with Polarization-Dependent Two-Dimensional Beating Maps. J Phys Chem Lett 2023; 14:838-845. [PMID: 36656105 DOI: 10.1021/acs.jpclett.2c03413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two-dimensional electronic spectroscopy (2DES) has been widely employed as an efficient tool to reveal the impact of intermolecular electronic and/or vibronic quantum coherence on excitation energy transfer in light-harvesting complexes. However, intramolecular vibrational coherence would also contribute to oscillating signals in 2D spectra, along with the intermolecular coherence signals that are directly related to energy transfer. In this work, the possibility of screening the vibrational coherence signals is explored through polarization-dependent 2DES. The all-parallel (AP) and double-crossed (DC) polarization-dependent two-dimensional rephasing spectra (2DRS) are simulated for a minimalist heterodimer model with vibrational coupling. By combining the DC-2DRS and the 2D beating maps, we demonstrate that the population and vibrational coherence signals can be largely suppressed, resulting in highlighted intermolecular electronic and vibronic coherence signals. Moreover, the AP- and DC-2DBMs show rather different patterns at the vibrational frequency, indicating a possible way to identify pure vibrational coherence.
Collapse
Affiliation(s)
- Xuan Leng
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yaming Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| | - Ruidan Zhu
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiading Zou
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzhao Zhang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Wang Z, Hedse A, Amarotti E, Lenngren N, Žídek K, Zheng K, Zigmantas D, Pullerits T. Beating signals in CdSe quantum dots measured by low-temperature 2D spectroscopy. J Chem Phys 2022; 157:014201. [DOI: 10.1063/5.0089798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Advances in ultrafast spectroscopy can provide access to dynamics involving nontrivial quantum correlations and their evolutions. In coherent 2D spectroscopy, the oscillatory time dependence of a signal is a signature of such quantum dynamics. Here we study such beating signals in electronic coherent 2D spectroscopy of CdSe quantum dots (CdSe QDs) at 77 K. The beating signals are analyzed in terms of their positive and negative Fourier components. We conclude that the beatings originate from coherent LO-phonons of CdSe QDs. No evidence for the quantum dot size dependence of the LO-phonon frequency was identified.
Collapse
Affiliation(s)
- Zhengjun Wang
- Division of Chemical Physics, Lund Univeristy, Sweden
| | | | | | | | - Karel Žídek
- TOPTEC Research Center, Institute of Plasma Physics Czech Academy of Sciences, Czech Republic
| | - Kaibo Zheng
- Department of Chemical Physics, Lund University, Sweden
| | | | - Tonu Pullerits
- Department of Chemical Physics, Lund University Faculty of Science, Sweden
| |
Collapse
|
17
|
Jasrasaria D, Rabani E. Interplay of Surface and Interior Modes in Exciton-Phonon Coupling at the Nanoscale. NANO LETTERS 2021; 21:8741-8748. [PMID: 34609148 DOI: 10.1021/acs.nanolett.1c02953] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exciton-phonon coupling (EXPC) plays a key role in the optoelectronic properties of semiconductor nanocrystals (NCs), but a microscopic picture of EXPC is still lacking, particularly regarding the magnitude and scaling with NC size, the dependence on phonon frequency, and the role of the NC surface. The computational complexity associated with accurately describing excitons and phonons has limited previous theoretical studies of EXPC to small NCs, noninteracting electron-hole models, and/or a small number of phonon modes. Here, we develop an atomistic approach for describing EXPC in NCs of experimentally relevant sizes. We validate our approach by calculating the reorganization energies, a measure of EXPC, for CdSe and CdSe-CdS core-shell NCs, finding good agreement with experimental measurements. We demonstrate that exciton formation distorts the NC lattice primarily along the coordinates of low-frequency acoustic modes. Modes at the NC surface play a significant role in smaller NCs while interior modes dominate for larger systems.
Collapse
Affiliation(s)
- Dipti Jasrasaria
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, Israel 69978
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
18
|
Sonnichsen C, Brosseau P, Reid C, Kambhampati P. OPA-driven hollow-core fiber as a tunable, broadband source for coherent multidimensional spectroscopy. OPTICS EXPRESS 2021; 29:28352-28358. [PMID: 34614968 DOI: 10.1364/oe.431988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Despite the impressive abilities of coherent multi-dimensional spectroscopy (CMDS), its' implementation is limited due to the complexity of continuum generation and required phase stability between the pump pulse pair. In light of this, we have implemented a system producing sub-10 fs pulses with tunable central wavelength. Using a commercial OPA to drive a hollow-core fiber, the system is extremely simple. Output pulse energies lie in the 40-80 μJ range, more than sufficient for transmission through the pulse shaping optics and beam splitters necessary for CMDS. Power fluctuations are minimal, mode quality is excellent, and spectral phase is well behaved at the output. To demonstrate the strength of this source, we measure the two-dimensional spectrum of CdSe quantum dots over a range of population times and find clean signals and clear phonon vibrations. This combination of OPA and hollow-core fiber provides a substantial extension to the capabilities of CMDS.
Collapse
|
19
|
Kambhampati P. Nanoparticles, Nanocrystals, and Quantum Dots: What are the Implications of Size in Colloidal Nanoscale Materials? J Phys Chem Lett 2021; 12:4769-4779. [PMID: 33984241 DOI: 10.1021/acs.jpclett.1c00754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Semiconductor nanoparticles (NP) or nanocrystals (NC) have been investigated for many decades, with particular acceleration in interest upon the discovery of quantum confinement effects thereby yielding quantum dots (QD) from certain well-grown NC. The term NP is commonly used in the case of metal and wide gap semiconductor nanocrystals. The term NC is commonly used in semiconductor nanocrystals, whether covalent II-VI or ionic perovskites, that are colloidally grown. The term QD applies to select semiconductor nanocrystals for whom their size is on the order of the excitonic Bohr radius. In the case of colloidal particles on the nanometer length scale, these terms are often used carelessly and interchangeably. The words have specific meaning in relationship to specific physical effects which give rise to specific key processes that can be measured. Here, we provide a Perspective on the ways in which size confers function across different families of NP. In this way, we aim to find ways to identify their similarities and differences by providing the correct semantics for discussion of the salient processes.
Collapse
|
20
|
Dynamic lattice distortions driven by surface trapping in semiconductor nanocrystals. Nat Commun 2021; 12:1860. [PMID: 33767138 PMCID: PMC7994579 DOI: 10.1038/s41467-021-22116-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/04/2021] [Indexed: 01/18/2023] Open
Abstract
Nonradiative processes limit optoelectronic functionality of nanocrystals and curb their device performance. Nevertheless, the dynamic structural origins of nonradiative relaxations in such materials are not understood. Here, femtosecond electron diffraction measurements corroborated by atomistic simulations uncover transient lattice deformations accompanying radiationless electronic processes in colloidal semiconductor nanocrystals. Investigation of the excitation energy dependence in a core/shell system shows that hot carriers created by a photon energy considerably larger than the bandgap induce structural distortions at nanocrystal surfaces on few picosecond timescales associated with the localization of trapped holes. On the other hand, carriers created by a photon energy close to the bandgap of the core in the same system result in transient lattice heating that occurs on a much longer 200 picosecond timescale, dominated by an Auger heating mechanism. Elucidation of the structural deformations associated with the surface trapping of hot holes provides atomic-scale insights into the mechanisms deteriorating optoelectronic performance and a pathway towards minimizing these losses in nanocrystal devices. Charge trapping can lead to severe nonradiative losses in colloidal semiconductor nanocrystals (NCs). The authors report femtosecond electron diffraction measurements on photoexcited NCs to reveal atomic-scale insights into how localization of charges at trap sites induce surface deformations.
Collapse
|
21
|
Mueller S, Lüttig J, Brenneis L, Oron D, Brixner T. Observing Multiexciton Correlations in Colloidal Semiconductor Quantum Dots via Multiple-Quantum Two-Dimensional Fluorescence Spectroscopy. ACS NANO 2021; 15:4647-4657. [PMID: 33577282 DOI: 10.1021/acsnano.0c09080] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Correlations between excitons, that is, electron-hole pairs, have a great impact on the optoelectronic properties of semiconductor quantum dots and thus are relevant for applications such as lasers and photovoltaics. Upon multiphoton excitation, these correlations lead to the formation of multiexciton states. It is challenging to observe these states spectroscopically, especially higher multiexciton states, because of their short lifetimes and nonradiative decay. Moreover, solvent contributions in experiments with coherent signal detection may complicate the analysis. Here we employ multiple-quantum two-dimensional (2D) fluorescence spectroscopy on colloidal CdSe1-xSx/ZnS alloyed core/shell quantum dots. We selectively map the electronic structure of multiexcitons and their correlations by using two- and three-quantum 2D spectroscopy, conducted in a simultaneous measurement. Our experiments reveal the characteristics of biexcitons and triexcitons such as transition dipole moments, binding energies, and correlated transition energy fluctuations. We determine the binding energies of the first six biexciton states by simulating the two-quantum 2D spectrum. By analyzing the line shape of the three-quantum 2D spectrum, we find strong correlations between biexciton and triexciton states. Our method contributes to a more comprehensive understanding of multiexcitonic species in quantum dots and other semiconductor nanostructures.
Collapse
Affiliation(s)
- Stefan Mueller
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Julian Lüttig
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Luisa Brenneis
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Dan Oron
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tobias Brixner
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|
22
|
Affiliation(s)
- Christopher Melnychuk
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | | |
Collapse
|
23
|
Collini E, Gattuso H, Levine RD, Remacle F. Ultrafast fs coherent excitonic dynamics in CdSe quantum dots assemblies addressed and probed by 2D electronic spectroscopy. J Chem Phys 2021; 154:014301. [DOI: 10.1063/5.0031420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Elisabetta Collini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| | - Hugo Gattuso
- Theoretical Physical Chemistry, RU MOLSYS, University of Liège, Allée du 6 Août 11, B4000 Liège, Belgium
| | - R. D. Levine
- The Fritz Haber Research Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - F. Remacle
- Theoretical Physical Chemistry, RU MOLSYS, University of Liège, Allée du 6 Août 11, B4000 Liège, Belgium
- The Fritz Haber Research Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
24
|
Abstract
The microscopic origin and timescale of the fluctuations of the energies of electronic states has a significant impact on the properties of interest of electronic materials, with implication in fields ranging from photovoltaic devices to quantum information processing. Spectroscopic investigations of coherent dynamics provide a direct measurement of electronic fluctuations. Modern multidimensional spectroscopy techniques allow the mapping of coherent processes along multiple time or frequency axes and thus allow unprecedented discrimination between different sources of electronic dephasing. Exploiting modern abilities in coherence mapping in both amplitude and phase, we unravel dissipative processes of electronic coherences in the model system of CdSe quantum dots (QDs). The method allows the assignment of the nature of the observed coherence as vibrational or electronic. The expected coherence maps are obtained for the coherent longitudinal optical (LO) phonon, which serves as an internal standard and confirms the sensitivity of the technique. Fast dephasing is observed between the first two exciton states, despite their shared electron state and common environment. This result is contrary to predictions of the standard effective mass model for these materials, in which the exciton levels are strongly correlated through a common size dependence. In contrast, the experiment is in agreement with ab initio molecular dynamics of a single QD. Electronic dephasing in these materials is thus dominated by the realistic electronic structure arising from fluctuations at the atomic level rather than static size distribution. The analysis of electronic dephasing thereby uniquely enables the study of electronic fluctuations in complex materials.
Collapse
|