1
|
Lin Y, Pal DS, Banerjee P, Banerjee T, Qin G, Deng Y, Borleis J, Iglesias PA, Devreotes PN. Ras suppression potentiates rear actomyosin contractility-driven cell polarization and migration. Nat Cell Biol 2024; 26:1062-1076. [PMID: 38951708 PMCID: PMC11364469 DOI: 10.1038/s41556-024-01453-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/31/2024] [Indexed: 07/03/2024]
Abstract
Ras has been extensively studied as a promoter of cell proliferation, whereas few studies have explored its role in migration. To investigate the direct and immediate effects of Ras activity on cell motility or polarity, we focused on RasGAPs, C2GAPB in Dictyostelium amoebae and RASAL3 in HL-60 neutrophils and macrophages. In both cellular systems, optically recruiting the respective RasGAP to the cell front extinguished pre-existing protrusions and changed migration direction. However, when these respective RasGAPs were recruited uniformly to the membrane, cells polarized and moved more rapidly, whereas targeting to the back exaggerated these effects. These unexpected outcomes of attenuating Ras activity naturally had strong, context-dependent consequences for chemotaxis. The RasGAP-mediated polarization depended critically on myosin II activity and commenced with contraction at the cell rear, followed by sustained mTORC2-dependent actin polymerization at the front. These experimental results were captured by computational simulations in which Ras levels control front- and back-promoting feedback loops. The discovery that inhibiting Ras activity can produce counterintuitive effects on cell migration has important implications for future drug-design strategies targeting oncogenic Ras.
Collapse
Affiliation(s)
- Yiyan Lin
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Parijat Banerjee
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Guanghui Qin
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yu Deng
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jane Borleis
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Iglesias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Park JH, Mortaja M, Son HG, Zhao X, Sloat LM, Azin M, Wang J, Collier MR, Tummala KS, Mandinova A, Bardeesy N, Semenov YR, Mino-Kenudson M, Demehri S. Statin prevents cancer development in chronic inflammation by blocking interleukin 33 expression. Nat Commun 2024; 15:4099. [PMID: 38816352 PMCID: PMC11139893 DOI: 10.1038/s41467-024-48441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Chronic inflammation is a major cause of cancer worldwide. Interleukin 33 (IL-33) is a critical initiator of cancer-prone chronic inflammation; however, its induction mechanism by environmental causes of chronic inflammation is unknown. Herein, we demonstrate that Toll-like receptor (TLR)3/4-TBK1-IRF3 pathway activation links environmental insults to IL-33 induction in the skin and pancreas inflammation. An FDA-approved drug library screen identifies pitavastatin to effectively suppress IL-33 expression by blocking TBK1 membrane recruitment/activation through the mevalonate pathway inhibition. Accordingly, pitavastatin prevents chronic pancreatitis and its cancer sequela in an IL-33-dependent manner. The IRF3-IL-33 axis is highly active in chronic pancreatitis and its associated pancreatic cancer in humans. Interestingly, pitavastatin use correlates with a significantly reduced risk of chronic pancreatitis and pancreatic cancer in patients. Our findings demonstrate that blocking the TBK1-IRF3-IL-33 signaling axis suppresses cancer-prone chronic inflammation. Statins present a safe and effective prophylactic strategy to prevent chronic inflammation and its cancer sequela.
Collapse
Affiliation(s)
- Jong Ho Park
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Anatomy, School of Medicine, Keimyung University, Daegu, South Korea
| | - Mahsa Mortaja
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Heehwa G Son
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Xutu Zhao
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren M Sloat
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marjan Azin
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jun Wang
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael R Collier
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Krishna S Tummala
- Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Quantitative Biosciences, Merck Research Laboratories, Boston, MA, USA
| | - Anna Mandinova
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nabeel Bardeesy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Yevgeniy R Semenov
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Shimizu A, Sawada K, Kobayashi M, Oi Y, Oride T, Kinose Y, Kodama M, Hashimoto K, Kimura T. Patient-Derived Exosomes as siRNA Carriers in Ovarian Cancer Treatment. Cancers (Basel) 2024; 16:1482. [PMID: 38672564 PMCID: PMC11048711 DOI: 10.3390/cancers16081482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
RNA interference is a powerful gene-silencing tool with potential clinical applications. However, its therapeutic use is challenging because suitable carriers are unavailable. Exosomes are stable small endogenous vesicles that can transport functional molecules to target cells, making them ideal small interfering RNA (siRNA) carriers. Herein, we elucidated the therapeutic potential of patient-derived exosomes as an siRNA carrier for ovarian cancer (OC) treatment. The exosomes were extracted from the culture medium of primary fibroblasts collected from the omentum of patients with OC during surgery. MET proto-oncogene, receptor tyrosine kinase (MET) was selected for gene silencing, c-Met siRNAs were synthesized and loaded into the exosomes (Met-siExosomes) via electroporation, and the treatment effect of the Met-siExosomes was assessed in vitro and in vivo. The Met-siExosomes downregulated the c-Met protein levels and inhibited OC cell proliferation, migration, and invasion. In xenograft experiments using SKOV3-13 and ES-2 cells, Met-siExosomes were selectively extracted from peritoneally disseminated tumors. Intraperitoneal treatment suppressed the c-Met downstream targets in cancer cells and prolonged mouse survival. The synthesized siRNAs were successfully and selectively delivered via the exosomes to intraperitoneally disseminated tumors. As patients with OC routinely undergo omentectomy and abundant fibroblasts can be easily collected from the omentum, patient-derived exosomes may represent a promising therapeutic siRNA carrier to treat OC.
Collapse
Affiliation(s)
- Aasa Shimizu
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; (A.S.); (M.K.); (Y.O.); (T.O.); (Y.K.); (M.K.); (K.H.); (T.K.)
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; (A.S.); (M.K.); (Y.O.); (T.O.); (Y.K.); (M.K.); (K.H.); (T.K.)
| | - Masaki Kobayashi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; (A.S.); (M.K.); (Y.O.); (T.O.); (Y.K.); (M.K.); (K.H.); (T.K.)
| | - Yukako Oi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; (A.S.); (M.K.); (Y.O.); (T.O.); (Y.K.); (M.K.); (K.H.); (T.K.)
| | - Tadashi Oride
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; (A.S.); (M.K.); (Y.O.); (T.O.); (Y.K.); (M.K.); (K.H.); (T.K.)
| | - Yasuto Kinose
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; (A.S.); (M.K.); (Y.O.); (T.O.); (Y.K.); (M.K.); (K.H.); (T.K.)
| | - Michiko Kodama
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; (A.S.); (M.K.); (Y.O.); (T.O.); (Y.K.); (M.K.); (K.H.); (T.K.)
| | - Kae Hashimoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; (A.S.); (M.K.); (Y.O.); (T.O.); (Y.K.); (M.K.); (K.H.); (T.K.)
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; (A.S.); (M.K.); (Y.O.); (T.O.); (Y.K.); (M.K.); (K.H.); (T.K.)
| |
Collapse
|
4
|
Zhang X, Lou D, Fu R, Wu F, Zheng D, Ma X. Association between Statins Types with Incidence of Liver Cancer: An Updated Meta-analysis. Curr Med Chem 2024; 31:762-775. [PMID: 37393552 PMCID: PMC10661961 DOI: 10.2174/0929867330666230701000400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/21/2023] [Accepted: 04/23/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Previous studies have found a potential role for statins in liver cancer prevention. OBJECTIVE This study aimed to explore the effect of different types of statins on the incidence of liver cancer. METHODS Relevant articles were systematically retrieved from PubMed, EBSCO, Web of Science, and Cochrane Library databases from inception until July 2022 to explore the relationship between lipophilic statins or hydrophilic statins exposure and the incidence of liver cancer. The main outcome was the incidence of liver cancer. RESULTS Eleven articles were included in this meta-analysis. The pooled results showed a reduced incidence of liver cancer in patients exposed to lipophilic statins (OR=0.54, p < 0.001) and hydrophilic statins (OR=0.56, p < 0.001) compared with the non-exposed cohort. Subgroup analysis showed that both exposures to lipophilic (Eastern countries: OR=0.51, p < 0.001; Western countries: OR=0.59, p < 0.001) and hydrophilic (Eastern countries: OR=0.51, p < 0.001; Western countries: OR=0.66, p=0.019) statins reduced the incidence of liver cancer in Eastern and Western countries, and the reduction was most significant in Eastern countries. Moreover, atorvastatin (OR=0.55, p < 0.001), simvastatin (OR=0.59, p < 0.001), lovastatin (OR=0.51, p < 0.001), pitavastatin (OR=0.36, p=0.008) and rosuvastatin (OR=0.60, p=0.027) could effectively reduce the incidence of liver cancer, unlike fluvastatin, cerivastatin and pravastatin. CONCLUSION Both lipophilic and hydrophilic statins contribute to the prevention of liver cancer. Moreover, the efficacy was influenced by the region and the specific type of statins used.
Collapse
Affiliation(s)
- Xingfen Zhang
- Department of Liver Disease, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Dandi Lou
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Rongrong Fu
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Feng Wu
- Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Dingcheng Zheng
- Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Xueqiang Ma
- Department of Hepatobiliary Surgery, Zhuji People's Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
5
|
Piekuś-Słomka N, Mocan LP, Shkreli R, Grapă C, Denkiewicz K, Wesolowska O, Kornek M, Spârchez Z, Słomka A, Crăciun R, Mocan T. Don't Judge a Book by Its Cover: The Role of Statins in Liver Cancer. Cancers (Basel) 2023; 15:5100. [PMID: 37894467 PMCID: PMC10605163 DOI: 10.3390/cancers15205100] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Statins, which are inhibitors of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, are an effective pharmacological tool for lowering blood cholesterol levels. This property makes statins one of the most popular drugs used primarily to prevent cardiovascular diseases, where hyperlipidemia is a significant risk factor that increases mortality. Nevertheless, studies conducted mainly in the last decade have shown that statins might prevent and treat liver cancer, one of the leading causes of cancer-related mortality worldwide. This narrative review summarizes the scientific achievements to date regarding the role of statins in liver tumors. Molecular biology tools have revealed that cell growth and proliferation can be inhibited by statins, which further inhibit angiogenesis. Clinical studies, supported by meta-analysis, confirm that statins are highly effective in preventing and treating hepatocellular carcinoma and cholangiocarcinoma. However, this effect may depend on the statin's type and dose, and more clinical trials are required to evaluate clinical effects. Moreover, their potential hepatotoxicity is a significant caveat for using statins in clinical practice. Nevertheless, this group of drugs, initially developed to prevent cardiovascular diseases, is now a key candidate in hepato-oncology patient management. The description of new drug-statin-like structures, e.g., with low toxicity to liver cells, may bring another clinically significant improvement to current cancer therapies.
Collapse
Affiliation(s)
- Natalia Piekuś-Słomka
- Department of Inorganic and Analytical Chemistry, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Jurasza 2, 85-089 Bydgoszcz, Poland;
| | - Lavinia Patricia Mocan
- Department of Histology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Rezarta Shkreli
- Department of Pharmacy, Faculty of Medical Sciences, Aldent University, 1001-1028 Tirana, Albania;
| | - Cristiana Grapă
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Kinga Denkiewicz
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (K.D.); (O.W.); (A.S.)
| | - Oliwia Wesolowska
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (K.D.); (O.W.); (A.S.)
| | - Miroslaw Kornek
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany;
| | - Zeno Spârchez
- 3rd Medical Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania;
| | - Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (K.D.); (O.W.); (A.S.)
| | - Rareș Crăciun
- 3rd Medical Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania;
- Department of Gastroenterology, “Octavian Fodor” Institute for Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Tudor Mocan
- Department of Gastroenterology, “Octavian Fodor” Institute for Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
- UBBMed Department, Babeș-Bolyai University, 400349 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Guo Y, Wang P, Jiang L, Deng C, Zheng L, Song C, Jiao J. Multifunctional Proximity Labeling Strategy for Lipid Raft-Specific Sialic Acid Tracking and Engineering. Bioconjug Chem 2023; 34:1719-1726. [PMID: 37767911 DOI: 10.1021/acs.bioconjchem.3c00236] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Lipid raft-specific glycosylation has been implicated in many biological processes, including intracellular trafficking, cell adhesion, signal transduction, and host-pathogen interactions. The major predicament in lipid raft-specific glycosylation research is the unavailability of tools for tracking and manipulating glycans on lipid rafts at the microstructural level. To overcome this challenge, we developed a multifunctional proximity labeling (MPL) platform that relies on cholera toxin B subunit to localize horseradish peroxidase on lipid rafts. In addition to the prevailing electron-rich amino acids, modified sialic acid was included in the horseradish peroxidase-mediated proximity labeling substrate via purposefully designed chemical transformation reactions. In combination with sialic acid editing, the self-renewal of lipid raft-specific sialic acid was visualized. The MPL method enabled tracking of lipid raft dynamics under methyl-β-cyclodextrin and mevinolin treatments; in particular, the alteration of lipid rafts markedly affected cell migration. Furthermore, we embedded functional molecules into the method and implemented raft-specific sialic acid gradient engineering. Our novel strategy presents opportunities for tailoring lipid raft-specific sialic acids, thereby regulating interactions associated with lipid raft regions (such as cell-virus and cell-microenvironment interactions), and can aid in the development of lipid raft-based therapeutic regimens for tumors.
Collapse
Affiliation(s)
- Yuna Guo
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
| | - Pingping Wang
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan 250117, China
| | - Liangyu Jiang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan 250117, China
| | - Chaowen Deng
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan 250117, China
| | - Lei Zheng
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan 250117, China
| | - Cong Song
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
| | - Jianwei Jiao
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Fan YL, Zhang NY, Hou DY, Hao Y, Zheng R, Yang J, Fan Z, An HW, Wang H. Programmable Peptides Activated Macropinocytosis for Direct Cytosolic Delivery. Adv Healthc Mater 2023; 12:e2301162. [PMID: 37449948 DOI: 10.1002/adhm.202301162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/02/2023] [Indexed: 07/18/2023]
Abstract
Bioactive macromolecules show great promise for the treatment of various diseases. However, the cytosolic delivery of peptide-based drugs remains a challenging task owing to the existence of multiple intracellular barriers and ineffective endosomal escape. To address these issues, herein, programmable self-assembling peptide vectors are reported to amplify cargo internalization into the cytoplasm through receptor-activated macropinocytosis. Programmable self-assembling peptide vector-active human epidermal growth factor receptor-2 (HER2) signaling induces the receptor-activated macropinocytosis pathway, achieving efficient uptake in tumor cells. Shrinking macropinosomes accelerate the process of assembly dynamics and form nanostructures in the cytoplasm to increase peptide-based cargo accumulation and retention. Inductively coupled plasma mass (ICP-MS) spectrometry quantitative analysis indicates that the Gd delivery efficiency in tumor tissue through the macropinocytosis pathway is improved 2.5-fold compared with that through the use of active targeting molecular delivery. Finally, compared with nanoparticles and active targeting delivery, the delivery of bioactive peptide drugs through the self-assembly of peptide vectors maintains high drug activity (the IC50 decreased twofold) in the cytoplasm and achieves effective inhibition of tumor cell growth. Programmable self-assembling peptide vectors represent a promising platform for the intracellular delivery of diverse bioactive drugs, including molecular drugs, peptides, and biologics.
Collapse
Affiliation(s)
- Yan-Lei Fan
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Ni-Yuan Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Da-Yong Hou
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Yi Hao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Rui Zheng
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Jia Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Zhi Fan
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Wang B, Yao X, Dong Q, Wang XF, Yin H, Li Q, Wang XQ, Liu Y, Pan YW, Yuan GQ. Quantitation of macropinocytosis in glioblastoma based on high-content analysis. J Neurosci Methods 2023; 397:109947. [PMID: 37574078 DOI: 10.1016/j.jneumeth.2023.109947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Macropinocytosis is a pathway utilized for the internalization of extracellular fluid, albumin and dissolved molecules. Assessing macropinocytosis has been challenging in the past because the combination of manual acquisition and visual evaluation of images is laborious, making this type of assessment difficult for high-throughput applications. Therefore, there is a need to develop sensitive and specific macropinocytosis evaluation methods. METHODS This paper proposed a quantitative and time-saving method for macropinocytosis detection based on high-content analysis (HCA). Additionally, cell proliferation was evaluated using CCK8 test. RESULTS The term "macropinosome index" was defined to estimate macropinocytosis and allow comparisons between different cell lines and treatments. Furthermore, we demonstrated that macropinocytosis can promote glioblastoma (GBM) cell survival under L-glutamine (L-Gln)-deficient conditions that resemble the tumour microenvironment. CONCLUSIONS HCA represents a novel, nonsubjective and high-throughput assay for macropinocytosis assessment. In addition, L-Gln deprivation increased the macropinosome index in GBM cells, suggesting that this process may be used to design GBM therapies. AVAILABILITY OF DATA AND MATERIALS The datasets supporting the conclusions of this article are included within the article and its supplementary materials.
Collapse
Affiliation(s)
- Bo Wang
- Key Lab of Neurology of Gansu Province, the Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China; The Department of Neurosurgery, the Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China; The Second Medical College of Lanzhou University, Lanzhou,730030, Gansu, China
| | - Xuan Yao
- Key Lab of Neurology of Gansu Province, the Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China; The Department of Neurosurgery, the Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China; The Second Medical College of Lanzhou University, Lanzhou,730030, Gansu, China
| | - Qiang Dong
- Key Lab of Neurology of Gansu Province, the Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China; The Department of Neurosurgery, the Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
| | - Xiao-Fang Wang
- Gansu Pharmaceutical Group Science and Technology Research Institute, Lanzhou 730030, Gansu, China
| | - Hang Yin
- Key Lab of Neurology of Gansu Province, the Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China; The Department of Neurosurgery, the Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
| | - Qiao Li
- Key Lab of Neurology of Gansu Province, the Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China; The Department of Neurosurgery, the Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
| | - Xiao-Qing Wang
- Key Lab of Neurology of Gansu Province, the Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China; The Department of Neurosurgery, the Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
| | - Yang Liu
- Key Lab of Neurology of Gansu Province, the Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China; The Department of Neurosurgery, the Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
| | - Ya-Wen Pan
- Key Lab of Neurology of Gansu Province, the Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China; The Department of Neurosurgery, the Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China; The Second Medical College of Lanzhou University, Lanzhou,730030, Gansu, China.
| | - Guo-Qiang Yuan
- Key Lab of Neurology of Gansu Province, the Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China; The Department of Neurosurgery, the Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China; The Second Medical College of Lanzhou University, Lanzhou,730030, Gansu, China.
| |
Collapse
|
9
|
Lin Y, Pal DS, Banerjee P, Banerjee T, Qin G, Deng Y, Borleis J, Iglesias PA, Devreotes PN. Ras-mediated homeostatic control of front-back signaling dictates cell polarity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555648. [PMID: 37693515 PMCID: PMC10491231 DOI: 10.1101/2023.08.30.555648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Studies in the model systems, Dictyostelium amoebae and HL-60 neutrophils, have shown that local Ras activity directly regulates cell motility or polarity. Localized Ras activation on the membrane is spatiotemporally regulated by its activators, RasGEFs, and inhibitors, RasGAPs, which might be expected to create a stable 'front' and 'back', respectively, in migrating cells. Focusing on C2GAPB in amoebae and RASAL3 in neutrophils, we investigated how Ras activity along the cortex controls polarity. Since existing gene knockout and overexpression studies can be circumvented, we chose optogenetic approaches to assess the immediate, local effects of these Ras regulators on the cell cortex. In both cellular systems, optically targeting the respective RasGAPs to the cell front extinguished existing protrusions and changed the direction of migration, as might be expected. However, when the expression of C2GAPB was induced globally, amoebae polarized within hours. Furthermore, within minutes of globally recruiting either C2GAPB in amoebae or RASAL3 in neutrophils, each cell type polarized and moved more rapidly. Targeting the RasGAPs to the cell backs exaggerated these effects on migration and polarity. Overall, in both cell types, RasGAP-mediated polarization was brought about by increased actomyosin contractility at the back and sustained, localized F-actin polymerization at the front. These experimental results were accurately captured by computational simulations in which Ras levels control front and back feedback loops. The discovery that context-dependent Ras activity on the cell cortex has counterintuitive, unanticipated effects on cell polarity can have important implications for future drug-design strategies targeting oncogenic Ras.
Collapse
|
10
|
Zhou Q, Jiao Z, Liu Y, Devreotes PN, Zhang Z. The effects of statins in patients with advanced-stage cancers - a systematic review and meta-analysis. Front Oncol 2023; 13:1234713. [PMID: 37664034 PMCID: PMC10473877 DOI: 10.3389/fonc.2023.1234713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Background Statin therapy has been shown to reduce mortality in a wide range of cancer types and overall stages. Still, there is uncertainty about its efficacy in increasing survival among advanced cancer patients. Methods We conducted a meta-analysis with data from all studies that compared the hazard ratio of overall survival, cancer-specific survival, and progression-free survival in patients with advanced-stage cancer who receive statin therapy. Studies were selected from the PubMed, Embase, and Web of Science databases from their inception to December 31, 2022. Cancer types are limited to those rarely screened during the annual examination and more likely to develop into advanced stages, such as lung, pancreatic and ovarian cancers. This resulted in 27 studies eligible for meta-analysis. Results Statin therapy was associated with a 26% decreased risk of overall survival (HR, 0.74; 95% CI, 0.67, 0.81), 26% decreased risk of cancer-specific survival (HR, 0.74; 95% CI, 0.61-0.88), and 24% decreased risk of progression-free survival (HR, 0.76; 95% CI, 0.65-0.87) for advanced-stage cancer patients. The associations were not attenuated or reinforced by study design, study regions, cancer types, or other medical care. Concomitant use of other anticancer medications did not result in confounding effects. Conclusions Statin therapy produces significant benefits on overall survival and cancer-specific survival. Although the benefits might be lower than the approved immunotherapy medications, its cost-effectiveness could lead to dramatic health consequences. Concomitant use of statin drugs as cancer treatments is highly recommended in future clinical trials.
Collapse
Affiliation(s)
- Qiang Zhou
- Department of Administration, Shenzhen Center for Prehospital Care, Shenzhen, China
| | - Zhihua Jiao
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Yuxi Liu
- Preventive Medicine, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Peter N. Devreotes
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Zhenyu Zhang
- Department of Global Health, Peking University School of Public Health, Beijing, China
- Institute for Global Health and Development, Peking University, Beijing, China
| |
Collapse
|
11
|
Liang J, Yu D, Luo C, Bennett C, Jedrychowski M, Gygi SP, Widlund HR, Puigserver P. Epigenetic suppression of PGC1α (PPARGC1A) causes collateral sensitivity to HMGCR-inhibitors within BRAF-treatment resistant melanomas. Nat Commun 2023; 14:3251. [PMID: 37277330 PMCID: PMC10241879 DOI: 10.1038/s41467-023-38968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
While targeted treatment against BRAF(V600E) improve survival for melanoma patients, many will see their cancer recur. Here we provide data indicating that epigenetic suppression of PGC1α defines an aggressive subset of chronic BRAF-inhibitor treated melanomas. A metabolism-centered pharmacological screen further identifies statins (HMGCR inhibitors) as a collateral vulnerability within PGC1α-suppressed BRAF-inhibitor resistant melanomas. Lower PGC1α levels mechanistically causes reduced RAB6B and RAB27A expression, whereby their combined re-expression reverses statin vulnerability. BRAF-inhibitor resistant cells with reduced PGC1α have increased integrin-FAK signaling and improved extracellular matrix detached survival cues that helps explain their increased metastatic ability. Statin treatment blocks cell growth by lowering RAB6B and RAB27A prenylation that reduces their membrane association and affects integrin localization and downstream signaling required for growth. These results suggest that chronic adaptation to BRAF-targeted treatments drive novel collateral metabolic vulnerabilities, and that HMGCR inhibitors may offer a strategy to treat melanomas recurring with suppressed PGC1α expression.
Collapse
Affiliation(s)
- Jiaxin Liang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Deyang Yu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Chi Luo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Parthenon Therapeutics, Boston, MA, 02135, USA
| | - Christopher Bennett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Atavistik Bio, Cambridge, MA, 02139, USA
| | - Mark Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steve P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hans R Widlund
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Li C, Yao Z, Ma L, Song X, Wang W, Wan C, Ren S, Chen D, Zheng Y, Zhu YT, Chang G, Wu S, Miao K, Luo F, Zhao XY. Lovastatin promotes the self-renewal of murine and primate spermatogonial stem cells. Stem Cell Reports 2023; 18:969-984. [PMID: 37044069 PMCID: PMC10147841 DOI: 10.1016/j.stemcr.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 04/14/2023] Open
Abstract
The spermatogonial stem cell (SSC) niche is critical for SSC maintenance and subsequent spermatogenesis. Numerous reproductive hazards impair the SSC niche, thereby resulting in aberrant SSC self-renewal and male infertility. However, promising agents targeting the impaired SSC niche to promote SSC self-renewal are still limited. Here, we screen out and assess the effects of Lovastatin on the self-renewal of mouse SSCs (mSSCs). Mechanistically, Lovastatin promotes the self-renewal of mSSCs and inhibits its inflammation and apoptosis through the regulation of isoprenoid intermediates. Remarkably, treatment by Lovastatin could promote the proliferation of undifferentiated spermatogonia in the male gonadotoxicity model generated by busulfan injection. Of note, we demonstrate that Lovastatin could enhance the proliferation of primate undifferentiated spermatogonia. Collectively, our findings uncover that lovastatin could promote the self-renewal of both murine and primate SSCs and have implications for the treatment of certain types of male infertility using small compounds.
Collapse
Affiliation(s)
- Chaohui Li
- Shunde Hospital of Southern Medical University, Shunde, Guangdong, China; State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaokai Yao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Linzi Ma
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuling Song
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen Wang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Cong Wan
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Shaofang Ren
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Dingyao Chen
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Zheng
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yong-Tong Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Gang Chang
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Shihao Wu
- Shunde Hospital of Southern Medical University, Shunde, Guangdong, China
| | - Kai Miao
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau, SAR, China.
| | - Fang Luo
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| | - Xiao-Yang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China; Sino-America Joint Research Center for Translational Medicine in Developmental Disabilities, Guangzhou, China; Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; National Clinical Research Canter for Kidney Disease, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Guangzhou, China.
| |
Collapse
|
13
|
Gan Y, Wang C, Chen Y, Hua L, Fang H, Li S, Chai S, Xu Y, Zhang J, Gu Y. Tubeimoside-2 Triggers Methuosis in Hepatocarcinoma Cells through the MKK4-p38α Axis. Pharmaceutics 2023; 15:pharmaceutics15041093. [PMID: 37111582 PMCID: PMC10142215 DOI: 10.3390/pharmaceutics15041093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Liver cancer, consisting mainly of hepatocellular carcinoma, is the third leading cause of cancer-related mortality worldwide. Despite advances in targeted therapies, these approaches remain insufficient in meeting the pressing clinical demands. Here, we present a novel alternative that calls for a non-apoptotic program to solve the current dilemma. Specifically, we identified that tubeimoside 2 (TBM-2) could induce methuosis in hepatocellular carcinoma cells, a recently recognized mode of cell death characterized by pronounced vacuolization, necrosis-like membrane disruption, and no response to caspase inhibitors. Further proteomic analysis revealed that TBM-2-driven methuosis is facilitated by the hyperactivation of the MKK4-p38α axis and the boosted lipid metabolism, especially cholesterol biosynthesis. Pharmacological interventions targeting either the MKK4-p38α axis or cholesterol biosynthesis effectively suppress TBM-2-induced methuosis, highlighting the pivotal role of these mechanisms in TBM-2-mediated cell death. Moreover, TBM-2 treatment effectively suppressed tumor growth by inducing methuosis in a xenograft mouse model of hepatocellular carcinoma. Taken together, our findings provide compelling evidence of TBM-2's remarkable tumor-killing effects by inducing methuosis, both in vitro and in vivo. TBM-2 represents a promising avenue for the development of innovative and effective therapies for hepatocellular carcinoma, one that may ultimately offer significant clinical benefits for patients with this devastating disease.
Collapse
Affiliation(s)
- Yichao Gan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chen Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yunyun Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Linxin Hua
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hui Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shu Li
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shoujie Chai
- Department of Oncology, Ningbo First Hospital, Ningbo 315010, China
| | - Yang Xu
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jiawei Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ying Gu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou 310058, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
| |
Collapse
|
14
|
Salloum G, Bresnick AR, Backer JM. Macropinocytosis: mechanisms and regulation. Biochem J 2023; 480:335-362. [PMID: 36920093 DOI: 10.1042/bcj20210584] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023]
Abstract
Macropinocytosis is defined as an actin-dependent but coat- and dynamin-independent endocytic uptake process, which generates large intracellular vesicles (macropinosomes) containing a non-selective sampling of extracellular fluid. Macropinocytosis provides an important mechanism of immune surveillance by dendritic cells and macrophages, but also serves as an essential nutrient uptake pathway for unicellular organisms and tumor cells. This review examines the cell biological mechanisms that drive macropinocytosis, as well as the complex signaling pathways - GTPases, lipid and protein kinases and phosphatases, and actin regulatory proteins - that regulate macropinosome formation, internalization, and disposition.
Collapse
Affiliation(s)
- Gilbert Salloum
- Department of Molecular Pharamacology, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| | - Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| | - Jonathan M Backer
- Department of Molecular Pharamacology, Albert Einstein College of Medicine, Bronx, NY, U.S.A
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| |
Collapse
|
15
|
Kansal V, Burnham AJ, Kinney BLC, Saba NF, Paulos C, Lesinski GB, Buchwald ZS, Schmitt NC. Statin drugs enhance responses to immune checkpoint blockade in head and neck cancer models. J Immunother Cancer 2023; 11:jitc-2022-005940. [PMID: 36650022 PMCID: PMC9853267 DOI: 10.1136/jitc-2022-005940] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Anti-PD-1 immune checkpoint blockade is approved for first-line treatment of recurrent/metastatic head and neck squamous cell carcinoma (HNSCC), but few patients respond. Statin drugs (HMG-CoA reductase inhibitors) are associated with superior survival in several cancer types, including HNSCC. Emerging data suggest that manipulation of cholesterol may enhance some aspects of antitumor immunity. METHODS We used syngeneic murine models (mouse oral cancer, MOC1 and TC-1) to investigate our hypothesis that a subset of statin drugs would enhance antitumor immunity and delay tumor growth. RESULTS Using an ex vivo coculture assay of murine cancer cells and tumor infiltrating lymphocytes, we discovered that all seven statin drugs inhibited tumor cell proliferation. Simvastatin and lovastatin also enhanced T-cell killing of tumor cells. In mice, daily oral simvastatin or lovastatin enhanced tumor control and extended survival when combined with PD-1 blockade, with rejection of MOC1 tumors in 30% of mice treated with lovastatin plus anti-PD-1. Results from flow cytometry of tumors and tumor-draining lymph nodes suggested T cell activation and shifts from M2 to M1 macrophage predominance as potential mechanisms of combination therapy. CONCLUSIONS These results suggest that statins deserve further study as well-tolerated, inexpensive drugs that may enhance responses to PD-1 checkpoint blockade and other immunotherapies for HNSCC.
Collapse
Affiliation(s)
- Vikash Kansal
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, USA,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Andre J Burnham
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, USA,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Brendan L C Kinney
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, USA,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Nabil F Saba
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA,Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Chrystal Paulos
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA,Departments of Surgery and Microbiology/Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gregory B Lesinski
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA,Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Nicole C Schmitt
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, USA,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Park JH, Mortaja M, Son H, Azin M, Wang J, Collier M, Mandinova A, Semenov Y, Mino-Kenudson M, Demehri S. Statin prevents cancer development in chronic inflammation by blocking interleukin 33 expression. RESEARCH SQUARE 2023:rs.3.rs-2318750. [PMID: 36711701 PMCID: PMC9882616 DOI: 10.21203/rs.3.rs-2318750/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chronic inflammation is a major cause of cancer worldwide. Interleukin 33 (IL-33) is a critical initiator of cancer-prone chronic inflammation; however, its induction mechanism by the environmental causes of chronic inflammation is unknown. Herein, we demonstrate that Toll-like receptor (TLR)3/4-TBK1-IRF3 pathway activation links environmental insults to IL-33 induction in the skin and pancreas. FDA-approved drug library screen identified pitavastatin as an effective IL-33 inhibitor by blocking TBK1 membrane recruitment/activation through the mevalonate pathway inhibition. Accordingly, pitavastatin prevented chronic pancreatitis and its cancer sequela in an IL-33-dependent manner. IRF3-IL-33 axis was highly active in chronic pancreatitis and its associated pancreatic cancer in humans. Interestingly, pitavastatin use correlated with a significantly reduced risk of chronic pancreatitis and pancreatic cancer in patients. Our findings demonstrate that blocking the TBK1-IRF3 signaling pathway suppresses IL-33 expression and cancer-prone chronic inflammation. Statins present a safe and effective therapeutic strategy to prevent chronic inflammation and its cancer sequela.
Collapse
|
17
|
Muehlebach ME, Holstein SA. Geranylgeranyl diphosphate synthase: Role in human health, disease and potential therapeutic target. Clin Transl Med 2023; 13:e1167. [PMID: 36650113 PMCID: PMC9845123 DOI: 10.1002/ctm2.1167] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023] Open
Abstract
Geranylgeranyl diphosphate synthase (GGDPS), an enzyme in the isoprenoid biosynthesis pathway, is responsible for the production of geranylgeranyl pyrophosphate (GGPP). GGPP serves as a substrate for the post-translational modification (geranylgeranylation) of proteins, including those belonging to the Ras superfamily of small GTPases. These proteins play key roles in signalling pathways, cytoskeletal regulation and intracellular transport, and in the absence of the prenylation modification, cannot properly localise and function. Aberrant expression of GGDPS has been implicated in various human pathologies, including liver disease, type 2 diabetes, pulmonary disease and malignancy. Thus, this enzyme is of particular interest from a therapeutic perspective. Here, we review the physiological function of GGDPS as well as its role in pathophysiological processes. We discuss the current GGDPS inhibitors under development and the therapeutic implications of targeting this enzyme.
Collapse
Affiliation(s)
- Molly E. Muehlebach
- Cancer Research Doctoral ProgramUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sarah A. Holstein
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
18
|
Zhang Y, Xu L, Ren Z, Liu X, Song J, Zhang P, Zhang C, Gong S, Wu N, Zhang X, Xie C, Lu Z, Ma M, Zhang Y, Chen Y, Lin C. LINC01615 maintains cell survival in adaptation to nutrient starvation through the pentose phosphate pathway and modulates chemosensitivity in colorectal cancer. Cell Mol Life Sci 2022; 80:20. [PMID: 36576581 PMCID: PMC11071770 DOI: 10.1007/s00018-022-04675-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/29/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022]
Abstract
Numerous mechanisms involved in promoting cancer cell survival under nutrient starvation have been described. Long noncoding RNAs (lncRNAs) have emerged as critical players in colorectal cancer (CRC) progression, but the role of lncRNAs in the progression of CRC under nutrient starvation has not been well clarified. Here, we identified a lncRNA, LINC01615, that was significantly upregulated in response to serum starvation. LINC01615 can contribute to the adaptation of CRC cells to serum-deprived conditions and enhance cell survival under similar conditions. LINC01615 activated the pentose phosphate pathway (PPP) under serum starvation, manifested as decreased ROS production and enhanced nucleotide and lipid synthesis. Glucose-6-phosphate dehydrogenase (G6PD) is a key rate-limiting enzyme of the PPP, and LINC01615 promoted G6PD expression by competitively binding with hnRNPA1 and facilitating G6PD pre-mRNA splicing. Moreover, we also found that serum starvation led to METTL3 degradation by inducing autophagy, which further increased the stability and level of LINC01615 in a m6A-dependent manner. LINC01615 knockdown combined with oxaliplatin achieved remarkable antitumor effects in PDO and PDX models. Collectively, our results demonstrated a novel adaptive survival mechanism permitting tumor cells to survive under limiting nutrient supplies and provided a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Yi Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221000, China
| | - Lei Xu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221000, China
| | - Zeqiang Ren
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Xin Liu
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Jun Song
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Pengbo Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Chong Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Shuai Gong
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Nai Wu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Xiuzhong Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Chanbin Xie
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Central South University, Changsha, 410013, Hunan, China
| | - Zhixing Lu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Central South University, Changsha, 410013, Hunan, China
| | - Min Ma
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Central South University, Changsha, 410013, Hunan, China
| | - Yi Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Central South University, Changsha, 410013, Hunan, China
| | - Yifei Chen
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Central South University, Changsha, 410013, Hunan, China
- Department of Otolaryngology and Head Neck Surgery, Affiliated Changsha Hospital of Hunan Normal University, Changsha, China
| | - Changwei Lin
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China.
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
19
|
The cholesterol uptake regulator PCSK9 promotes and is a therapeutic target in APC/KRAS-mutant colorectal cancer. Nat Commun 2022; 13:3971. [PMID: 35803966 PMCID: PMC9270407 DOI: 10.1038/s41467-022-31663-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/16/2022] [Indexed: 11/08/2022] Open
Abstract
Therapeutic targeting of KRAS-mutant colorectal cancer (CRC) is an unmet need. Here, we show that Proprotein Convertase Subtilisin/Kexin type 9 (PSCK9) promotes APC/KRAS-mutant CRC and is a therapeutic target. Using CRC patient cohorts, isogenic cell lines and transgenic mice, we identify that de novo cholesterol biosynthesis is induced in APC/KRAS mutant CRC, accompanied by increased geranylgeranyl diphosphate (GGPP)─a metabolite necessary for KRAS activation. PCSK9 is the top up-regulated cholesterol-related gene. PCSK9 depletion represses APC/KRAS-mutant CRC cell growth in vitro and in vivo, whereas PCSK9 overexpression induces oncogenesis. Mechanistically, PCSK9 reduces cholesterol uptake but induces cholesterol de novo biosynthesis and GGPP accumulation. GGPP is a pivotal metabolite downstream of PCSK9 by activating KRAS/MEK/ERK signaling. PCSK9 inhibitors suppress growth of APC/KRAS-mutant CRC cells, organoids and xenografts, especially in combination with simvastatin. PCSK9 overexpression predicts poor survival of APC/KRAS-mutant CRC patients. Together, cholesterol homeostasis regulator PCSK9 promotes APC/KRAS-mutant CRC via GGPP-KRAS/MEK/ERK axis and is a therapeutic target.
Collapse
|
20
|
Exploration of Deformation of F-Actin during Macropinocytosis by Confocal Microscopy and 3D-Structured Illumination Microscopy. PHOTONICS 2022. [DOI: 10.3390/photonics9070461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Since their invention, confocal microscopy and super-resolution microscopy have become important choices in cell biology research. Macropinocytosis is a critical form of endocytosis. Deformation of the cell membrane is thought to be closely related to the movement of F-actin during macropinocytosis. However, it is still unclear how the morphology of F-actin and the membrane change during this process. In this study, confocal microscopy was utilized for macroscopic time-series imaging of the cell membranes and F-actin in cells induced by phorbol 12-myristate 13-acetate (PMA). Super-resolution structured illumination microscopy (SIM), which can overcome the diffraction limit, was used to demonstrate the morphological characteristics of F-actin filaments. Benefiting from the advantages of SIM in terms of resolution and 3D imaging, we speculated on the regular pattern of the deformation of F-actin during macropinocytosis. The detailed visualization of structures also helped to validate the speculation regarding the role of F-actin filaments in macropinocytosis in previous studies. The results obtained in this study will provide a better understanding of the mechanisms underlying macropinocytosis and endocytosis.
Collapse
|
21
|
Dehghankelishadi P, Maritz MF, Dmochowska N, Badiee P, Cheah E, Kempson I, Berbeco RI, Thierry B. Formulation of simvastatin within high density lipoprotein enables potent tumour radiosensitisation. J Control Release 2022; 346:98-109. [PMID: 35447296 DOI: 10.1016/j.jconrel.2022.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
Preclinical, clinical and epidemiologic studies have established the potent anticancer and radiosensitisation effects of HMG-CoA reductase inhibitors (statins). However, the low bioavailability of oral statin formulations is a key barrier to achieving effective doses within tumour. To address this issue and ascertain the radiosensitisation potential of simvastatin, we developed a parenteral high density lipoprotein nanoparticle (HDL NP) formulation of this commonly used statin. A scalable method for the preparation of the simvastatin-HDL NPs was developed using a 3D printed microfluidic mixer. This enables the production of litre scale amounts of particles with minimal batch to batch variation. Simvastatin-HDL NPs enhanced the radiobiological response in 2D/3D head and neck squamous cell carcinoma (HNSCC) in vitro models. The simvastatin-HDL NPs radiosensitisation was comparable to that of 10 and 5 times higher doses of free drug in 2D and 3D cultures, respectively, which could be partially explained by more efficient cellular uptake of the statin in the nanoformulation as well as by the inherent biological activity of the HDL NPs on the cholesterol pathway. The radiosensitising potency of the simvastatin-HDL nanoformulation was validated in an immunocompetent MOC-1 HNSCC tumour bearing mouse model. This data supports the rationale of repurposing statins through reformulation within HDL NPs. Statins are safe and readily available molecules including as generic, and their use as radiosensitisers could lead to much needed effective and affordable approaches to improve treatment of solid tumours.
Collapse
Affiliation(s)
- Pouya Dehghankelishadi
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia; UniSA Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Michelle F Maritz
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Nicole Dmochowska
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Parisa Badiee
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia; UniSA Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Edward Cheah
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia; UniSA Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Ross I Berbeco
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin Thierry
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia.
| |
Collapse
|
22
|
Esposito D, Pant I, Shen Y, Qiao RF, Yang X, Bai Y, Jin J, Poulikakos PI, Aaronson SA. ROCK1 mechano-signaling dependency of human malignancies driven by TEAD/YAP activation. Nat Commun 2022; 13:703. [PMID: 35121738 PMCID: PMC8817028 DOI: 10.1038/s41467-022-28319-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
Rho family mechano-signaling through the actin cytoskeleton positively regulates physiological TEAD/YAP transcription, while the evolutionarily conserved Hippo tumor suppressor pathway antagonizes this transcription through YAP cytoplasmic localization/degradation. The mechanisms responsible for oncogenic dysregulation of these pathways, their prevalence in tumors, as well as how such dysregulation can be therapeutically targeted are not resolved. We demonstrate that p53 DNA contact mutants in human tumors, indirectly hyperactivate RhoA/ROCK1/actomyosin signaling, which is both necessary and sufficient to drive oncogenic TEAD/YAP transcription. Moreover, we demonstrate that recurrent lesions in the Hippo pathway depend on physiological levels of ROCK1/actomyosin signaling for oncogenic TEAD/YAP transcription. Finally, we show that ROCK inhibitors selectively antagonize proliferation and motility of human tumors with either mechanism. Thus, we identify a cancer driver paradigm and a precision medicine approach for selective targeting of human malignancies driven by TEAD/YAP transcription through mechanisms that either upregulate or depend on homeostatic RhoA mechano-signaling.
Collapse
Affiliation(s)
- Davide Esposito
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ila Pant
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yao Shen
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rui F Qiao
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xiaobao Yang
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yiyang Bai
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Poulikos I Poulikakos
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Dermatology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Stuart A Aaronson
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
23
|
Fu L, Jin W, Zhang J, Zhu L, Lu J, Zhen Y, Zhang L, Ouyang L, Liu B, Yu H. Repurposing non-oncology small-molecule drugs to improve cancer therapy: Current situation and future directions. Acta Pharm Sin B 2022; 12:532-557. [PMID: 35256933 PMCID: PMC8897051 DOI: 10.1016/j.apsb.2021.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/05/2021] [Accepted: 08/27/2021] [Indexed: 12/25/2022] Open
Abstract
Drug repurposing or repositioning has been well-known to refer to the therapeutic applications of a drug for another indication other than it was originally approved for. Repurposing non-oncology small-molecule drugs has been increasingly becoming an attractive approach to improve cancer therapy, with potentially lower overall costs and shorter timelines. Several non-oncology drugs approved by FDA have been recently reported to treat different types of human cancers, with the aid of some new emerging technologies, such as omics sequencing and artificial intelligence to overcome the bottleneck of drug repurposing. Therefore, in this review, we focus on summarizing the therapeutic potential of non-oncology drugs, including cardiovascular drugs, microbiological drugs, small-molecule antibiotics, anti-viral drugs, anti-inflammatory drugs, anti-neurodegenerative drugs, antipsychotic drugs, antidepressants, and other drugs in human cancers. We also discuss their novel potential targets and relevant signaling pathways of these old non-oncology drugs in cancer therapies. Taken together, these inspiring findings will shed new light on repurposing more non-oncology small-molecule drugs with their intricate molecular mechanisms for future cancer drug discovery.
Collapse
|
24
|
Abstract
The distinct movements of macropinosome formation and maturation have corresponding biochemical activities which occur in a defined sequence of stages and transitions between those stages. Each stage in the process is regulated by variously phosphorylated derivatives of phosphatidylinositol (PtdIns) which reside in the cytoplasmic face of the membrane lipid bilayer. PtdIns derivatives phosphorylated at the 3' position of the inositol moiety, called 3' phosphoinositides (3'PIs), regulate different stages of the sequence. 3'PIs are synthesized by numerous phosphoinositide 3'-kinases (PI3K) and other lipid kinases and phosphatases, which are themselves regulated by small GTPases of the Ras superfamily. The combined actions of these enzymes localize four principal species of 3'PI to distinct domains of the plasma membrane or to discrete organelles, with distinct biochemical activities confined to those domains. Phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol (3,4)-bisphosphate (PtdIns(3,4)P2) regulate the early stages of macropinosome formation, which include cell surface ruffling and constrictions of circular ruffles which close into macropinosomes. Phosphatidylinositol 3-phosphate (PtdIns3P) regulates macropinosome fusion with other macropinosomes and early endocytic organelles. Phosphatidylinositol (3,5)-bisphosphate (PtdIns(3,5)P2) mediates macropinosome maturation and shrinkage, through loss of ions and water, and subsequent traffic to lysosomes. The different characteristic rates of macropinocytosis in different cell types indicate levels of regulation which may be governed by the cell's capacity to generate 3'PIs.
Collapse
Affiliation(s)
- Joel A Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Nobukazu Araki
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa, Japan
| |
Collapse
|
25
|
Kay RR, Lutton J, Coker H, Paschke P, King JS, Bretschneider T. The Amoebal Model for Macropinocytosis. Subcell Biochem 2022; 98:41-59. [PMID: 35378702 DOI: 10.1007/978-3-030-94004-1_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Macropinocytosis is a relatively unexplored form of large-scale endocytosis driven by the actin cytoskeleton. Dictyostelium amoebae form macropinosomes from cups extended from the plasma membrane, then digest their contents and absorb the nutrients in the endo-lysosomal system. They use macropinocytosis for feeding, maintaining a high rate of fluid uptake that makes assay and experimentation easy. Mutants collected over the years identify cytoskeletal and signalling proteins required for macropinocytosis. Cups are organized around plasma membrane domains of intense PIP3, Ras and Rac signalling, proper formation of which also depends on the RasGAPs NF1 and RGBARG, PTEN, the PIP3-regulated protein kinases Akt and SGK and their activators PDK1 and TORC2, Rho proteins, plus other components yet to be identified. This PIP3 domain directs dendritic actin polymerization to the extending lip of macropinocytic cups by recruiting a ring of the SCAR/WAVE complex around itself and thus activating the Arp2/3 complex. The dynamics of PIP3 domains are proposed to shape macropinocytic cups from start to finish. The role of the Ras-PI3-kinase module in organizing feeding structures in unicellular organisms most likely predates its adoption into growth factor signalling, suggesting an evolutionary origin for growth factor signalling.
Collapse
Affiliation(s)
- Robert R Kay
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Josiah Lutton
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Helena Coker
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Peggy Paschke
- MRC Laboratory of Molecular Biology, Cambridge, UK.,Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Jason S King
- School of Biomedical Sciences, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
26
|
Waku T, Hagiwara T, Tamura N, Atsumi Y, Urano Y, Suzuki M, Iwami T, Sato K, Yamamoto M, Noguchi N, Kobayashi A. NRF3 upregulates gene expression in SREBP2-dependent mevalonate pathway with cholesterol uptake and lipogenesis inhibition. iScience 2021; 24:103180. [PMID: 34667945 PMCID: PMC8506969 DOI: 10.1016/j.isci.2021.103180] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Lipids, such as cholesterol and fatty acids, influence cell signaling, energy storage, and membrane formation. Cholesterol is biosynthesized through the mevalonate pathway, and aberrant metabolism causes metabolic diseases. The genetic association of a transcription factor NRF3 with obesity has been suggested, although the molecular mechanisms remain unknown. Here, we show that NRF3 upregulates gene expression in SREBP2-dependent mevalonate pathway. We further reveal that NRF3 overexpression not only reduces lanosterol, a cholesterol precursor, but also induces the expression of the GGPS1 gene encoding an enzyme in the production of GGPP from farnesyl pyrophosphate (FPP), a lanosterol precursor. NRF3 overexpression also enhances cholesterol uptake through RAB5-mediated macropinocytosis process, a bulk and fluid-phase endocytosis pathway. Moreover, we find that GGPP treatment abolishes NRF3 knockdown-mediated increase of neutral lipids. These results reveal the potential roles of NRF3 in the SREBP2-dependent mevalonate pathway for cholesterol uptake through macropinocytosis induction and for lipogenesis inhibition through GGPP production. NRF3 upregulates gene expression of enzymes in the mevalonate pathway NRF3 induces SREBP2 gene expression and interacts with active SREBP2 proteins NRF3 reduces neutral lipid levels through GGPS1-mediated GGPP production NRF3 enhances cholesterol uptake through RAB5-mediated macropinocytosis
Collapse
Affiliation(s)
- Tsuyoshi Waku
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Toru Hagiwara
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Natsuko Tamura
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Yuri Atsumi
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Yasuomi Urano
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Mikiko Suzuki
- Center for Radioisotope Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575 Japan
| | - Takuya Iwami
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Katsuya Sato
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575 Japan
| | - Noriko Noguchi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Akira Kobayashi
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan.,Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| |
Collapse
|
27
|
A comprehensive review on the lipid and pleiotropic effects of pitavastatin. Prog Lipid Res 2021; 84:101127. [PMID: 34509516 DOI: 10.1016/j.plipres.2021.101127] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 12/29/2022]
Abstract
The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, or statins, are administered as first line therapy for hypercholesterolemia, both in primary and secondary prevention. There is a growing body of evidence showing that beyond their lipid-lowering effect, statins have a number of additional beneficial properties. Pitavastatin is a unique lipophilic statin with a strong effect on lowering plasma total cholesterol and triacylglycerol. It has been reported to have pleiotropic effects such as decreasing inflammation and oxidative stress, regulating angiogenesis and osteogenesis, improving endothelial function and arterial stiffness, and reducing tumor progression. Based on the available studies considering the risk of statin-associated muscle symptoms it seems to be also the safest statin. The unique lipid and non-lipid effects of pitavastatin make this molecule a particularly interesting option for the management of different human diseases. In this review, we first summarized the lipid effects of pitavastatin and then strive to unravel the diverse pleiotropic effects of this molecule.
Collapse
|
28
|
Nam GH, Kwon M, Jung H, Ko E, Kim SA, Choi Y, Song SJ, Kim S, Lee Y, Kim GB, Han J, Woo J, Cho Y, Jeong C, Park SY, Roberts TM, Cho YB, Kim IS. Statin-mediated inhibition of RAS prenylation activates ER stress to enhance the immunogenicity of KRAS mutant cancer. J Immunother Cancer 2021; 9:jitc-2021-002474. [PMID: 34330763 PMCID: PMC8327837 DOI: 10.1136/jitc-2021-002474] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
Background Statins preferentially promote tumor-specific apoptosis by depleting isoprenoid such as farnesyl pyrophosphate and geranylgeranyl pyrophosphate. However, statins have not yet been approved for clinical cancer treatment due, in part, to poor understanding of molecular determinants on statin sensitivity. Here, we investigated the potential of statins to elicit enhanced immunogenicity of KRAS-mutant (KRASmut) tumors. Methods The immunogenicity of treated cancer cells was determined by western blot, flow cytometry and confocal microscopy. The immunotherapeutic efficacy of mono or combination therapy using statin was assessed in KRASmut tumor models, including syngeneic colorectal cancer and genetically engineered lung and pancreatic tumors. Using NanoString analysis, we analyzed how statin influenced the gene signatures associated with the antigen presentation of dendritic cells in vivo and evaluated whether statin could induce CD8+ T-cell immunity. Multiplex immunohistochemistry was performed to better understand the complicated tumor-immune microenvironment. Results Statin-mediated inhibition of KRAS prenylation provoked severe endoplasmic reticulum (ER) stress by attenuating the anti-ER stress effect of KRAS mutation, thereby resulting in the immunogenic cell death (ICD) of KRASmut cancer cells. Moreover, statin-mediated ICD enhanced the cross-priming ability of dendritic cells, thereby provoking CD8+ T-cell immune responses against KRASmut tumors. Combination therapy using statin and oxaliplatin, an ICD inducer, significantly enhanced the immunogenicity of KRASmut tumors and promoted tumor-specific immunity in syngeneic and genetically engineered KRASmut tumor models. Along with immune-checkpoint inhibitors, the abovementioned combination therapy overcame resistance to PD-1 blockade therapies, improving the survival rate of KRASmut tumor models. Conclusions Our findings suggest that KRAS mutation could be a molecular target for statins to elicit potent tumor-specific immunity.
Collapse
Affiliation(s)
- Gi-Hoon Nam
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Minsu Kwon
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hanul Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Eunbyeol Ko
- Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Seong A Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yoonjeong Choi
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Su Jeong Song
- Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Seohyun Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yeji Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Gi Beom Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jihoon Han
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jiwan Woo
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yakdol Cho
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Cherlhyun Jeong
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyunghee University, Seoul 02447, Republic of Korea
| | - Seung-Yoon Park
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Thomas M Roberts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - In-San Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea .,KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
29
|
Jiang W, Hu JW, He XR, Jin WL, He XY. Statins: a repurposed drug to fight cancer. J Exp Clin Cancer Res 2021; 40:241. [PMID: 34303383 PMCID: PMC8306262 DOI: 10.1186/s13046-021-02041-2] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
As competitive HMG-CoA reductase (HMGCR) inhibitors, statins not only reduce cholesterol and improve cardiovascular risk, but also exhibit pleiotropic effects that are independent of their lipid-lowering effects. Among them, the anti-cancer properties of statins have attracted much attention and indicated the potential of statins as repurposed drugs for the treatment of cancer. A large number of clinical and epidemiological studies have described the anticancer properties of statins, but the evidence for anticancer effectiveness of statins is inconsistent. It may be that certain molecular subtypes of cancer are more vulnerable to statin therapy than others. Whether statins have clinical anticancer effects is still an active area of research. Statins appear to enhance the efficacy and address the shortcomings associated with conventional cancer treatments, suggesting that statins should be considered in the context of combined therapies for cancer. Here, we present a comprehensive review of the potential of statins in anti-cancer treatments. We discuss the current understanding of the mechanisms underlying the anti-cancer properties of statins and their effects on different malignancies. We also provide recommendations for the design of future well-designed clinical trials of the anti-cancer efficacy of statins.
Collapse
Affiliation(s)
- Wen Jiang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Jin-Wei Hu
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Xu-Ran He
- Department of Finance, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Xin-Yang He
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China.
| |
Collapse
|
30
|
Kay RR. Macropinocytosis: Biology and mechanisms. Cells Dev 2021; 168:203713. [PMID: 34175511 DOI: 10.1016/j.cdev.2021.203713] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
Macropinocytosis is a form of endocytosis performed by ruffles and cups of the plasma membrane. These close to entrap droplets of medium into micron-sized vesicles, which are trafficked through the endocytic system, their contents digested and useful products absorbed. Macropinocytosis is constitutive in certain immune cells and stimulated in many other cells by growth factors. It occurs across the animal kingdom and in amoebae, implying a deep evolutionary history. Its scientific history goes back 100 years, but increasingly work is focused on its medical importance in the immune system, cancer cell feeding, and as a backdoor into cells for viruses and drugs. Macropinocytosis is driven by the actin cytoskeleton whose dynamics can be appreciated with lattice light sheet microscopy: this reveals a surprising variety of routes for forming macropinosomes. In Dictyostelium amoebae, macropinocytic cups are organized around domains of PIP3 and active Ras and Rac in the plasma membrane. These attract activators of the Arp2/3 complex to their periphery, creating rings of actin polymerization that shape the cups. The size of PIP3 domains is controlled by RasGAPs, such as NF1, and the lipid phosphatase, PTEN. It is likely that domain dynamics determine the shape, evolution and closing of macropinocytic structures.
Collapse
Affiliation(s)
- Robert R Kay
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
31
|
Cunha DL, Richardson R, Tracey-White D, Abbouda A, Mitsios A, Horneffer-van der Sluis V, Takis P, Owen N, Skinner J, Welch AA, Moosajee M. REP1 deficiency causes systemic dysfunction of lipid metabolism and oxidative stress in choroideremia. JCI Insight 2021; 6:146934. [PMID: 33755601 PMCID: PMC8262314 DOI: 10.1172/jci.insight.146934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Choroideremia (CHM) is an X-linked recessive chorioretinal dystrophy caused by mutations in CHM, encoding for Rab escort protein 1 (REP1). Loss of functional REP1 leads to the accumulation of unprenylated Rab proteins and defective intracellular protein trafficking, the putative cause for photoreceptor, retinal pigment epithelium (RPE), and choroidal degeneration. CHM is ubiquitously expressed, but adequate prenylation is considered to be achieved, outside the retina, through the isoform REP2. Recently, the possibility of systemic features in CHM has been debated; therefore, in this study, whole metabolomic analysis of plasma samples from 25 CHM patients versus age- and sex-matched controls was performed. Results showed plasma alterations in oxidative stress-related metabolites, coupled with alterations in tryptophan metabolism, leading to significantly raised serotonin levels. Lipid metabolism was disrupted with decreased branched fatty acids and acylcarnitines, suggestive of dysfunctional lipid oxidation, as well as imbalances of several sphingolipids and glycerophospholipids. Targeted lipidomics of the chmru848 zebrafish provided further evidence for dysfunction, with the use of fenofibrate over simvastatin circumventing the prenylation pathway to improve the lipid profile and increase survival. This study provides strong evidence for systemic manifestations of CHM and proposes potentially novel pathomechanisms and targets for therapeutic consideration.
Collapse
Affiliation(s)
- Dulce Lima Cunha
- Department of Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
| | - Rose Richardson
- Department of Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
| | - Dhani Tracey-White
- Department of Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
| | - Alessandro Abbouda
- Department of Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Andreas Mitsios
- Department of Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | | | - Panteleimon Takis
- MRC-NIHR National Phenome Centre, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Nicholas Owen
- Department of Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
| | - Jane Skinner
- Department of Public Health & Primary Care, Norwich Medical School, Norfolk, United Kingdom
| | - Ailsa A. Welch
- Department of Public Health & Primary Care, Norwich Medical School, Norfolk, United Kingdom
| | - Mariya Moosajee
- Department of Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
32
|
Nagayama D, Saiki A, Shirai K. The Anti-Cancer Effect of Pitavastatin May Be a Drug-Specific Effect: Subgroup Analysis of the TOHO-LIP Study. Vasc Health Risk Manag 2021; 17:169-173. [PMID: 33953560 PMCID: PMC8092348 DOI: 10.2147/vhrm.s306540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/09/2021] [Indexed: 12/31/2022] Open
Abstract
The significance of statin treatment for the reduction of cardiovascular (CV) disease has been reported, whereas other reports have also described anti-cancer properties associated with the class effect of statins. However, the differences in anti-cancer effect of various types of statins have rarely been examined. Pitavastatin is a statin with a different chemical structure and pharmacokinetics from other statins, and the mechanism of the specific anti-cancer effect of pitavastatin has been reported in in vivo therapeutic models. We previously revealed that pitavastatin therapy was superior to atorvastatin therapy in the prevention of CV events, despite similar LDL-cholesterol-lowering effect in the TOHO Lipid Intervention Trial Using Pitavastatin (TOHO-LIP). Furthermore, in subgroup analysis of the TOHO-LIP study, cumulative 240-week incidence of new cancer cases tended to be lower in the pitavastatin group compared to the atorvastatin group [0.32% (1/312) vs 1.94% (6/310), log-rank P=0.051]. This finding might reveal the superiority of pitavastatin to prevent carcinogenesis. The molecular mechanism by which pitavastatin suppresses the incidence of any-organ cancer is gradually elucidated, and new combination of cancer treatments with pitavastatin will be developed in the future to further enhance the anti-cancer activity and reduce the side effects.
Collapse
Affiliation(s)
- Daiji Nagayama
- Department of Internal Medicine, Nagayama Clinic, Tochigi, Japan.,Center of Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Atsuhito Saiki
- Center of Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Kohji Shirai
- Department of Internal Medicine, Mihama Hospital, Chiba, Japan
| |
Collapse
|
33
|
Efficacy of fluvastatin and aspirin for prevention of hormonally insensitive breast cancer. Breast Cancer Res Treat 2021; 187:363-374. [PMID: 33893908 PMCID: PMC8190001 DOI: 10.1007/s10549-021-06229-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 04/13/2021] [Indexed: 12/20/2022]
Abstract
Purpose Primary prevention of hormonally insensitive breast cancers remains an important clinical need and repurposing existing low-toxicity drugs represents a low-cost, efficient strategy for meeting this goal. This study targeted the cholesterol pathway using fluvastatin, a cholesterol-lowering drug, and aspirin, an AMPK activator that acts as a brake in the cholesterol pathway, in a transgenic mouse model of triple-negative breast cancer (TNBC). Methods Using SV40C3 TAg mice, the efficacy and mechanism of fluvastatin, aspirin, or both in combination were compared with vehicle alone. Results Sixteen-weeks of fluvastatin treatment resulted in significant delay in onset of tumors (20 weeks vs. 16.8 weeks in vehicle treatment, p = 0.01) and inhibited tumor incidence and tumor multiplicity by 50% relative to the vehicle control. In animals that developed tumors, fluvastatin treatment inhibited tumor weight by 75% relative to vehicle control. Aspirin alone did not significantly affect tumor latency, tumor incidence or tumor burden compared to vehicle control. Fluvastatin and aspirin in combination delayed the onset of tumors but failed to inhibit tumor incidence and tumor multiplicity. The growth-inhibitory effects of fluvastatin were mediated through increased FAS/FASL mediated apoptotic cell death that was characterized by increased cleaved PARP and driven in part by depletion of an isoprenoid, geranyl geranyl pyrophosphate (GGPP). Conclusions In line with NCI’s emphasis to repurpose low-toxicity drugs for prevention of cancer, fluvastatin was effective for prevention of TNBC and warrants further clinical testing. Aspirin did not provide chemopreventive benefit. Supplementary Information The online version contains supplementary material available at 10.1007/s10549-021-06229-0.
Collapse
|
34
|
Juarez D, Fruman DA. Targeting the Mevalonate Pathway in Cancer. Trends Cancer 2021; 7:525-540. [PMID: 33358111 DOI: 10.1016/j.trecan.2020.11.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
The mevalonate synthesis inhibitors, statins, are mainstay therapeutics for cholesterol management and cardiovascular health. Thirty years of research have uncovered supportive roles for the mevalonate pathway in numerous cellular processes that support oncogenesis, most recently macropinocytosis. Central to the diverse mechanisms of statin sensitivity is an acquired dependence on one mevalonate pathway output, protein geranylgeranylation. New chemical prenylation probes and the discovery of a novel geranylgeranyl transferase hold promise to deepen our understanding of statin mechanisms of action. Further, insights into statin selection and the counterproductive role of dietary geranylgeraniol highlight how we should assess statins in the clinic. Lastly, rational combination strategies preview how statins will enter the oncology toolbox.
Collapse
Affiliation(s)
- Dennis Juarez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
35
|
Xiao F, Li J, Huang K, Li X, Xiong Y, Wu M, Wu L, Kuang W, Lv S, Wu L, Zhu X, Guo H. Macropinocytosis: mechanism and targeted therapy in cancers. Am J Cancer Res 2021; 11:14-30. [PMID: 33520357 PMCID: PMC7840718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023] Open
Abstract
Macropinocytosis is a form of endocytosis which provides an effective way for non-selective uptakes of extracellular proteins, liquids, and particles. The endocytic process is initiated by the activation of the growth factors signaling pathways. After activation of the biochemical signal, the cell starts internalizing extracellular solutes and nutrients into the irregular endocytic vesicles, known as macropinosomes that deliver them into the lysosomes for degradation. Macropinocytosis plays an important role in the nutritional supply of cancer cells. Due to the rapid expansion of cancer cells and the abnormal vascular microenvironment, cancer cells are usually deprived of oxygen and nutrients. Therefore, they must transform their metabolism to survive and grow in this harsh microenvironment. To satisfy their energy needs, cancer cells enhance the activity of macropinocytosis. Therefore, this metabolic adaptation that is used by cancer cells can be exploited to develop new targeted cancer therapies. In this review, we discuss the molecular mechanism that actuates the process of macropinocytosis in a variety of cancers, and the novel anti-cancer therapeutics in targeting macropinocytosis.
Collapse
Affiliation(s)
- Feng Xiao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Jingying Li
- Department of Comprehensive Intensive Care Unit, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Xin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Yaping Xiong
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Miaojing Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Lei Wu
- Department of Emergency, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Wei Kuang
- Department of Emergency, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Shigang Lv
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang UniversityNanchang 330006, Jiangxi, China
| |
Collapse
|
36
|
Lipid Metabolism in Tumor-Associated B Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:133-147. [PMID: 33740248 DOI: 10.1007/978-981-33-6785-2_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Breakthroughs have been made in the cancer immunotherapy field focusing on utilizing T cells' antitumor immunity, and the lipid metabolism of tumor-associated B cells is not well studied compared to T cells. Accumulating evidence suggested that B cells also play important roles in tumor biology and antitumor immunity, especially the germinal center B cells that present in the tumor-related tertiary lymphoid structures. Due to scarce studies on lipid metabolisms of tumor-associated B cells, this chapter mainly summarized findings on B cell lipid metabolism and discussed B cell development and major transcription factors, tumor-associated B cell populations and their potential functions in antitumor immunity, fatty acid oxidation in germinal center B cells, and tumor microenvironment factors that potentially affect B cell lipid metabolism, focusing on hypoxia and nutrients competition, as well as lipid metabolites that affect B cell function, including cholesterol, geranylgeranyl pyrophosphate, oxysterols, and short-chain fatty acids.
Collapse
|
37
|
Nam GH, Choi Y, Kim GB, Kim S, Kim SA, Kim IS. Emerging Prospects of Exosomes for Cancer Treatment: From Conventional Therapy to Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002440. [PMID: 33015883 DOI: 10.1002/adma.202002440] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/29/2020] [Indexed: 05/05/2023]
Abstract
Exosomes are a class of extracellular vesicles of around 100 nm in diameter that are secreted by most cells and contain various bioactive molecules reflecting their cellular origin and mediate intercellular communication. Studies of these exosomal features in tumor pathogenesis have led to the development of therapeutic and diagnostic approaches using exosomes for cancer therapy. Exosomes have many advantages for conveying therapeutic agents such as small interfering RNAs, microRNAs, membrane-associated proteins, and chemotherapeutic compounds; thus, they are considered a prime candidate as a delivery tool for cancer treatment. Since exosomes also provide an optimal microenvironment for the effective function of immunomodulatory factors, exosomes harboring bioactive molecules have been bioengineered as cancer immunotherapies that can effectively activate each stage of the cancer immunity cycle to successfully elicit cancer-specific immunity. This review discusses the advantages of exosomes for treating cancer and the challenges that must be overcome for their successful clinical development.
Collapse
Affiliation(s)
- Gi-Hoon Nam
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yoonjeong Choi
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gi Beom Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seohyun Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seong A Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - In-San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
38
|
Wei L, Zheng YY, Sun J, Wang P, Tao T, Li Y, Chen X, Sang Y, Chong D, Zhao W, Zhou Y, Wang Y, Jiang Z, Qiu T, Li CJ, Zhu MS, Zhang X. GGPP depletion initiates metaflammation through disequilibrating CYB5R3-dependent eicosanoid metabolism. J Biol Chem 2020; 295:15988-16001. [PMID: 32913122 DOI: 10.1074/jbc.ra120.015020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/20/2020] [Indexed: 12/30/2022] Open
Abstract
Metaflammation is a primary inflammatory complication of metabolic disorders characterized by altered production of many inflammatory cytokines, adipokines, and lipid mediators. Whereas multiple inflammation networks have been identified, the mechanisms by which metaflammation is initiated have long been controversial. As the mevalonate pathway (MVA) produces abundant bioactive isoprenoids and abnormal MVA has a phenotypic association with inflammation/immunity, we speculate that isoprenoids from the MVA may provide a causal link between metaflammation and metabolic disorders. Using a line with the MVA isoprenoid producer geranylgeranyl diphosphate synthase (GGPPS) deleted, we find that geranylgeranyl pyrophosphate (GGPP) depletion causes an apparent metaflammation as evidenced by abnormal accumulation of fatty acids, eicosanoid intermediates, and proinflammatory cytokines. We also find that GGPP prenylate cytochrome b 5 reductase 3 (CYB5R3) and the prenylated CYB5R3 then translocate from the mitochondrial to the endoplasmic reticulum (ER) pool. As CYB5R3 is a critical NADH-dependent reductase necessary for eicosanoid metabolism in ER, we thus suggest that GGPP-mediated CYB5R3 prenylation is necessary for metabolism. In addition, we observe that pharmacological inhibition of the MVA pathway by simvastatin is sufficient to inhibit CYB5R3 translocation and induces smooth muscle death. Therefore, we conclude that the dysregulation of MVA intermediates is an essential mechanism for metaflammation initiation, in which the imbalanced production of eicosanoid intermediates in the ER serve as an important pathogenic factor. Moreover, the interplay of MVA and eicosanoid metabolism as we reported here illustrates a model for the coordinating regulation among metabolite pathways.
Collapse
Affiliation(s)
- Lisha Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yan-Yan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Jie Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Pei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Tao Tao
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yeqiong Li
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Xin Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yongjuan Sang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Danyang Chong
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Wei Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yuwei Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Ye Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Zhihui Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Tiantian Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Chao-Jun Li
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China.
| | - Min-Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China.
| | - Xuena Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
39
|
The mevalonate pathway is an actionable vulnerability of t(4;14)-positive multiple myeloma. Leukemia 2020; 35:796-808. [PMID: 32665698 PMCID: PMC7359767 DOI: 10.1038/s41375-020-0962-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/01/2020] [Indexed: 12/19/2022]
Abstract
Multiple myeloma (MM) is a plasma cell malignancy that is often driven by chromosomal translocations. In particular, patients with t(4;14)-positive disease have worse prognosis compared to other MM subtypes. Herein, we demonstrated that t(4;14)-positive cells are highly dependent on the mevalonate (MVA) pathway for survival. Moreover, we showed that this metabolic vulnerability is immediately actionable, as inhibiting the MVA pathway with a statin preferentially induced apoptosis in t(4;14)-positive cells. In response to statin treatment, t(4;14)-positive cells activated the integrated stress response (ISR), which was augmented by co-treatment with bortezomib, a proteasome inhibitor. We identified that t(4;14)-positive cells depend on the MVA pathway for the synthesis of geranylgeranyl pyrophosphate (GGPP), as exogenous GGPP fully rescued statin-induced ISR activation and apoptosis. Inhibiting protein geranylgeranylation similarly induced the ISR in t(4;14)-positive cells, suggesting that this subtype of MM depends on GGPP, at least in part, for protein geranylgeranylation. Notably, fluvastatin treatment synergized with bortezomib to induce apoptosis in t(4;14)-positive cells and potentiated the anti-tumor activity of bortezomib in vivo. Our data implicate the t(4;14) translocation as a biomarker of statin sensitivity and warrant further clinical evaluation of a statin in combination with bortezomib for the treatment of t(4;14)-positive disease.
Collapse
|
40
|
Di Bello E, Zwergel C, Mai A, Valente S. The Innovative Potential of Statins in Cancer: New Targets for New Therapies. Front Chem 2020; 8:516. [PMID: 32626692 PMCID: PMC7312214 DOI: 10.3389/fchem.2020.00516] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/19/2020] [Indexed: 01/01/2023] Open
Abstract
Numerous and different types of cancers possess the dysregulation of the mevalonate pathway as a common feature. Statins, traditionally applied in cardiovascular diseases to reduce lipid levels, subsequently have been discovered to exhibit anti-cancer activities also. Indeed, statins influence proliferation, migration, and survival of cancer cells by regulating crucial signaling proteins, such as Rho, Ras, and Rac. Recently, several studies have demonstrated that simvastatin, fluvastatin, and lovastatin are implicated in different pathways that enhance the survival time of patients with cancer under treatment in combination with antineoplastic agents. In this minireview, we present an overview of the most important studies conducted regarding the use of statins in cancer therapy up to date.
Collapse
Affiliation(s)
- Elisabetta Di Bello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy.,Department of Precision Medicine, Luigi Vanvitelli, University of Campania, Naples, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|