1
|
Dias-Solange D, Le MT, Gottipati K, Choi KH. Structure of coxsackievirus cloverleaf RNA and 3C pro dimer establishes the RNA-binding mechanism of enterovirus protease 3C pro. SCIENCE ADVANCES 2025; 11:eads6862. [PMID: 40073119 PMCID: PMC11900867 DOI: 10.1126/sciadv.ads6862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025]
Abstract
In positive-strand RNA viruses, the genome serves as a template for both protein translation and negative-strand RNA synthesis. Enteroviruses use the cloverleaf RNA structure at the 5' end of the genome to balance these two processes. Cloverleaf acts as a promoter for RNA synthesis and forms a complex with viral 3CD protein, the precursor to 3Cpro protease, and 3Dpol polymerase. The interaction between cloverleaf and 3CD is mediated by the 3Cpro domain, yet how 3Cpro promotes specific RNA-binding is not clear. We report the structure of coxsackievirus cloverleaf RNA-3Cpro complex, wherein two 3Cpro molecules interact with cloverleaf stem-loop D. 3Cpro dimer mainly recognizes the shape of the dsRNA helix through symmetric interactions, suggesting that 3Cpro is a previously undiscovered type of RNA binding protein. We show that 3CD protein also dimerizes on cloverleaf RNA and binds the RNA with higher affinity than 3Cpro. The structure provides insight into the RNA-binding mechanism of 3Cpro or 3CD with other cis-acting replication elements.
Collapse
Affiliation(s)
- Dimagi Dias-Solange
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - My Tra Le
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Keerthi Gottipati
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Kyung H. Choi
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
2
|
Wang H, Zhu W, Li Y, Sun M. Neutralizing antibody landscape of the non-polio Enteroviruses and future strategy. Front Immunol 2025; 15:1524356. [PMID: 39877351 PMCID: PMC11772190 DOI: 10.3389/fimmu.2024.1524356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
The non-polio Enteroviruses (NPEVs), consist of enteroviruses, coxsackieviruses, echoviruses, and rhinoviruses, are causative agents for a wide variety of diseases, ranging from common cold to encephalitis and acute flaccid paralysis (AFP). In recent years, several NPEVs have become serious public health threats, include EV-A71, which has caused epidemics of hand-foot-and-mouth disease (HMFD) in Southeast Asia, and EV-D68, which caused outbreaks of severe respiratory disease in children worldwide. Infections with these viruses are associated with neurological diseases like aseptic meningitis and AFP. Currently, apart from inactivated EV-A71 vaccines that were developed in China, no effective measures are available to prevent or treat NPEV infections. Antibody-mediated immunity is crucial for preventing and limiting viral infections, and potent neutralizing antibodies could serve as potential therapeutic agents. In this review, we describe recent progress in the NPEVs neutralization antibodies, summarizing the characteristics, breadth, and potency against NPEVs, such as EV-A71, CVA16, EV-D68, and echovirus. We focus on not only through the study of viral epitopes but also through the understanding of virus-antibody interactions. Also, we decipher the role of antibodies in the attachment of the virus to receptors, internalization, and uncoating process, providing insight into virus neutralization mechanisms. Moreover, bi-specific antibodies or multivalent antibodies with better potency are also discussed. Therefore, an in-depth understanding of structures of enterovirus and mechanisms of antibody neutralization should be useful for future strategies in guiding the design of a rational antiviral agent against NPEVs infections.
Collapse
Affiliation(s)
- Hongye Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Wenbing Zhu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Ya Li
- Department of Laboratory Medicine, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Ming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
3
|
Wang M, Sun X, Peng S, Wang F, Zhao K, Wang D. Deciphering the cleavage sites of 3C-like protease in Gammacoronaviruses and Deltacoronaviruses. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141057. [PMID: 39454742 DOI: 10.1016/j.bbapap.2024.141057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Coronaviruses replicate by using the 3C-like protease (3CLpro) to cleave polyprotein precursors and host proteins. However, current tools for identifying 3CLpro cleavage sites are limited, particularly in Gammacoronaviruses (GammaCoV) and Deltacoronaviruses (DeltaCoV). This study aims to fill this gap by identifying 3CLpro cleavage sites in these viruses to provide deeper insights into their pathogenic mechanisms. By integrating sequence alignments and structural model comparisons, we developed a position-specific scoring matrix (PSSM) based on self-cleavage motifs, revealing specific preferences for each residue. Utilizing AlphaFold2's predicted alignment error (PAE) and predicted local distance difference test (pLDDT), we found that most cleavage sequences are located in regions with high PAE and low pLDDT values. KEGG pathway analysis showed that potential host protein cleavage targets are mainly concentrated in pathways related to nucleo-cytoplasmic transport and endocytosis. Through in vitro cleavage experiments and mutational analysis, we identified and validated three high-scoring proteins-nucleoporin 58 (NUP58), cell division cycle 73 (CDC73), and signal transducing adaptor molecule 2 (STAM2). These findings suggest that 3CLpro not only plays a vital role in viral replication but may also influence host cell functions by cleaving host proteins. This study provides an effective tool for identifying 3CLpro cleavage sites, revealing the pathogenic mechanisms of coronaviruses, and offering new insights for developing potential therapeutic targets.
Collapse
Affiliation(s)
- Mengxue Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xinyi Sun
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shijiang Peng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Feifan Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Kangli Zhao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Dang Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
4
|
Roisné-Hamelin F, Liu HW, Taschner M, Li Y, Gruber S. Structural basis for plasmid restriction by SMC JET nuclease. Mol Cell 2024; 84:883-896.e7. [PMID: 38309275 DOI: 10.1016/j.molcel.2024.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
DNA loop-extruding SMC complexes play crucial roles in chromosome folding and DNA immunity. Prokaryotic SMC Wadjet (JET) complexes limit the spread of plasmids through DNA cleavage, yet the mechanisms for plasmid recognition are unresolved. We show that artificial DNA circularization renders linear DNA susceptible to JET nuclease cleavage. Unlike free DNA, JET cleaves immobilized plasmid DNA at a specific site, the plasmid-anchoring point, showing that the anchor hinders DNA extrusion but not DNA cleavage. Structures of plasmid-bound JetABC reveal two presumably stalled SMC motor units that are drastically rearranged from the resting state, together entrapping a U-shaped DNA segment, which is further converted to kinked V-shaped cleavage substrate by JetD nuclease binding. Our findings uncover mechanical bending of residual unextruded DNA as molecular signature for plasmid recognition and non-self DNA elimination. We moreover elucidate key elements of SMC loop extrusion, including the motor direction and the structure of a DNA-holding state.
Collapse
Affiliation(s)
- Florian Roisné-Hamelin
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), 1015 Lausanne, Switzerland
| | - Hon Wing Liu
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), 1015 Lausanne, Switzerland
| | - Michael Taschner
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), 1015 Lausanne, Switzerland
| | - Yan Li
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), 1015 Lausanne, Switzerland
| | - Stephan Gruber
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), 1015 Lausanne, Switzerland.
| |
Collapse
|
5
|
Neira JL. Fluorescence, Circular Dichroism and Mass Spectrometry as Tools to Study Virus Structure. Subcell Biochem 2024; 105:207-245. [PMID: 39738948 DOI: 10.1007/978-3-031-65187-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Fluorescence and circular dichroism, as analytical spectroscopic techniques, and mass spectrometry, as an analytical tool to determine molecular mass, are important biophysical methods in structural virology. Although they do not provide atomic or near-atomic details as cryogenic electron microscopy, X-ray crystallography or nuclear magnetic resonance spectroscopy can, they do deliver important insights into virus particle composition, structure, conformational stability and dynamics, assembly and maturation and interactions with other viral and cellular biomolecules. They can also be used to investigate the molecular determinants of virus particle structure and properties and the changes induced in them by external factors. In this chapter, the physical foundations of these three techniques will be described, alongside examples demonstrating their contribution in understanding the structure and physicochemical properties of virus particles.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, Elche, Alicante, Spain.
- Instituto de Biocomputación y Física de Sistemas Complejos, Zaragoza, Spain.
| |
Collapse
|
6
|
Antigenic mapping reveals sites of vulnerability on α-HCoV spike protein. Commun Biol 2022; 5:1179. [PMID: 36333470 PMCID: PMC9636267 DOI: 10.1038/s42003-022-04160-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Understanding the antigenic signatures of all human coronaviruses (HCoVs) Spike (S) proteins is imperative for pan-HCoV epitopes identification and broadly effective vaccine development. To depict the currently elusive antigenic signatures of α-HCoVs S proteins, we isolated a panel of antibodies against the HCoV-229E S protein and characterized their epitopes and neutralizing potential. We found that the N-terminal domain of HCoV-229E S protein is antigenically dominant wherein an antigenic supersite is present and appears conserved in HCoV-NL63, which holds potential to serve as a pan-α-HCoVs epitope. In the receptor binding domain, a neutralizing epitope is captured in the end distal to the receptor binding site, reminiscent of the locations of the SARS-CoV-2 RBD cryptic epitopes. We also identified a neutralizing antibody that recognizes the connector domain, thus representing the first S2-directed neutralizing antibody against α-HCoVs. The unraveled HCoVs S proteins antigenic similarities and variances among genera highlight the challenges faced by pan-HCoV vaccine design while supporting the feasibility of broadly effective vaccine development against a subset of HCoVs. The antigenic landscape of α-HCoVs S proteins is revealed, highlighting the challenges faced by pan-HCoV vaccine design but also revealing opportunities for development of broadly effective vaccines against a subset of HCoVs.
Collapse
|
7
|
Precursors of Viral Proteases as Distinct Drug Targets. Viruses 2021; 13:v13101981. [PMID: 34696411 PMCID: PMC8537868 DOI: 10.3390/v13101981] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Viral proteases are indispensable for successful virion maturation, thus making them a prominent drug target. Their enzyme activity is tightly spatiotemporally regulated by expression in the precursor form with little or no activity, followed by activation via autoprocessing. These cleavage events are frequently triggered upon transportation to a specific compartment inside the host cell. Typically, precursor oligomerization or the presence of a co-factor is needed for activation. A detailed understanding of these mechanisms will allow ligands with non-canonical mechanisms of action to be designed, which would specifically modulate the initial irreversible steps of viral protease autoactivation. Binding sites exclusive to the precursor, including binding sites beyond the protease domain, can be exploited. Both inhibition and up-regulation of the proteolytic activity of viral proteases can be detrimental for the virus. All these possibilities are discussed using examples of medically relevant viruses including herpesviruses, adenoviruses, retroviruses, picornaviruses, caliciviruses, togaviruses, flaviviruses, and coronaviruses.
Collapse
|
8
|
James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem Rev 2021; 122:7562-7623. [PMID: 34493042 PMCID: PMC9053315 DOI: 10.1021/acs.chemrev.1c00279] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Solution-phase hydrogen/deuterium
exchange (HDX) coupled to mass
spectrometry (MS) is a widespread tool for structural analysis across
academia and the biopharmaceutical industry. By monitoring the exchangeability
of backbone amide protons, HDX-MS can reveal information about higher-order
structure and dynamics throughout a protein, can track protein folding
pathways, map interaction sites, and assess conformational states
of protein samples. The combination of the versatility of the hydrogen/deuterium
exchange reaction with the sensitivity of mass spectrometry has enabled
the study of extremely challenging protein systems, some of which
cannot be suitably studied using other techniques. Improvements over
the past three decades have continually increased throughput, robustness,
and expanded the limits of what is feasible for HDX-MS investigations.
To provide an overview for researchers seeking to utilize and derive
the most from HDX-MS for protein structural analysis, we summarize
the fundamental principles, basic methodology, strengths and weaknesses,
and the established applications of HDX-MS while highlighting new
developments and applications.
Collapse
Affiliation(s)
- Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
9
|
A CDR-based approach to generate covalent inhibitory antibody for human rhinovirus protease. Bioorg Med Chem 2021; 42:116219. [PMID: 34077853 DOI: 10.1016/j.bmc.2021.116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/21/2022]
Abstract
Covalent target modulation with small molecules has been emerging as a promising strategy for drug discovery. However, covalent inhibitory antibody remains unexplored due to the lack of efficient strategies to engineer antibody with desired bioactivity. Herein, we developed an intracellular selection method to generate covalent inhibitory antibody against human rhinovirus 14 (HRV14) 3C protease through unnatural amino acid mutagenesis along the heavy chain complementarity-determining region 3 (CDR-H3). A library of antibody mutants was thus constructed and screened in vivo through co-expression with the target protease. Using this screening strategy, six covalent antibodies with proximity-enabled bioactivity were identified, which were shown to covalently target HRV14-3C protease with high inhibitory potency and exquisite selectivity. Compared to structure-based rational design, this library-based screening method provides a simple and efficient way for the discovery and engineering of covalent antibody for enzyme inhibition.
Collapse
|
10
|
Simanjuntak Y, Schamoni-Kast K, Grün A, Uetrecht C, Scaturro P. Top-Down and Bottom-Up Proteomics Methods to Study RNA Virus Biology. Viruses 2021; 13:668. [PMID: 33924391 PMCID: PMC8070632 DOI: 10.3390/v13040668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/01/2021] [Accepted: 04/10/2021] [Indexed: 02/06/2023] Open
Abstract
RNA viruses cause a wide range of human diseases that are associated with high mortality and morbidity. In the past decades, the rise of genetic-based screening methods and high-throughput sequencing approaches allowed the uncovering of unique and elusive aspects of RNA virus replication and pathogenesis at an unprecedented scale. However, viruses often hijack critical host functions or trigger pathological dysfunctions, perturbing cellular proteostasis, macromolecular complex organization or stoichiometry, and post-translational modifications. Such effects require the monitoring of proteins and proteoforms both on a global scale and at the structural level. Mass spectrometry (MS) has recently emerged as an important component of the RNA virus biology toolbox, with its potential to shed light on critical aspects of virus-host perturbations and streamline the identification of antiviral targets. Moreover, multiple novel MS tools are available to study the structure of large protein complexes, providing detailed information on the exact stoichiometry of cellular and viral protein complexes and critical mechanistic insights into their functions. Here, we review top-down and bottom-up mass spectrometry-based approaches in RNA virus biology with a special focus on the most recent developments in characterizing host responses, and their translational implications to identify novel tractable antiviral targets.
Collapse
Affiliation(s)
- Yogy Simanjuntak
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (Y.S.); (K.S.-K.); (A.G.)
| | - Kira Schamoni-Kast
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (Y.S.); (K.S.-K.); (A.G.)
| | - Alice Grün
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (Y.S.); (K.S.-K.); (A.G.)
- Centre for Structural Systems Biology, 22607 Hamburg, Germany
| | - Charlotte Uetrecht
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (Y.S.); (K.S.-K.); (A.G.)
- Centre for Structural Systems Biology, 22607 Hamburg, Germany
- European XFEL GmbH, 22869 Schenefeld, Germany
| | - Pietro Scaturro
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (Y.S.); (K.S.-K.); (A.G.)
| |
Collapse
|